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Abstract We give error estimates for a mixed finite element approximation of the
two-dimensional elliptic Monge–Ampère equation with the unknowns approximated
by Lagrange finite elements of degree two. The variables in the formulation are the
scalar variable and the Hessian matrix.
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1 Introduction

Let Ω be a convex polygonal domain of R2 with boundary ∂Ω . We are interested in a
mixed finite element method for the nonlinear elliptic Monge–Ampère equation: find
a smooth convex function u such that

det(D2u) = f in Ω

u = g on ∂Ω.
(1)

For u ∈ C2(Ω), D2u = ((∂2u)/(∂xi∂x j ))i, j=1,...,2 denotes the Hessian matrix of
u and det D2u denotes its determinant. The function f defined on Ω is assumed to
satisfy f ≥ c0 > 0 for a constant c0 > 0 and we assume that g ∈ C(∂Ω) can be
extended to a function g̃ ∈ C(Ω) which is convex in Ω .
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504 G. Awanou

We consider a mixed formulation with unknowns the scalar variable u and the
Hessian D2u. The scalar variable and the components of the Hessian are approximated
by Lagrange elements of degree k ≥ 2. The method considered in this paper was
analyzed from different point of views in [11] and [5] for smooth solutions of (1).
In both [11] and [5] the convergence of the method for Lagrange elements of degree
k = 1 and k = 2 was left unresolved. In this paper we resolve this issue for quadratic
elements.

The ingredients of our approach consist in a fixed point argument, which yields the
convergence of a time marching method, a “rescaling argument”, i.e. the solution of a
rescaled version of the equation, and the continuity of the eigenvalues of a matrix as
a function of its entries. This is the same approach we took in the case of the standard
finite element discretization of the Monge–Ampère equation [4].

With the mixed methods, as implemented in [10,11], one can apply directly New-
ton’s method to the discrete nonlinear problem and still have numerical evidence of
convergence to a larger class of non smooth solutions than what is possible with
the standard finite element discretization. We refer to [10,11] for the numerical
results. Moreover with the standard finite element discretization [4], convexity must
be enforced weakly through appropriate iterative methods. Although the number of
unknowns in the mixed methods is higher, in [10,11] the discrete Hessian was elimi-
nated from the discrete equations in the implementation.

However, as observed in [5], this prevents numerical convergence for smooth solu-
tions when linear elements are used to approximate all the unknowns. It is well known
that mixedmethods for second order linear elliptic equations lead to saddle point prob-
lems and that when the (1, 1) block is nonsingular a Schur complement can be used
to reduce the size of the linear systems to solve. The mixed methods discussed in this
paper were implemented using a Schur complement in [10,11]. It is a distinguished
feature of Monge–Ampère type equations that how one solves the discrete nonlinear
system equations can lead to dramatically different results for non smooth solutions.
Given the degeneracy of saddle point problems, for non smooth solutions, the method
analyzed in this paper should be implemented as in [10,11]. Thus we do not reproduce
the numerical results in this paper. The reader should note carefully that for the point
of view of analysis of the methods, one can use either forms. In this paper, it is the
fixed point mapping associated to the reduced equation which will prove useful, c.f.
Lemma 6. This approach can be related to the one taken in [11].

As pointed out in [5,10,11] the mixed method discussed in this paper is the formal
limit of the vanishing moment methodology in mixed form [9]. In fact, as pointed
out in [3], the approach in [9] may be viewed as an iterative method for solving the
nonlinear system resulting from the discretization of (1) by a mixed finite element
method. As usual in the analysis of nonlinear finite element problems, we use a fixed
point argument coupled with a linearization. The argument used in this paper is similar
to the one used in [9] but with several key differences. The fixed point argument used
in this paper leads to the proof of convergence of an iterative method for quadratic
and higher order elements. We use the continuity of the eigenvalues of a matrix as a
function of its entries, a tool which allowed us to solve in [3] the open problem on
the convexity of the solution obtained with the vanishing moment methodology. The
continuity of the eigenvalues coupled with the use of a rescaling argument allow us in
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Quadratic mixed elements for Monge–Ampère equation in 2D 505

this paper to give error estimates for quadratic elements. The lowest order elements
allowed in [9] are cubic elements.

Although it is the fixed point mapping associated to the reduced equation which is
the key tool used, we also introduce the fixed point mapping associated with the mixed
formulation. This is done to highlight the similarity between the analysis in [9], [5]
and this paper.

