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1. Overview

The goal of computational nonimaging geometric optics is the efficient design of op-
tical lenses and mirrors for the accurate control of light. Light waste in the United
States is equivalent to 72.9 million mwh of unnecessary electricity generated at a
cost of $ 6.9 billion a year [10] and the amount of CO2 generated in that process is
equivalent to 9.5 million cars on the roads. Light pollution also has adverse health
impacts on wildlife and humans. Other examples where an accurate control of light
is required include projection displays, laser weapons, concentrated solar energy and
medical illuminators. Freeform illumination design, i.e. with no a priori symmetry
assumption, often leads to solving numerically a nonlinear second order partial dif-
ferential equation of Monge-Ampère type with non local boundary conditions. For a
review of other approaches we refer to [8, section 2].

Let Ω and Ω∗ be two bounded convex domains of Rd. We are interested in the
redistribution of an incoming source of light with density f ∈ L1(Ω), f ≥ 0, by a
surface defined by a function u on Ω, into a prescribed irradiance described by a
density R ∈ L1(Ω∗), R > 0. Conservation of energy requires

∫
Ω
f(x)dx =

∫
Ω∗
R(p)dp.

In the case the surface represents a mirror, light is reflected and we will say that we
have a reflector problem. In the case of a lens, light is transmitted with a new direction
of travel, i.e. the light is refracted. We will refer to this as a refractor problem. One
often makes the assumption of an idealized point light source. Another design we will
consider is based on the assumption that the incoming light is collimated, i.e. has
parallel rays. As for the target, when it is very far from the source, the light output
can be described with a set of directions on the unit sphere. This is referred to as
a far-field problem. The combination of these design constraints lead to the type of
problems we consider in this review, i.e. the parallel near field reflector problem, the
point source far field refractor problem etc.

For the parallel far field reflector problem, Ω ⊂ Rd and Ω∗ is identified with a subset
of Rd which is the stereographic projection of a domain of the unit sphere in Rd+1.
In this case, a ray originating at x ∈ Ω is reflected by the mirror described by the
graph of u into the point Du(x), the gradient of u at x. It is shown for example in
[19] that one can choose u convex solving the Monge-Ampère equation

R(Du(x)) detD2u(x) = f(x) in Ω,(1.1)

with the natural boundary condition

(1.2) Du(Ω) = Ω∗.
1
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Figure 1. Convex reflector for the density R discretized with two
Dirac masses, c.f. section 2.5. The target Ω∗ is not shown.

For a smooth function u, D2u =
(
∂2u/(∂xi∂xj)

)
i,j=1,...,d

denotes its Hessian matrix

and detD2u is its determinant. Figure 1 illustrates a convex reflector which redirects
a parallel light beam into a finite number of directions of the unit sphere.

Problem (1.1)-(1.2) also appear in optimal transport problems as we discuss in section
3. In general, problems in geometric optics lead to more general Monge-Ampère
equations

(1.3) det[D2u− A(., u,Du)] = B(., u,Du), T (., u,Du)(Ω) = Ω∗,

which may not have interpretations as optimal transport problems. The numerical
resolution of (1.1) in conjunction with the Dirichlet boundary condition

(1.4) u = g on ∂Ω,

for a function g continuous on ∂Ω, has been the subject of several reviews, c.f. [17]
for the latest.

Our focus in this review is on numerical methods for (1.3). We first start with the
model problem (1.1)-(1.2) in section 2. The discretizations are based on the kind of
solutions for (1.1), classical solutions and various notions of weak solutions. At this
point we mainly consider the recent discretization of (1.2) from [2]. We introduce
the setting of generated Jacobian equations for (1.3) in section 3 where we review
two notions of weak solutions for (1.3). We then discuss the convergence analysis
of some of the methods in that setting in section 4. It is here that we review other
discretizations of the second boundary condition. We conclude with a list of possible
future directions.

This review focuses on computational aspects of generated Jacobians. For insights
about the general theory, and applications beyond optics, we refer to the excellent
recent review [11].

