QUIZ 4 SOLUTION

ALEXANDER J STATHIS

1. Show that

$$
S=\left\{\binom{x}{y}: 2 x+3 y=0\right\}
$$

is a subspace of \mathbb{R}^{2}.
Solution. We must check that S is closed under sums and scalar products. If $c \in \mathbb{R}$ and $\binom{x}{y} \in S$, then

$$
c \cdot\binom{x}{y}=\binom{c x}{c y}
$$

and

$$
2(c x)+3(c y)=c(2 x+3 y)
$$

But $\binom{x}{y} \in S$, so $2 x+3 y=0$, and therefore $\binom{c x}{c y} \in S$ and S is closed under scalar products.
Now assume that $\binom{x}{y}$ and $\binom{a}{b}$ are elements of S so that $2 a+3 b=2 x+3 y=0$. Then

$$
\binom{x}{y}+\binom{a}{b}=\binom{x+a}{y+b}
$$

and

$$
2(x+a)+3(y+b)=(2 x+3 y)+(2 a+3 b)=0
$$

so S is closed under sums. Hence S is a subspace of \mathbb{R}^{2}.
2. Show that

$$
T=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right): x=y \text { or } x=z\right\}
$$

is not a subspace of \mathbb{R}^{3}.
Solution. Observe that $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ are elements of T, but

$$
\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)
$$

is not an element of T. Therefore T is not closed under sums, and is not a subspace of \mathbb{R}^{3}.