We note that in [11] a stabilized method was proposed which works numerically
for non smooth solutions in two dimension. It consists in using piecewise constants
for the discrete Hessian and linear elements for the scalar variable. The analysis for
smooth solutions of the lowest order methods discussed in [5,11] cannot be done
with the approach of this paper. The techniques used in this paper generalize to the
three-dimensional problem but only for k ≥ 3. It should be possible to extend the
approach taken in this paper to the formulation where discontinuous elements are
used to approximate the unknowns [11]. Numerical results reported in [11] indicate
the latter approach could lead to a less accurate approximation of the Hessian. For
simplicity, and to focus on the methodology we present, we do not consider such an
extension in this paper.

We organize the paper as follows. In the Sect. 2 we introduce some notation and
preliminaries. The error analysis of the mixed method is done in Sect. 3.

2 Notation and preliminaries

We use the usual notation L p(Ω), 2 ≤ p ≤ ∞ for the Lebesgue spaces and
Hs(Ω), 1 ≤ s < ∞ for the Sobolev spaces of elements of L2(Ω) with weak deriv-
atives of order less than or equal to s in L2(Ω). We recall that H1

0 (Ω) is the subset
of H1(Ω) of elements with vanishing trace on ∂Ω . We also recall that Ws,∞(Ω) is
the Sobolev space of functions with weak derivatives of order less than or equal to s
in L∞(Ω). For a given normed space X , we denote by X2 the space of vector fields
with components in X and by X2×2 the space of matrix fields with each component
in X .

The norm in X is denoted by ||.||X and we omit the subscript Ω and superscripts
2 and 2 × 2 when it is clear from the context. The inner product in L2(Ω), L2(Ω)2,
and L2(Ω)2×2 is denoted by (, ) and we use 〈, 〉 for the inner product on L2(∂Ω)

and L2(∂Ω)2. For inner products on subsets of Ω , we will simply append the subset
notation.

We denote by n the unit outward normal vector to ∂Ω . We recall that for a matrix
A, Ai j denote its entries and the cofactor matrix of A, denoted cof A, is the matrix

with entries (cof A)i j = (−1)i+ j det(A)
j
i where det(A)

j
i is the determinant of the

matrix obtained from A by deleting its i th row and its j th column. For two matrices
A = (Ai j ) and B = (Bi j ), A : B = ∑2

i, j=1 Ai j Bi j denotes their Frobenius inner
product. A quantity which is constant is simply denoted by C .

For a scalar function v we denote by Dv its gradient vector and recall that
D2v denotes the Hessian matrix of second order derivatives. The divergence of a
matrix field is understood as the vector obtained by taking the divergence of each
row.
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In this section and Sect. 3 we assume that (1) has a solution which is sufficiently
smooth. Put σ = D2u. Then the unique convex solution u ∈ H3(Ω) of (1) satisfies
the following mixed problem: Find (u, σ ) ∈ H2(Ω) × H1(Ω)2×2 such that

(σ, τ ) + (div τ, Du) − 〈Du, τn〉 = 0, ∀τ ∈ H1(Ω)2×2

(det σ, v) = ( f, v), ∀v ∈ H1
0 (Ω)

u = g on ∂Ω.

(2)

It is proved in [5] that the above variational problem is well defined.

2.1 Discrete variational problem

We denote by Th a triangulation of Ω into simplices K and assume that Th is quasi-
uniform. We denote by Vh the standard Lagrange finite element space of degree k ≥
2 and denote by �h the space of symmetric matrix fields with components in the
Lagrange finite element space of degree k ≥ 2. Let Ih denote the standard Lagrange
interpolation operator from Hs(Ω), s ≥ k + 1 into the space Vh . We use as well
the notation Ih for the matrix version of the Lagrange interpolation operator mapping
Hs(Ω)2×2, for s ≥ k+1, into�h . We consider the problem: find (uh, σh) ∈ Vh ×�h

such that

(σh, τ ) + (div τ, Duh) − 〈Duh, τn〉 = 0, ∀τ ∈ �h

(det σh, v) = ( f, v), ∀v ∈ Vh ∩ H1
0 (Ω)

uh = gh on ∂Ω,

(3)

where gh = Ih g̃. It follows from the analysis in [5,11] that (3) is well-posed for k ≥ 3
and error estimates were given. In Sect. 3 we give an error analysis valid for k ≥ 2.

For vh ∈ Vh , we will make the abuse of notation of using D2vh to denote the
Hessian of vh computed element by element. We will need the broken Sobolev norm

||v||Hk(Th) =
⎛

⎝
∑

K∈Th
||v||2Hk(K )

⎞

⎠

1
2

.