2. Numerical methods for the second boundary value problem for
the Monge-Ampère equation

The constraint (1.2) is referred to as the second boundary value condition for (1.1)
because it was studied much later than the Dirichlet boundary condition (1.4). For
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Figure 2. The convex hull M of {A,B,C,D } defines a piecewise
linear convex function on a finite interval. The convex hull M* of M
and the cone x0 + KΩ∗ with Ω∗ = (−3, 3) defines a piecewise linear
convex function on the real line with asymptotic cone KΩ∗ .

a smooth strictly convex function u, (1.2) was shown in [19] to be equivalent to

(2.1) Du(∂Ω) = ∂Ω∗,

which looks more like a boundary condition and non local. Several approaches have
been proposed to enforce (1.2) in a numerical scheme. We review most of them in
section 4. Below we focus on discretizations of the differential operator in conjunction
with the approach through asymptotic cone of [2] for enforcing (1.2). The constraint
(1.2) can also be enforced directly by seeking piecewise linear functions with points
in Ω∗ as their piecewise gradients, c.f. section 2.5.

Next, we interpret (1.1)-(1.2) as a problem in the geometry of convex surfaces. We
recall that a set K ⊂ Rd is a cone if tx ∈ K for all t ≥ 0 and x ∈ K. We associate to
the domain Ω∗ the cone

KΩ∗ = ∩p∈Ω∗{ (x, z) ∈ Rd × R, z ≥ p · x }.

Given a convex function u on Ω, recall that its epigraph is the convex set

M = { (x, z) ∈ Rd × R, z ≥ u(x) }.

The convex hull M∗ of M and the set (x0, u(x0)) + KΩ∗ , for x0 ∈ ∂Ω, defines an
infinite convex hypersurface whose boundary defines a convex function ũ on Rd. For
any y ∈ M∗, y + KΩ∗ ⊂ M∗. The convex function u is said to have asymptotic cone
KΩ∗ if ũ = u on Ω. See Figure 2 for an illustration.

Problem (1.1)-(1.2) has the formulation: find a convex function u on Ω with asymp-
totic cone KΩ∗ such that (1.1) holds. If u has asymptotic cone KΩ∗ , it is shown in [2]
that

(2.2) ũ(x) = inf
s∈Ω

u(s) + sup
p∈Ω∗

(x− s) · p, x /∈ Ω.

For example, if Ω = (−1, 1) and Ω∗ = (−1/2, 1/2), then KΩ∗ is the epigraph of the
function y = |x|/2. Example of functions with asymptotic cone KΩ∗ are given by
u1(x) = |x|/2 and u2(x) = 0 for −1 ≤ x ≤ 1 with u2(x) = |x|/2− 1/2 for x /∈ Ω.
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In the sequel we will approximate the convex domain Ω∗ by polygons K∗ ⊂ Ω∗. The
resulting approximate problems are shown to be convergent in [2]. Assuming now for
simplicity that K∗ = Ω∗, it can be shown [2] that Problem (1.1)-(1.2) is equivalent to
finding a convex function u on Ω which extends to a convex function on Rd by (2.2)
and such that (1.1) holds. Let a∗j , j = 1, . . . , N denote the vertices of K∗. It can then
be shown that

(2.3) ũ(x) = inf
s∈Ω

u(s) + max
j=1,...,N

(x− s) · a∗j , x /∈ Ω.

The infimum can be further restricted to boundary points of a computational mesh.

2.1. Standard discretizations. By standard discretizations, we refer to discretiza-
tions based on the interpretation of the solution u of (1.1) as a classical C2(Ω) solution.
In that case

detD2u = div
(
(cof D2u)Du

)
,

where cof A denote the cofactor matrix of the matrix A and div denotes the diver-
gence operator. Thus (1.1) can be seen as a nonlinear Poisson equation. Pretty much
methods developed for elliptic problems can be applied to (1.1)-(2.2). The resulting
nonlinear discrete equations may have multiple solutions and cannot be solved by a
vanilla Newton’s method when the goal is to reproduce a non smooth solution. Itera-
tive methods which preserve a notion of discrete convexity can be used. A particular
solution was selected in [19] in a least squares setting with a mixed approximation,
i.e. the introduction of new variables m = Du and P = Dm. Therein, the second
boundary condition was also enforced in a least squares setting. A least squares so-
lution in RN of a system of linear equations Ax = b, is a vector x which minimizes
||b− Ax||2 for the Euclidean norm ||.|| on RN .

