QUIZ 4 SOLUTION

ALEXANDER J STATHIS

1. Show that

$$S = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : 2x + 3y = 0 \right\}$$

is a subspace of \mathbb{R}^2 .

Solution. We must check that S is closed under sums and scalar products. If $c \in \mathbb{R}$ and $\begin{pmatrix} x \\ y \end{pmatrix} \in S$, then $c \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} cx \\ cy \end{pmatrix}$

and

$$2(cx) + 3(cy) = c(2x + 3y).$$

But $\begin{pmatrix} x \\ y \end{pmatrix} \in S$, so 2x + 3y = 0, and therefore $\begin{pmatrix} cx \\ cy \end{pmatrix} \in S$ and S is closed under scalar products. Now assume that $\begin{pmatrix} x \\ y \end{pmatrix}$ and $\begin{pmatrix} a \\ b \end{pmatrix}$ are elements of S so that 2a + 3b = 2x + 3y = 0. Then $\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a \\ c \end{pmatrix} = \begin{pmatrix} x + a \\ c \end{pmatrix}$

$$\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} x+a \\ y+b \end{pmatrix}$$

and

$$2(x+a) + 3(y+b) = (2x+3y) + (2a+3b) = 0,$$

so S is closed under sums. Hence S is a subspace of \mathbb{R}^2 .

2. Show that

$$T = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x = y \text{ or } x = z \right\}$$

is not a subspace of \mathbb{R}^3 .

Solution. Observe that
$$\begin{pmatrix} 1\\0\\1 \end{pmatrix}$$
 and $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$ are elements of T , but
$$\begin{pmatrix} 1\\0\\1 \end{pmatrix} + \begin{pmatrix} 1\\1\\0 \end{pmatrix} = \begin{pmatrix} 2\\1\\1 \end{pmatrix}$$

is not an element of T. Therefore T is not closed under sums, and is not a subspace of \mathbb{R}^3 .

DEPT. OF MATHEMATICS, STATISTICS, AND COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS AT CHICAGO, CHICAGO, IL 60607 *E-mail address*: astath2@uic.edu