2.2 Properties of the Lagrange finite element spaces

We recall some properties of the Lagrange finite element space of degree k ≥ 1 that
will be used in this paper. They can be found in [6,8]. We have

Interpolation error estimates.

||v − Ihv||H j ≤ Chk+1− j ||v||Hk+1, ∀v ∈ Hs(Ω), j = 0, 1,
||v − Ihv||L∞ ≤ Chk |v|Hk+1, ∀v ∈ Hs(Ω).

(4)
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Inverse inequalities

||v||L∞ ≤ Ch−1||v||L2 , ∀v ∈ Vh (5)

||v||H1 ≤ Ch−1||v||L2 , ∀v ∈ Vh (6)

||v||Hk+1(Th) ≤ Ch−k−1||v||L2 , ∀v ∈ Vh . (7)

Scaled trace inequality

||v||L2(∂Ω) ≤ Ch− 1
2 ||v||L2 , ∀v ∈ Vh . (8)

2.3 Algebra with matrix fields

We collect in the following lemma some properties of matrix fields, the proof of which
can be found in [1,5].

Lemma 1 For K ∈ Th and u, v ∈ C2(K ) we have

det D2u − det D2v = cof(t D2u + (1 − t)D2v) : (D2u − D2v), (9)

for some t ∈ [0, 1]. It can be shown that t = 1/2, [7].
For two 2 × 2 matrix fields η and τ

|| cof(η) : τ ||L2 ≤ C ||η||L∞||τ ||L2 , (10)

cof(η) − cof(τ ) = cof(η − τ). (11)

2.4 Continuity of the eigenvalues of a matrix as a function of its entries

Let λ1(A) and λ2(A) denote the smallest and largest eigenvalues of the symmetric
matrix A. We have

Lemma 2 ([4, Lemma 3.1]) There exists constants m, M > 0 independent of h and
a constant Cconv > 0 independent of h such that for all vh ∈ Vh with vh = gh on ∂Ω

and

||vh − Ihu||H1 < Cconvh
2,

we have

m ≤ λ1(cof D
2vh(x)) ≤ λ2(cof D

2vh(x)) ≤ M, ∀x ∈ K , K ∈ Th .

The following lemma was used implicitly in [1,2,4].

Lemma 3 Assume 0 < α < 1 and α ≤ (m + M)/(2m) for constants m, M > 0. Let
B be a symmetric matrix field such that

0 < mα ≤ λ1(B(x)) ≤ λ2(B(x)) ≤ Mα, ∀x ∈ Ω.
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Then for ν = (m + M)/2

γ ≡ sup
v,w∈Vh|v|

H1=1,|w|
H1=1

∣
∣
∣
∣(Dv, Dw) − 1

ν
(BDv, Dw)

∣
∣
∣
∣ ,

satisfies 0 < γ < 1.

Proof Since λ1(B) and λ2(B) are the minimum and maximum respectively of the
Rayleigh quotient ((Bz) · z)/||z||2, where ||z|| denotes the Euclidean norm of R2, we
have for x ∈ Ω

mα ||z||2 ≤ (B(x)z) · z ≤ Mα||z||2, z ∈ R
2.

This implies

α |w|2H1 ≤
∫

Ω

[B(x)Dw(x)] · Dw(x) dx ≤ Mα |w|2H1, w ∈ Vh .

If we assume in addition that |w|H1 = 1, we get

mα ≤
∫

Ω

[B(x)Dw(x)] · Dw(x) dx ≤ Mα, w ∈ Vh .

It follows that

(

1 − Mα

ν

)

≤
∫

Ω

[I − 1

ν
B(x)Dw(x)] · Dw(x) dx ≤

(
1 − mα

ν

)
, w ∈ Vh .

Since ν = (m + M)/2, we have

1 − αM

ν
= m + M − 2Mα

m + M
< 1

1 − αm

ν
= m + M − 2mα

m + M
< 1.

If we define

β ≡ sup
v∈Vh ,|v|H1=1

∣
∣
∣
∣(Dv, Dv) − 1

ν
(BDv, Dv)

∣
∣
∣
∣ ,

by the assumptions on α, we have

0 < β < 1.
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Quadratic mixed elements for Monge–Ampère equation in 2D 509

We can define a bilinear form on Vh by the formula

(p, q) =
∫

Ω

[(

I − 1

ν
(B(x)

)

Dp(x)

]

· Dq(x) dx .

Then because

(p, q) = 1

4
((p + q, p + q) − (p − q, p − q)),

and using the definition of β, we get assuming that |p|H1 = |q|H1 = 1,

|(p, q)| ≤ β

4
(p + q, p + q) + β

4
(p − q, p − q)

≤ β

4
|p + q|2H1 + β

4
|p − q|2H1 = β.