2.2. Semi-discretizations for Aleksandrov solutions. The semi-discrete prob-
lem considered here is obtained by approximating the density f with a sum of Dirac
masses fM =

∑M
i=1 µiδxi , for an integer M , weights µi ≥ 0 and xi ∈ Ω. We will

assume that R = 1. For illustration, we consider a one dimensional Monge-Ampère
equation, i.e. find a convex function u on (0, 1) such that in a weak sense

u′′ =
M∑
i=1

µiδxi in (0, 1),

and for all x ∈ (0, 1) we have u′(x) ∈ (−1, 2), i.e. u′(0, 1) = (−1, 2).

For u smooth and a Borel set B ⊂ (0, 1), the Monge-Ampère measure associated to u
is defined as M [u](B) =

∫
B
u′′(x) dx. By the change of variable x→ γ(x) = u′(x) = p

(gradient mapping) we obtain M [u](B) =
∫
γ(B)

dp. Next, we replace γ(x) by the

subgradient mapping for non smooth convex solutions

∂u(x0) = { p ∈ R : u(x) ≥ u(x0) + p(x− x0), for all x ∈ (0, 1) }.
For v(x) = |x − 1/2|, we have ∂v(x0) = {−1 }, x0 < 1/2, ∂v(1/2) = [−1, 1] and
∂v(x0) = { 1 }, x0 > 1/2.

For a Borel set B, we have M [u](B) = |∂u(B)|, where for a set S, |S| denotes its
Lebesgue measure. By Aleksandrov solution, we mean a convex function u such that
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∂u(0, 1) = (−1, 2) and for all Borel setsB ⊂ (0, 1), we haveM [u](B) =
∑M

i=1 µiδxi(B).

We require the compatibility condition
∑M

i=1 µi = |(−1, 2)| = 3.

If we assume that the points xi are equidistributed, i.e. xi+1 − xi = h, then for
1 ≤ i ≤M with x0 = 0 and xM+1 = 1

M [u](({xi}) =
ui+1 − ui

h
− ui − ui−1

h
=
ui+1 − 2ui + ui−1

h
,

where ui ≈ u(xi). The main contribution in [2] is the observation that the above
formula can also be used at x1 and xM provided that one uses the extension formula
(2.3) which gives here for i = 0,M + 1

ui = min
{
u1 + max

(
− (xi− x1), 2(xi− x1)

)
, uM + max

(
− (xi− xM), 2(xi− xM)

) }
.

Solutions can be shown to be unique up to a constant. One can impose the constraint
u0 = α for an arbitrary number α. The value at xM+1 is given by the above formula.
The discretization just described generalizes a similar discretization proposed for the
Dirichlet problem in [18]. Details for arbitrary dimensions will be reported elsewhere.

2.3. Medius approach: lattice basis reduction. It is possible to exploit the
arithmetic of two dimensional Cartesian meshes for an efficient resolution of the non-
linear discrete system obtained from a semi-discretization for Aleksandrov solutions.
Though one has to relax the convexity criterion. The scheme we describe can be seen
as a finite difference version of the one described in the previous section. It can be
implemented through an efficient adaptive algorithm. Again, we present a variant of
an existing scheme [6]. The modification was crucial for the proof of existence and
uniqueness of a solution to the discrete problem [2].

The discrete operator is written as a minimization problem over subsets of the mesh.
The mesh is identified with a tree and the adaptive algorithm selects subtrees [5],
hence the name lattice basis reduction. By adaptivity here, we mean that the operator
is evaluated in a cheap and smart way. Let h be a small positive parameter and let
Z2
h = {mh,m ∈ Z2 } denote the orthogonal lattice with mesh length h. The set

of mesh points is given by Ωh = Ω ∩ Z2
h. Computations are made with a finite

subset of the mesh. Let V denote a finite set of non zero elements of Z2 such that if
e ∈ V,−e ∈ V . It is further assumed that elements of V have co-prime coordinates,
span R2 and V contains the elements of the canonical basis of R2 and a normal
to each side of the target polygonal domain K∗. We also require that V contains
{ (a, b) ∈ {−1, 0, 1}2, ab 6= 0 }.
Let (e1, e2) denote the canonical basis of R2 and let

∂Ωh = {x ∈ Ωh such that for some i = 1, 2, x+ hei /∈ Ωh or x− hei /∈ Ωh }.
We define for a function vh on Z2

h, e ∈ Z2 and x ∈ Ωh

∆hevh(x) = vh(x+ he)− 2vh(x) + vh(x− he).
We are interested in mesh functions on Ωh which are extended to Z2

h using

(2.4) ũ(x) = inf
s∈∂Ωh

u(s) + max
j=1,...,N

(x− s) · a∗j , x /∈ Ω,

and are discrete convex in the sense that ∆hevh(x) ≥ 0 for all x ∈ Ωh and e ∈ V .
A uniform limit of mesh functions which are discrete convex in the sense above and
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solve suitable discrete Monge-Ampère equations is a convex function. It is a result
implicit in convergence studies of discretizations of (1.1) with R = 1.

