QUIZ 2 SOLUTION

ALEXANDER J STATHIS

1. Given the matrices

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & -1 & 2 \\
-1 & 2 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{ccc}
-5 & 1 & 7 \\
-6 & 1 & 10 \\
7 & -1 & -9
\end{array}\right)
$$

determine the following:
i Find A^{T};
ii Find $A B$;
iii Find $2 A-B$;
iv Is B an inverse of A ?;
v Is A symmetric? Is $A B$ symmetric?

Solution.

i The transpose of A is the matrix

$$
\left(\begin{array}{ccc}
1 & 4 & -1 \\
2 & -1 & 2 \\
3 & 2 & 1
\end{array}\right)
$$

ii The product is

$$
A B=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & -1 & 2 \\
-1 & 2 & 1
\end{array}\right)\left(\begin{array}{ccc}
-5 & 1 & 7 \\
-6 & 1 & 10 \\
7 & -1 & -9
\end{array}\right)=\left(\begin{array}{lll}
4 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right)
$$

iii The difference

$$
2 A-B=\left(\begin{array}{ccc}
2 & 4 & 6 \\
8 & -2 & 4 \\
-2 & 4 & 2
\end{array}\right)-\left(\begin{array}{ccc}
-5 & 1 & 7 \\
-6 & 1 & 10 \\
7 & -1 & -9
\end{array}\right)=\left(\begin{array}{ccc}
7 & 3 & -1 \\
14 & -3 & -6 \\
-9 & 5 & 11
\end{array}\right)
$$

iv I assume we mean a two-sided inverse. In this case, the answer is clearly no, as it suffices to note that $A B \neq I$.
v A is not symmetric, as $a_{12} \neq a_{21} . A B$ is symmetric, however, as $a b_{i j}=a b_{j i}$ for all $1 \leq i, j \leq 3$.
Dept. of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607 E-mail address: astath2@uic.edu