This completes the proof. ��

3 Error analysis of the mixed method for smooth solutions

We will assume without loss of generality that h ≤ 1. The goal of this section is to
prove the local solvability of (3) for Lagrange elements of degree k ≥ 2. We define
for ρ > 0,

B̄h(ρ) = {(wh, ηh) ∈ Vh × �h, ‖wh − Ihu‖H1 ≤ ρ, ‖ηh − Ihσ‖L2 ≤ h−1ρ}.

We are interested in elements (wh, ηh) ∈ Vh × �h satisfying

(ηh, τ ) + (div τ, Dwh) − 〈Dwh, τn〉 = 0, ∀τ ∈ �h . (12)

We define

Zh = {(wh, ηh) ∈ Vh × �h, wh = gh on ∂Ω, (wh, ηh) solves (12)} and

Bh(ρ) = B̄h(ρ) ∩ Zh .

In [5] the local solvability of (3) was obtained by a fixed point argument which
consists in a linearization at the exact solution of (1). To be able to obtain results
for quadratic elements we use a time marching method combined with a rescaling
argument. This is the point of viewwe took in [2,4].Wefirst describe the timemarching
method at the continuous level.
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510 G. Awanou

Let ν > 0. We consider the sequence of problems

−ν�ur+1 = −ν�ur + det D2ur − f in Ω

ur+1 = g on ∂Ω.

Put σ r+1 = D2ur+1. We obtain the equivalent problems

σ r+1 = D2ur+1 in Ω

−ν tr σ r+1 = −ν tr σ r + det σ r − f, in Ω

ur+1 = g on ∂Ω,

where tr A denotes the trace of the matrix A.
We are thus lead to consider the sequence of discrete problems: find (ur+1

h , σ r+1
h ) ∈

Vh × �h such that ur+1
h = gh on ∂Ω and

(σ r+1
h , τ ) + (div τ, Dur+1

h ) − 〈Dur+1
h , τn〉 = 0, ∀τ ∈ �h (13)

−ν(tr σ r+1, v) = −ν(tr σm, v) + (det σ r
h − f, v), ∀v ∈ Vh ∩ H1

0 (Ω), (14)

given an initial guess (u0h, σ
0
h ). We prove below the convergence of (ur+1

h , σ r+1
h ) to a

local solution (uh, σh) of the discrete problem (3).
Let α > 0. We define a mapping T : Vh × �h → Vh × �h by

T (wh, ηh) = (T1(wh, ηh), T2(wh, ηh)),

where T1(wh, ηh) and T2(wh, ηh) satisfy

(ηh − T2(wh, ηh), τ ) +(div τ, D(wh − T1(wh, ηh)))

−〈D(wh − T1(wh, ηh)), τn〉 = (ηh, τ )

+(div τ, Dwh) − 〈Dwh, τn〉, ∀ τ ∈ �h

(15)

−ν(tr T2(wh, ηh), v) = −ν(tr ηh, v) + (det ηh − α2 f, v), ∀ v ∈ Vh ∩ H1
0 (Ω)

(16)

T1(wh, ηh) = wh on ∂Ω. (17)

Note that (15) is equivalent to

(T2(wh, ηh), τ ) + (div τ, DT1(wh, ηh)) − 〈DT1(wh, ηh), τn〉 = 0 ∀ τ ∈ �h . (18)

Let I denote the 2 × 2 identity matrix. We first make the following important obser-
vation.
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For v ∈ Vh ∩ H1
0 (Ω) and τ = v I , we have div τ = Dv and since v = 0 on ∂Ω ,

we have in addition τn = 0 on ∂Ω . Thus using (18) we obtain

− ν(tr T2(wh, ηh), v) = −ν(T2(wh, ηh), v I ) = ν(DT1(wh, ηh), Dv). (19)

Similarly, we obtain that if (wh, ηh) solves (12), then

(tr ηh, v) = −(Dwh, Dv), ∀v ∈ Vh ∩ H1
0 (Ω). (20)

Lemma 4 The mapping T is well defined and if (αwh, αηh) is a fixed point of (15)–
(17) with wh = gh on ∂Ω , then (wh, ηh) solves the nonlinear problem (3).

Proof To prove the first assertion, it is enough to prove that if (wh, ηh) ∈ Vh × �h is
such that wh = 0 on ∂Ω and

(ηh, τ ) + (div τ, Dwh) − 〈Dwh, τn〉 = 0, ∀τ ∈ �h

−ν(tr ηh, v) = 0, ∀v ∈ Vh ∩ H1
0 (Ω),

then wh = 0 and ηh = 0.
Using (20), we obtain 0 = −(tr ηh, v) = (Dwh, Dv), for all v ∈ Vh ∩ H1

0 (Ω).
Thus |wh |2H1 = 0. This proves that wh = 0 by Poincaré’s inequality. Using τ = ηh
we obtain as well ηh = 0.