Next, we consider a local version of a symmetrization of a discrete version of the
subgradient

DLvh(x) = { p ∈ R2, 2p · (he) ≤ ∆hevh(x)∀e ∈ L }.
Define a basis of Z2 as a pair (e1, e2) ∈ (Z2)2 such that | det(e1, e2)| = 1. A superbase
of Z2 is a triplet (e0, e1, e2) ∈ (Z2)3 such that e0 + e1 + e2 = 0, and (e1, e2) is a basis
of Z2. The Monge-Ampère operator with lattice basis reduction for R = 1 is defined
as

MALBR uh(x) = min
L=(e0,e1,e2)∈V 3

superbase

|DLuh(x)|.

The discrete problem consists in finding a discrete convex mesh function uh such that

MALBR uh(x) =

∫
Ex

f(t)dt, x ∈ Ωh,(2.5)

where Ex = x + [−h/2, h/2]d is a cube centered at x with Ex ∩ Ωh = {x }. The
unknowns in the above equation are the mesh values uh(x), x ∈ Ωh. For x /∈ Ωh,
the value uh(x) needed for the evaluation of DLvh(x) is obtained from the extension
formula (2.4). Here we made the simplifying assumption that Ω∗ = K∗ so that
conservation of energy holds. Again here we impose the constraint uh(x0) = α for an
arbitrary real number α and with x0 ∈ Ωh for all h. A damped Newton’s method can
be used for solving the nonlinear equations for f > 0.

2.4. Approach through viscosity solutions. The notion of viscosity solution for
(1.1) is based on comparisons with smooth test functions. Aleksandrov solutions of
(1.1) are equivalent to viscosity solutions when the right-hand side f is continuous
and positive [13]. For R = 1, it was shown in [4] through a perturbation argument
that the equivalence also holds.

For solutions of schemes to converge to a viscosity solution, it is convenient that the
scheme satisfies a monotonicity property allowing comparison with smooth test func-
tions. This often requires to write discretizations in a specific form and for schemes
which violate the monotonicity condition, it is very difficult to prove convergence
in the setting of viscosity solutions. For example, the scheme (2.5) may require a
numerical integration leading to non monotone schemes. However, we believe that
convergence can still be proven in the setting of Aleksandrov solutions through a
perturbation argument taking advantage of convergence results for (2.5) which are
essentially the same as the ones discussed in [2]. In fact, a non monotone approxima-
tion of MALBR uh(x) through a standard discretization of the gradient was actually
considered in [6].

The geometric content of solutions to the Monge-Ampère equation is lost in the visco-
sity solution setting. It is unlikely to explain the behavior of standard discretizations
for (1.1)-(1.2) and non smooth solutions. We refer to [7, 12] for explicit monotone
discretizations of (1.1). We do not discuss this further since their analysis in con-
junction with (2.4) is similar to the analysis of the effect of numerical integration for
(2.5), a topic we wish to discuss in a separate work.
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2.5. Semi-discretizations for Brenier solutions. Here we assume that the den-
sity R is approximated by a sum of Dirac masses

∑M
i=1 riδPi

for Pi ∈ Ω∗ and ri ∈ R
for all i. Energy conservation reads

∑M
i=1 ri =

∫
Ω
f(x) dx. In the case of one Dirac

mass riδPi
the surface which reflects all rays with direction (0, . . . , 0, 1) ∈ Rd+1 from

Ω into a direction of the unit sphere with stereographic projection the point Pi is, by
Snell’s law, given by a plane x ·Pi− bi for a parameter bi. The reflector is then given
by the graph of the convex function

uM(x) = max
i=1,...,M

x · Pi − bi,

with rays in the region

Wi(b) = {x ∈ Ω, x · Pi − bi ≥ x · Pj − bj for all j = 1, . . . ,M },
reflected in the direction Pi. We thus need∫

Wi(b)

f(x) dx = ri, i = 1, . . . ,M,

which is the nonlinear equations to be solved for bi, i = 1, . . . ,M . The constraint
(1.2) is enforced implicitly in the sense that by construction ∂uM(Ω) ⊂ Ω∗ when Ω∗

is convex.

