QUIZ 12 SOLUTIONS

ALEXANDER J STATHIS

1. Let $A=\left(\begin{array}{ll}3 & 1 \\ 2 & 4\end{array}\right)$. Find the eigenvectors and eigenspaces of A. Determine if A is diagonalizable or defective.

Solution. We first need to find the characteristic polynomial of A. To do this, we consider the equation

$$
0=\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
3-\lambda & 1 \\
2 & 4-\lambda
\end{array}\right)=(3-\lambda)(4-\lambda)-2=\lambda^{2}-7 \lambda+10=(\lambda-2)(\lambda-5)
$$

for arbitrary $\lambda \in \mathbb{R}$. Our eigenvalues are 2 and 5 , accordingly.
To determine the eigenvectors for each eigenvalue, we just solve the system explicitly with each eigenvalue. In the case that $\lambda=2$, we need to find the null space of

$$
A-2 I=\left(\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right) \sim\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)
$$

But this is just the line through the origin given by the equation $x=-y$, and has as a basis the vector $e_{1}=\binom{1}{-1}$. Proceeding analogously for $\lambda=5$, we find the vector $e_{2}=\binom{1}{2}$.

It follows that A diagonalizes to $\left(\begin{array}{ll}2 & 0 \\ 0 & 5\end{array}\right)$ in the ordered basis $\left\{e_{1}, e_{2}\right\}$.
Dept. of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607 E-mail address: astath2@uic.edu

