QUIZ 7 SOLUTION

1. Consider the set

$$
F=\left\{\binom{2}{3},\binom{5}{7}\right\}
$$

as a basis of \mathbb{R}^{2}.
a If

$$
u=\binom{-1}{4}
$$

in the standard basis of \mathbb{R}^{2}, find $[u]_{F}$.
b If

$$
[v]_{F}=\binom{2}{-1}
$$

find v in the standard basis of \mathbb{R}^{2}.

Solution.

a $F[v]_{F}=v$, so that $[v]_{F}=F^{-1} v$ and

$$
F^{-1}=\left(\begin{array}{cc}
-7 & 5 \\
3 & -2
\end{array}\right) .
$$

So

$$
F^{-1} v=\left(\begin{array}{cc}
-7 & 5 \\
3 & -2
\end{array}\right)\binom{-1}{4}=\binom{27}{-11}
$$

b We know that $F[v]_{F}=v$, so we just perform the multiplication

$$
\left(\begin{array}{ll}
2 & 5 \\
3 & 7
\end{array}\right)\binom{2}{-1}=2\binom{2}{3}-\binom{5}{7}=\binom{-1}{-1}
$$

2. Let

$$
F=\left\{\binom{5}{3},\binom{2}{4}\right\} \text { and } G=\left\{\binom{1}{2},\binom{4}{9}\right\}
$$

be bases for \mathbb{R}^{2}. Compute the change of basis matrix from G to F.

Solution. We know that

$$
F[v]_{F}=v=G[v]_{G},
$$

so that

$$
G^{-1} F[v]_{F}=[v]_{G}
$$

and $G^{-1} F$ is the change of basis matrix. Hence

$$
G^{-1} F=\left(\begin{array}{cc}
9 & -4 \\
-2 & 1
\end{array}\right)\left(\begin{array}{cc}
5 & 7 \\
3 & 4
\end{array}\right)=\left(\begin{array}{cc}
23 & 47 \\
-7 & -10
\end{array}\right)
$$

Dept. of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607 E-mail address: astath2@uic.edu

