QUIZ 11 SOLUTIONS

ALEXANDER J STATHIS

1. Use the Gram-Schmidt orthogonalization process to find an orthonormal basis for

$$
S=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
2 \\
2 \\
4
\end{array}\right),\left(\begin{array}{c}
-2 \\
0 \\
-4 \\
0
\end{array}\right)\right\}
$$

Solution. Because there are two vectors and neither is in the span of the other, we will need two basis vectors. Our first basis vector is

$$
\mathbf{e}_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=\frac{v_{1}}{\sqrt{1+4+4+16}}=\left(\begin{array}{c}
1 / 5 \\
2 / 5 \\
2 / 5 \\
4 / 5
\end{array}\right)
$$

Now we project our second vector onto our first, and subtract this projected vector from the second vector and normalize the result to obtain our second basis. The projection is

$$
\operatorname{proj}_{v_{1}}\left(v_{2}\right)=\frac{v_{2} \cdot v_{1}}{\left\|v_{1}\right\|^{2}} v_{1}=\frac{-2+0+-8+0}{25} v_{1}=-\frac{2}{5} v_{1}=\left(\begin{array}{l}
-2 / 5 \\
-4 / 5 \\
-4 / 5 \\
-8 / 5
\end{array}\right),
$$

and the difference of v_{2} and the projection is

$$
u_{2}=v_{2}-\operatorname{proj}_{v_{1}}\left(v_{2}\right)=\left(\begin{array}{c}
-2 \\
0 \\
-4 \\
0
\end{array}\right)-\left(\begin{array}{c}
-2 / 5 \\
-4 / 5 \\
-4 / 5 \\
-8 / 5
\end{array}\right)=\left(\begin{array}{c}
-8 / 5 \\
4 / 5 \\
-16 / 5 \\
8 / 5
\end{array}\right)
$$

Our second basis vector is

$$
\mathbf{e}_{2}=\frac{u_{2}}{\left\|u_{2}\right\|}=\frac{u_{2}}{\sqrt{\frac{64}{25}+\frac{16}{25}+\frac{(16)^{2}}{25}+\frac{64}{25}}}=\frac{u_{2}}{4}=\left(\begin{array}{c}
-2 / 5 \\
1 / 5 \\
-4 / 5 \\
2 / 5
\end{array}\right)
$$

and summing up, our basis is

$$
\left\{\left(\begin{array}{l}
1 / 5 \\
2 / 5 \\
2 / 5 \\
4 / 5
\end{array}\right),\left(\begin{array}{c}
-2 / 5 \\
1 / 5 \\
-4 / 5 \\
2 / 5
\end{array}\right)\right\} .
$$

Dept. of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607 E-mail address: astath2@uic.edu