3. Generated Jacobian equations

Generated Jacobian equations are a class of prescribed Jacobian equations, i.e. one
seeks a mapping T between two bounded domains Ω and Ω∗ of Rd whose Jacobian
detDT (x) is prescribed by an equation

detDT (x) = ψ(x, T (x)),

for a given function ψ on Ω × Ω∗. An example of such a mapping is the optimal
transport map, discussed above, between two measures supported respectively on Ω
and Ω∗. In that case, one requires ψ ≥ 0 and the mapping T is generated by a convex
function u on Ω in the sense that T (x) = Du(x). In geometric optics problems, ψ ≥ 0
as well and the mapping Tu taking a light described by x ∈ Ω into a point Tu(x) on
the target, is also generated by a scalar function u on Ω which describes the optical
surface and solves the generated Jacobian equation

(3.1) detDTu(x) = ψ(x, u(x), Tu(x)), Tu(x) = T (x, u(x), Du(x)),

where now ψ and T are functions on Ω × R × Ω∗ which take values in R and Rd

respectively. We assume in this paper that ψ is separable in the sense that

ψ(x, u, p) =
f(x)

R(T (x, u, p))
,

for positive functions f ∈ L1(Ω) and g ∈ L1(Ω∗). This structural assumption encom-
passes applications in geometric optics. The second boundary value problem for the
generated Jacobian equation (3.1) is to prescribe in addition the image of Ω by Tu,
i.e.

R(Tu(x)) detDTu(x) = f(x), x ∈ Ω

Tu(Ω) = Ω∗.
(3.2)
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The transformation T and the ”potential” u are now related through a generating
function G : Ω× Ω∗ × R+ 7→ R and T (x, u, p) is obtained by solving the system

DxG(x, T, Z) = p G(x, T, Z) = u,

where Z is an additional unknown. It is assumed that the above system has a unique
solution, that G is sufficiently smooth and strictly decreasing with respect to z. When
G(x, y, z) = x · y + log z, we obtain T (x, y, p) = p, i.e. Tu(x) = Du(x) and ψ does
not depend on u(x). The same holds for optimal transport problems with a general
cost function c(x, y), with compatible assumptions on c : Ω× Ω∗ → R, in which case
G(x, y, z) = c(x, y) + log z. The mapping Tu is then the optimal transport map, i.e.

Tu(x) = arg min
T

∫
Ω

c(x, T (x))f(x)dx,

where the infimum is taken over mappings T which pushforward the measure with
density f onto the measure with density g, that is, mappings T which satisfy∫

Ω

φ(T (x))f(x)dx =

∫
Ω∗
φ(y)g(y)dy.

for all continuous functions φ : Ω∗ → R.

For weak solutions of (3.2) one has, as in the case of (1.1)-(1.2) the Aleksandrov
theory and the Brenier formulation.

The functions x 7→ G(x, ., .) play the role hyperplanes play as support functions in
the theory of convex functions. Given y0 ∈ Ω∗ and λ0 ∈ R+, the function x 7→
G(x, y0, λ0) is said to be a G-support to a function u : Ω → R at x = x0 ∈ Ω if
u(x) ≥ G(x, y0, λ0)∀x ∈ Ω with equality at x = x0. The function u is said to be
G-convex if it has a G-support at all points x ∈ Ω. Equivalently u is G-convex if and
only if there exists a set A ⊂ Ω∗ × R+ such that

u(x) = sup
(y,λ)∈Ω∗×R+

G(x, y, λ).

The G-subdifferential of u at x0 ∈ Ω is defined as the set-valued function

∂Gu(x0) = { y ∈ Ω∗,∃λ0 ∈ R+ such that G(x, y, λ0) is a G-support to u at x0 }.

It is known that for a G-convex function u, the set ∂Gu(E) = ∪x∈E∂Gu(x) is mea-
surable when E is measurable [1, Lemma 2.1] and [20, p. 12–13]. Moreover the set
function

M [u](E) =

∫
∂Gu(E)

g(p)dp,

is a Radon mesure. A weak solution of (3.2) in the sense of Aleksandrov, is a G-convex
function u such that

M [u](E) =

∫
E

f(x)dx for all Borel sets E ⊂ Ω.