The proof of the second assertion is immediate. ��
We recall from [5, Remark 3.6], see also [10,11], that for vh ∈ Vh , there exists a

unique ηh ∈ �h denoted H(vh), such that

(H(vh), τ ) + (div τ, Dvh) − 〈Dvh, τn〉 = 0, ∀τ ∈ �h, (21)

holds. To see this consider the problem: find ηh ∈ �h such that

(ηh, τ ) = −(div τ, Dvh) + 〈Dvh, τn〉, ∀τ ∈ �h . (22)

For τ ∈ �h , we define F(τ ) = −(div τ, Dvh) + 〈Dvh, τn〉. Clearly F is linear. By
the Schwarz inequality, (6) and (8)

| − (div τ, Dvh) + 〈Dvh, τ · n〉| ≤ C ||τ ||H1 ||vh ||H1 + C ||vh ||H1(∂Ω)||τ ||L2(∂Ω)

≤ C(h−1||vh ||H1 + h− 1
2 ||vh ||H1(∂Ω))||τ ||L2 .

Thus a unique solution ηh = H(vh) exists by the Lax-Milgram Lemma.

Remark 1 From the definition of H(vh) (21) and (22), we have for vh ∈ Vh ,

H(αvh) = αH(vh).
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512 G. Awanou

Lemma 5 Let vh ∈ Vh such that ||vh − Ihu||H1 ≤ μ. Then

||H(vh) − Ihσ ||L2 ≤ Ch−1μ + Chk−1.

Proof For τ ∈ �h , by (2) and (21) we have

(H(vh) − Ihσ, τ) = (H(vh) − σ, τ) + (σ − Ihσ, τ)

= (σ − Ihσ, τ) − (div τ, D(vh − u)) + 〈D(vh − u), τn〉
= (σ − Ihσ, τ) − (div τ, D(vh − Ihu)) + 〈D(vh − Ihu), τn〉

− (div τ, D(Ihu − u)) + 〈D(Ihu − u), τn〉.

Let τ = H(vh) − Ihσ . By the Schwarz inequality, (6) and (8)

‖τ‖2L2 ≤ ‖σ − Ihσ‖L2‖τ‖L2 + C‖τ‖H1‖D(vh − Ihu)‖L2

+ C‖D(vh − Ihu)‖L2(∂Ω)‖τ‖L2(∂Ω) + C‖τ‖H1‖D(Ihu − u)‖L2

+ C‖D(Ihu − u)‖L2(∂Ω)‖τ‖L2(∂Ω)

≤ ‖σ − Ihσ‖L2‖τ‖L2+Ch−1μ‖τ‖L2+Ch−1‖D(vh−Ihu)‖L2(Ω)‖τ‖L2(Ω)

+ Ch−1‖τ‖L2‖Ihu − u‖H1 + Ch− 1
2 ‖D(Ihu − u)‖L2(∂Ω)‖τ‖L2 .

Therefore

‖τ‖L2 ≤ Chk+1 + Ch−1μ + Chk−1 + Chk−
1
2

≤ Ch−1μ + Chk−1.

This proves the result. ��
It follows from Lemma 5, with μ = 0, that (Ihu, H(Ihu)) ∈ Bh(ρ), i.e. the ball
Bh(ρ) �= ∅ for ρ = C0hk for a constant C0 > 0. See also [5, Lemma 3.5]. As a
consequence, see also [11],

||H(Ihu) − Ihσ ||L2 ≤ C0h
k−1. (23)

Let

B̃h(ρ) = {vh ∈ Vh, vh = gh on ∂Ω, ||vh − Ihu||H1 ≤ ρ},

and consider the mapping

T̃1 : Vh → Vh, defined by T̃1(vh) = T1(vh, H(vh)).

The motivation to introduce a discrete Hessian H(vh) in this paper, as opposed to
the approach in [5], is given by Lemma 6 below.
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Lemma 6 If wh is a fixed point of T̃1, then (wh, H(wh)) is a fixed point of T and
equivalently, if (wh, ηh) is a fixed point of T , then wh is a fixed point of T̃1.

Proof The result was given as [5, Remark 3.6 ]. Letwh be a fixed point of T̃1. We have
T1(wh, H(wh)) = wh and by (18) and (21), T2(wh, H(wh)) = H(T1(wh, H(wh))) =
H(wh). This proves that (wh, H(wh)) is a fixed point of T .

