QUIZ 5 SOLUTION

ALEXANDER J STATHIS

1. Let

$$
v_{1}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right), v_{2}=\left(\begin{array}{l}
3 \\
4 \\
5
\end{array}\right), \text { and } v_{3}=\left(\begin{array}{l}
2 \\
2 \\
4
\end{array}\right)
$$

1 Does $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ belong to $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$?
2 Do v_{1}, v_{2}, and v_{3} span \mathbb{R}^{3} ?
Solution. First, we notice that an answer in the negative to question one suffices to show that the vectors do not span \mathbb{R}^{3} since $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \in \mathbb{R}^{3}$.

To see if $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ is in the span of these vectors, we need put them in the matrix

$$
\left(\begin{array}{llll}
1 & 3 & 2 & 0 \\
2 & 4 & 2 & 0 \\
1 & 5 & 4 & 1
\end{array}\right)
$$

and row reduce. If this matrix is inconsistent, then the vector lies outside the span of v_{1}, v_{2}, and v_{3}.
After row reducing, we arrive at the matrix

$$
\left(\begin{array}{cccc}
1 & 3 & 2 & 0 \\
0 & -2 & -2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),
$$

which is inconsistent. Hence, $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ is not in the span, and they do not span \mathbb{R}^{3}.
Dept. of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607 E-mail address: astath2@uic.edu

