QUIZ 9 SOLUTIONS

ALEXANDER J STATHIS

Let $S=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 2 \\ 0 \\ 3\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 3 \\ 4\end{array}\right)\right\}$, and let $T=\operatorname{span}\left\{\left(\begin{array}{c}1 \\ -1 \\ 0 \\ 0\end{array}\right)\right\}$.

1. Is $S \perp T$?

Solution. S is perpendicular to T if all the basis vectors of S are perpendicular to the basis vector of T since matrix multiplication is linear. But

$$
s_{1}^{T} \cdot t=\left(\begin{array}{llll}
1 & 2 & 0 & 3
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right)=-1
$$

is nonzero, so they are not perpendicular.
2. Find S^{\perp}.

Solution. The null space of a matrix is the orthogonal complement of its row space (the set of all vectors whose dot product with the rows is zero). Therefore, we take the basis vectors of S and make them the rows in a matrix, then find the null space.

The resulting matrix is

$$
\left(\begin{array}{llll}
1 & 2 & 0 & 3 \\
0 & 0 & 3 & 4
\end{array}\right)
$$

The null space is the following plane in \mathbb{R}^{4}

$$
\left\{\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right) \in \mathbb{R}^{4}: x+2 y+3 w=z+\frac{4}{3} w=0\right\}
$$

or is given by the basis

$$
\left\{\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
-3 \\
0 \\
-\frac{4}{3} \\
1
\end{array}\right)\right\} .
$$

Dept. of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607 E-mail address: astath2@uic.edu