Conversely if (wh, ηh) is a fixed point of T , then T̃1(wh) = T1(wh, H(wh)) =
T1(wh, ηh) = wh . This completes the proof. ��

Lemma 7 We have for 0 ≤ α ≤ 1

||α Ihu − T1(α Ihu, H(α Ihu))||H1 ≤ C1

ν
α2hk−1, (24)

for a positive constant C1.

Proof Since T1(α Ihu, H(α Ihu)) − α Ihu = 0 on ∂Ω , by (19) and (16) we have using
wh = α Ihu, ηh = H(α Ihu) and v = T1(wh, ηh) − wh

ν(DT1(wh, ηh), Dv) = −ν(tr T2(wh, ηh), v) = −ν(tr ηh, v) + (det ηh − α2 f, v).

It follows that

ν|Dv|2L2 = −ν(Dwh, Dv) − ν(tr ηh, v) + (det ηh − α2 f, v).

Therefore, using (20), we get

ν|Dv|2L2 = (det ηh − α2 f, v). (25)

On the other hand since f = det D2u = det σ , by (9) and Remark 1, on each element
K

det ηh − α2 f = det H(α Ihu) − α2 det σ = det αH(Ihu) − α2 det σ

= α2(det H(Ihu) − det σ)

= α2(cof(t H(Ihu) + (1 − t)σ ) : (H(Ihu) − σ)), (26)

for some t ∈ [0, 1].
By (4) we have ‖Ihσ‖L∞ ≤ C‖σ‖L∞ . Thus by (23) and (5)

||H(Ihu)||L∞ ≤ ||H(Ihu) − Ihσ ||L∞ + ‖Ihσ‖L∞ ≤ Ch−1||H(Ihu) − Ihσ ||L2

+ ‖Ihσ‖L∞ ≤ Chk−2 + C‖σ‖L∞ ≤ C, since k ≥ 2.
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Thus by (10) and (23)

‖ det(H(Ihu)) − det σ‖L2(K ) ≤ C‖t H(Ihu) + (1 − t)σ‖L∞(K )‖H(Ihu) − σ‖L2(K )

≤ C‖H(Ihu) − σ‖L2(K )

≤ C‖H(Ihu) − Ihσ‖L2(K ) + C‖Ihσ − σ‖L2(K )

≤ Chk−1.

Therefore by (4) and (26)

‖ det ηh − α2 f ‖L2 = α2‖ det(H(Ihu)) − det σ‖L2 ≤ Cα2hk−1. (27)

And so combining (25)–(27), (23), Cauchy–Schwarz inequality, the interpolation error
estimate (4) and Poincare’s inequality, we get

|v|2H1 ≤ C

ν
α2hk−1||v||L2 ≤ C

ν
α2hk−1||v||H1,

from which (24) follows. ��
We will need the following lemma

Lemma 8 Let (wh, ηh) ∈ Zh. Then for a piecewise smooth symmetric matrix field P

((cof P) : ηh, v) + ((cof P)Dwh, Dv) ≤ Ch||v||H1 ||wh ||H1, (28)

for all v ∈ Vh ∩ H1
0 (Ω) and for a constant C which depends on || cof P||Hk+1(Th).

Proof The proof is the same as the proof of [5, Lemma 3.7]. There the proof was
given for P = D2u, but it carries over to the general case of this lemma line
by line. The dependence of the constant C on || cof P||Hk+1(Th) arises from the
use in the proof of the approximation property ||P�h (v cof P) − v cof P||Hm (Th) ≤
Chk+1−m ||v cof P||Hk+1(Th). Here P�h denotes the L

2 projection operator into �h . ��
Lemma 9 For (wh, ηh) ∈ Bh(ρ), ρ = C0hk, we have

||ηh − D2wh ||L∞ ≤ Chk−2.

Proof Recall that for (wh, ηh) ∈ Bh(ρ), we have ηh = H(wh). We have by (5), (23)

||ηh − D2wh ||L∞ ≤ ||H(wh) − D2wh ||L∞

≤ ||H(wh) − Ihσ ||L∞ + ||Ihσ − D2wh ||L∞

≤ Ch−1||H(wh) − Ihσ ||L2 + ||Ihσ − D2u||L∞ + ||D2u − D2wh ||L∞

≤ Chk−2 + Chk+1 + ||D2u − D2 Ihu||L∞ + ||D2 Ihu − D2wh ||L∞

≤ Chk−2 + Ch−1||Ihu − wh ||H1

≤ Chk−2.

��
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The next lemma states a crucial contraction property of the mapping T1 in αBh(ρ).