Thus we have the necessary condition∫
Ω

f(x)dx =

∫
Ω∗
g(p)dp.
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Figure 3. An example of surface with a uniform refracting property

The tracing map of u for y0 ∈ Ω∗ is defined as

τGu(y0) = {x0 ∈ Ω,∃λ0 ∈ R+ such that G(x, y0, λ0) supports φ at x0 }.
Note that τG is the inverse of the G-subdifferential, i.e. τGu(y0) = (∂Gu)−1(y0) and
can be interpreted as the set of directions from which light emanating from the origin
is redirected in the direction y.

For a subset F ⊂ Ω∗ we define τGu(F ) = ∪y∈F τGu(y) and for a G-convex function u,
we define the set function

(3.3) ηu(F ) =

∫
τGu(F )

f(x)dx.

A weak solution of (3.2) in the sense of Brenier, is a G-convex function u such that

(3.4) ηu(F ) =

∫
F

g(p)dp for all Borel sets F ⊂ Ω∗.

Explicit expressions of the generating function G and the terms for the differential
equation (1.3) can be found in [20, 8]. For the far field reflector problem with an
incoming parallel light beam, as in section 2.5, the surface x 7→ x · Pi − bi gives the
generating function G(x, Pi, λ0) = x · Pi + log λ0. In general, the generating function
describes a basic optical surface which converts light from x ∈ Ω into y ∈ Ω∗. The
optical surface can be made of ellipses, parabolas, hyperbolas, Cartesian ovals, etc.
Figure 3 shows an ellipse refracting light from a point light source into a uniform
direction.

4. Convergence of numerical methods for generated Jacobian
equations

There are two type of convergence to be adressed. Convergence of an iterative method
for solving the discrete nonlinear system resulting from a discretization and conver-
gence of the numerical solution to the exact solution.

Many of the developments have taken place with discretizations of (1.2) different from
the approach through asymptotic cone taken in section 2. We review them below.
It is our goal to systematically extend the Aleksandrov solution approach and the
lattice basis reduction approach to generated Jacobian equations.
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4.1. Other discretizations of the second boundary condition.

4.1.1. Defining function of the target domain. Let H be a defining function of Ω∗, i.e.
Ω∗ = {x ∈ Rd, H(x) < 0 }. The boundary condition Du(Ω) = Ω∗ can be shown to
be equivalent to

H(Du) = 0 on ∂Ω,

for a defining function H of Ω∗, c.f. for example [7].

Let d∂Ω∗ denote the distance function to the boundary ∂Ω∗ of Ω∗, i.e. d∂Ω∗(x) =
infz∈∂Ω∗ ||x− z||. An example of defining function is given by the signed distance-to-
the-boundary defined as

δ∂Ω∗(x) = −d∂Ω∗(x), x ∈ Ω∗ and δ∂Ω∗(x) = d∂Ω∗(x), x /∈ Ω∗.

If the goal is to prove convergence to a viscosity solution, one choses a monotone
discretization of H(Du) = 0 as in [7, 12].

4.1.2. Iterated projection algorithm. Numerical experiments in [9] suggested that the
following iterative method converges to a solution of (1.1)-(1.2). Let n denote the
outward normal to ∂Ω. We consider the sequence uk defined by

R(Duk) detD2uk+1 = f in Ω

∂uk+1

∂n
=
(
Proj∂Ω∗Du

k
)
· n on ∂Ω

uk+1(x0) = α,

for x0 ∈ ∂Ω and α a real number. Here for a vector v ∈ Rd, we define

Proj∂Ω∗v = inf
y∈∂Ω∗

||y − v||.

4.1.3. Enforced in a least squares sense. Introducing new variables m = Du and
P = Dm, (2.2) becomes m(∂Ω) = ∂Ω∗. In [19] (1.1) is written in terms of the new
variables and solved along with the constraint m(∂Ω) = ∂Ω∗ in a least squares setting.

4.1.4. Enforced throughout the source domain. It has been suggested in [12] that in-
stead of enforcing H(Du) = 0 on ∂Ω, one can enforce H(Du) = 0 on Ω. The
motivation was to get convergence results to a viscosity solution of (1.1)-(1.2). A
similar idea was previously used in [15] where the authors sought a piecewise linear
convex approximation with the requirement that its piecewise gradients be vectors in
Ω∗ enforced as a constraint in an optimization scheme.