Lemma 10 Let (w1, η1), (w2, η2) ∈ Bh(ρ) with ρ ≤ min(C0,Cconv)hk. We have

|T1(αw1, αη1) − T1(αw2, αη2)|H1 ≤ a|αw1 − αw2|H1, (29)

for 0 < a < 1, h sufficiently small, α = hk+2 and ν = (m + M)/2.

Proof Put v = T1(αw1, αη1) − T1(αw2, αη2). By assumption v ∈ Vh ∩ H1
0 (Ω).

Using (19) and (16) we obtain

ν(DT1(αw1, αη1) − DT1(αw2, αη2), Dv)

= −ν(tr T2(αw1, αη1) − tr T2(αw2, αη2), v)

= −ν(tr αη1 − tr αη2, v) + (det αη1 − det αη2, v).

Therefore, using (9), we have for some t ∈ [0, 1] and with the notation

Q = tη1 + (1 − t)η2 and Q = t D2w1 + (1 − t)D2w2,

|v|2
H1 = −(tr αη1 − tr αη2, v)

+ 1
ν
((cof α(tη1 + (1 − t)η2)) : α(η1 − η2), v)

= ((−I + 1
ν
cof αQ

) : α(η1 − η2), v
)

= −(I : α(η1 − η2), v) − (Dα(w1 − w2), Dv)

+ 1
ν
((cof αQ) : α(η1 − η2), v) + 1

ν
((cof αQ)Dα(w1 − w2), Dv)

+ (Dα(w1 − w2), Dv) − 1
ν
((cof αQ)Dα(w1 − w2), Dv)

+ 1
ν
((cof αQ)Dα(w1 − w2), Dv) − 1

ν
((cof αQ)Dα(w1 − w2), Dv).

(30)

For (w1, η1), (w2, η2) ∈ Bh(ρ), t (w1, η1) + (1 − t)(w2, η2) ∈ Bh(ρ) and thus for h
sufficiently small, by Lemmas 2 and 3 we get

|(D(w1−w2), Dv)− 1

ν
((cof αQ)D(w1−w2), Dv)| ≤ γ |w1−w2|H1 |v|H1, (31)

for 0 < γ < 1.
On the other hand, by Lemma 8, with P = I , we have

| − (I : (η1 − η2), v) − (D(w1 − w2), Dv)| ≤ Ch|w1 − w2|H1 |v|H1 . (32)

Applying Lemma 8, with P = Q, we get

|((cof Q) : (η1 − η2), v) + ((cof Q)D(w1 − w2), Dv)| ≤ Ch|| cof Q||Hk+1(Th)|w1 − w2|H1 |v|H1 .

(33)
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Finally, since by (11)

cof Q − cof Q = cof(Q − Q) = cof(t (η1 − D2w1) + (1 − t)(η2 − D2w2)),

we get using Lemma 9

|| cof Q − cof Q||L∞ ≤ Chk−2 ≤ C, since k ≥ 2.

Thus
∣
∣ 1
ν
((cof Q)D(w1 − w2), Dv) − 1

ν
((cof Q)D(w1 − w2), Dv)

∣
∣ ≤ C |w1 − w2|H1

|v|H1 .

(34)

We conclude from (30)–(34) that

|v|H1 ≤ (γ + Ch + Cαh|| cof Q||Hk+1(Th) + Cα)|αw1 − αw2|H1 . (35)

Using the inverse estimate (7) and noting that ρ ≤ h2

|| cof Q||Hk+1(Th) ≤ Ch−k−1|| cof Q||L2 ≤ Ch−k−1||Q||L2

≤ Ch−k−1||tη1 + (1 − t)η2||L2

≤ Ch−k−1(||η1||L2 + ||η2||L2)

≤ Ch−k−1(||η1 − Ihσ ||L2 + ||η2 − Ihσ ||L2 + 2||Ihσ ||L2)

≤ Ch−k−1(h−1ρ + ||σ ||L2) ≤ Ch−k−1(Ch + ||σ ||L2) ≤ Ch−k−1.

Since γ < 1, and α = hk+2, for h sufficiently small, Ch + Cαh|| cof Q||Hk+1(Th) +
Cα < 1 − γ . We conclude from (35) that (29) holds. ��
Lemma 11 For ρ = min(C0,Cconv)hk, the mapping T̃1 has a unique fixed point in
α B̃h(ρ) for α = hk+2.

Proof Note that by (29), T̃1 is a strict contraction inα B̃h(ρ) forρ ≤min(C0,Cconv)hk .
We now show that T̃1 maps α B̃h(ρ) into itself. Let vh ∈ B̃h(ρ). We have by (29) and
(24)

||T̃1(αvh) − α Ihu||H1 ≤ ||T̃1(αvh) − T̃1(α Ihu)||H1 + ||T̃1(α Ihu) − α Ihu||H1

≤ a||αvh − α Ihu||H1 + C1α
2hk−1

≤ aαρ + C1αh
2k+1 = aαρ + C1h

k+1αhk .