Although we have assumed in this paper that Ω∗ is convex, several of the discretiza-
tions proposed for (1.2) should work for non convex domains, an exception being the
approach based on a defining function of Ω∗.
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4.2. Numerical methods for generated Jacobian equations. A general ap-
proach for handling (1.3) was initiated in [8] for the point source near field reflector
and refractor problems. It is based on the iterative projection algorithm for handling
the second boundary condition.

A priori the semi-discrete approximations with Brenier solutions can be applied to
generated Jacobian equations. But this raises the practical issue of how to compute
the analogues of the sets Wi(b) described in section 2.5. For far field problems a
computational geometry approach was used in [16].

4.3. Convergence of iterative methods. No convergence analysis has been re-
ported for the iterated method based on projections proposed in [9]. Damped Newton
methods have also been used. A damped Newton’s method is a variant of Newton’s
method for which the Jacobian matrix is multiplied by a damping factor. With the
goal of having convergence of the iterates independent of the closeness to the solution
of an initial guess.

For the semi-discrete problems with Brenier solutions, a convergence analysis for a
damped Newton’s method was given in [14]. It does not cover for example the far
field refractor problem which is included in the class of generated Jacobian equations
for which convergence of an iterative method is proven in [1].

4.4. Convergence of discretizations. Not much is known about convergence of
standard discretizations for (1.1)-(1.2). For smooth solutions and the Dirichlet prob-
lem, existence of a solution can be proven for various discretizations but for h suffi-
ciently small. The least squares method for the discretization of (1.1)-(1.4) has not
been analyzed for smooth solutions. We gave a theory of convergence of standard dis-
cretizations for Aleksandrov solutions of the Dirichlet problem for the Monge-Ampère
equation [3]. It is based on the assumption that computers do not see the difference
between a computational domain and a fictitious subdomain arbitrarily close. It
would be interesting to have a theory without that assumption.

The convergence of semi-discrete approximations for Aleksandrov and Brenier solu-
tions is central to the theory of generated Jacobian equations [20]. For the medius
approach convergence of the discretization was proven in [6, 2]. We note that con-
vergence of the discretization was also proven for both approaches [15, 12] where the
second boundary condition is enforced throughout the domain.

4.5. Performance of the numerical methods. There have not been a compa-
rative numerical study of discretizations for (1.1)-(1.2). No numerical experiments
were reported in [2, 12]. The approach through asymptotic cones of [2] should yield
results similar to the ones reported in [6] for the medius approach. Methods based on
standard discretizations may not be very efficient. A possible exception is the least
squares approach which has been applied to a variety of optics problems. In [15], it
was reported that a method based on standard discretizations of the gradient and
Hessian vastly outperforms an analogue which is provably competent. It is reason-
able to expect that methods based on the iterative projection algorithm would be less
efficient than a more direct approach. Understanding the mechanisms of the not so
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efficient methods could give a better understanding of the computational process and
may lead to more efficient numerical methods.

5. Possible future directions

Computational nonimaging geometric optics based on Monge-Ampère equations is
like a painting which is largely incomplete. The main open issue is to what extent
existing methods can be made more efficient. Several possible moves or combinations
of the ideas discussed above are possible. For example, one can adapt to the second
boundary value problem methods proposed for the Dirichlet problem [17]. A possible
direction is to adapt advances in computational optimal transport to generated Jaco-
bian equations. Also, the state of the art in computational mathematics such as fast
solvers and adaptive methods have not been applied to geometric optics problems.
There are also many unanswered questions which deal with the analysis of several of
the numerical methods that have been proposed. In addition to several of the issues
mentioned above, we give several more examples.

(1) Problems with loss of energy, i.e. when only part of the radiation is transmit-
ted and problems with multiple source or extended fields and systems with
two lenses could be addressed with recent advances on proven convergent nu-
merical methods.

(2) The semigeostrophic flow equations were formulated as a coupled system con-
sisting of the Monge-Ampère equation with the second boundary condition
and a transport equation. It would be interesting to see how recent advances
can be used for its numerical resolution.

(3) There is no theory for viscosity solutions of generated Jacobian equations.
The special case (1.1)-(1.2) has been recently solved in [12].
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