Therefore for h sufficiently small, C1hk+1 ≤ min(C0,Cconv)(1 − a) and so

||T̃1(αvh) − α Ihu||H1 ≤ aαρ + (1 − a)αρ.

The result then follows from the Banach fixed point theorem. ��
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We can now state the main result of this paper

Theorem 1 Let (u, σ ) ∈ Hk+3(Ω)×Hk+1(Ω)2×2 denote the unique convex solution
of (2). Problem (3) has a unique local solution (uh, σh) for k ≥ 2 and h sufficiently
small. We have

||uh − Ihu||H1 ≤ Chk

||σh − Ihσ ||H1 ≤ Chk−1.

Proof Recall that for (uh, σh) ∈ Bh(ρ), we have σh = H(uh). The result follows
from Lemmas 6, 11 and 4, the definition of Bh(ρ) and (23).

The local solution uh given by Lemma 11 satisfies ||uh − Ihu||H1 ≤ Chk . Since by
Lemma 6, (uh, H(uh)) is a fixed point of T , by Lemma 4, (uh, H(uh)) solves (3). By
the definition of Bh(ρ) σh = H(uh) and by (23), we have ||σh − Ihσ ||H1 ≤ Chk−1.

��
Remark 2 As with [4], the analysis of this paper extends to the three dimensional case
when one assumes k ≥ 3. In the quadratic case, in three dimension, one obtains that
the solution uh is much closer to the interpolant than what can be expected from the
approximation properties of the finite element space. However, upon a rescaling of the
equation, this difficulty disappears. The same argument applies to the standard finite
element discretization [4].

Remark 3 If it is known that (3) has a solution (uh, σh) with uh piecewise strictly
convex, the fixed point argument of this paper can be repeated with α = νhk+2 to
prove that the solution is locally unique.

Acknowledgments The author was partially supported by a Division of Mathematical Sciences of the
US National Science Foundation grant No. 1319640.

References

1. Awanou, G.: Pseudo transient continuation and time marching methods for Monge–Ampère type
equations (2013). http://arxiv.org/abs/1301.5891

2. Awanou, G.: On standard finite difference discretizations of the elliptic Monge–Ampère equation
(2014). http://arxiv.org/pdf/1311.2812v5.pdf

3. Awanou, G.: Spline element method for the Monge–Ampère equations (2014) (to appear in B.I.T.
Numerical Mathematics)

4. Awanou, G.: Standard finite elements for the numerical resolution of the elliptic Monge–Ampère
equation: classical solutions (2014) (to appear in IMA J. Numer. Anal.)

5. Awanou, G., Li, H.: Error analysis of a mixed finite element method for the Monge–Ampère equation.
Int. J. Numer. Anal. Model. 11, 745–761 (2014)

6. Bramble, J.H., Pasciak, J.E., Schatz, A.H.: The construction of preconditioners for elliptic problems
by substructuring. I. Math. Comput. 47(175), 103–134 (1986)

7. Brenner, S.C., Gudi, T., Neilan, M., Sung, L.Y.: C0 penalty methods for the fully nonlinear Monge–
Ampère equation. Math. Comput. 80(276), 1979–1995 (2011)

8. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied
Mathematics, vol. 15, 2nd edn. Springer-Verlag, New York (2002)

9. Feng, X., Neilan, M.: Error analysis for mixed finite element approximations of the fully nonlinear
Monge–Ampère equation based on the vanishing moment method. SIAM J. Numer. Anal. 47(2),
1226–1250 (2009)

123

http://arxiv.org/abs/1301.5891
http://arxiv.org/pdf/1311.2812v5.pdf


518 G. Awanou

10. Lakkis, O., Pryer, T.: A finite element method for nonlinear elliptic problems. SIAM J. Sci. Comput.
35(4), A2025–A2045 (2013)

11. Neilan, M.: Finite element methods for fully nonlinear second order PDEs based on a discrete Hessian
with applications to the Monge–Ampère equation. J. Comput. Appl. Math. 263, 351–369 (2014)

123


	Quadratic mixed finite element approximations of the Monge--Ampère equation in 2D
	Abstract
	1 Introduction
	2 Notation and preliminaries
	2.1 Discrete variational problem
	2.2 Properties of the Lagrange finite element spaces
	2.3 Algebra with matrix fields
	2.4 Continuity of the eigenvalues of a matrix as a function of its entries

	3 Error analysis of the mixed method for smooth solutions
	Acknowledgments
	References




