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We propose a new variational formulation of the elliptic Monge–Ampère equation and show how classical
Lagrange elements can be used for the numerical resolution of classical solutions of the equation. Error
estimates are given for Lagrange elements of degree d � n in dimensions n = 2 and n = 3. No jump term
is used in the variational formulation. We propose to solve the discrete nonlinear system of equations
by a time marching method, and numerical evidence is given which indicates that one approximates in
two dimension a larger class of nonsmooth solutions than what is possible if one simply uses Newton’s
method.
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1. Introduction

This paper addresses the numerical resolution of the Dirichlet problem for the Monge–Ampère equation

det D2u = f in Ω , u = g on ∂Ω . (1.1)

A classical solution of (1.1) is a convex function u ∈ C(Ω̄) ∩ C2(Ω) which satisfies (1.1). The domain
Ω ⊂ R

n, n = 2, 3, is assumed to be convex with (polygonal) boundary ∂Ω . Here, D2u denotes the
Hessian of u with (D2u)i,j = (∂2u)/(∂xi∂xj), i, j = 1, . . . , n, and f , g are given functions with f � 0 and
g ∈ C(∂Ω) with g convex on any line segment in ∂Ω . A smooth solution of (1.1) solves the variational
problem: find u ∈ W 2,∞(Ω) such that u = g on ∂Ω and

∫
Ω

(det D2u)v dx =
∫
Ω

fv dx for all v ∈ H1
0 (Ω).

We propose to solve numerically (1.1) with standard Lagrange finite element spaces Vh of
degree d � n by analysing the (nonconforming) variational problem: find uh ∈ Vh ⊂ H1(Ω) such that
uh = gh on ∂Ω for an interpolant gh of g and

∑
K∈Th

∫
K
(det D2uh)vh dx =

∫
Ω

fvh dx ∀vh ∈ Vh ∩ H1
0 (Ω). (1.2)

Here, Th denotes a quasi-uniform, simplicial and conforming triangulation of the domain. Error esti-
mates for smooth solutions are derived. We propose to solve the discrete nonlinear system of equations
by a time marching method, cf. Theorem 3.3. Numerical evidence is given, which indicates that one
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approximates in two dimension a larger class of nonsmooth solutions than what is possible if one simply
uses Newton’s method.

Closely related to this paper are Brenner & Neilan (2012), Brenner et al. (2011) and Neilan (2013).
Like the authors of these papers, we also use a fixed-point argument, but our approach is essentially
different. No jump term is used in our variational formulation. We are able to give error estimates for
Lagrange elements of degree d � n with no smoothness assumption on the boundary. This is achieved
by a rescaling argument and the effective use of the continuity of the eigenvalues of a matrix as a
function of its entries. The fixed-point argument we use to establish the well-posedness of (1.2) also
yields the theoretical convergence of the time marching iterative method.

The use of the standard Lagrange finite element spaces in connection with the numerical resolution
of (1.1) also appears in mixed methods. A least squares formulation was used in Glowinski (2009) and
recently a direct mixed formulation was presented in Lakkis & Pryer (2013). The latter is essentially the
limiting case of the mixed method for the vanishing moment methodology; cf. Feng & Neilan (2009)
and the references therein. The vanishing moment methodology is a singular perturbation approach
to the Monge–Ampère equation with the perturbation a multiple of the bilaplacian. The convergence
and error estimates for the methods introduced in Glowinski (2009) are still open problems and mixed
methods typically lead to a large system of equations.

In view of having numerical results for nonsmooth solutions, it is natural to use a time marching
method, and not Newton’s method, for solving the discrete nonlinear system of equations. The numer-
ical experiments indicate that the method may be valid for the so-called viscosity solutions. This is
a fascinating and challenging issue and its resolution involves additional new ideas different from
the techniques for error analysis used in this paper. We wish to address this issue in a separate work
(Awanou, 2013d).

Our approach may be viewed as a variant of the method introduced in Brenner et al. (2011). As
pointed out in Brenner et al. (2011), a numerical method based on Lagrange elements and the formu-
lation (1.2) does not work in theory in the sense that it is difficult to use a fixed-point argument with a
mapping defined through a second-order elliptic equation in divergence form with coefficient matrix the
cofactor matrix of D2u. The authors in Brenner et al. (2011) ingeniously added jump terms to facilitate
the above approach. On the other hand, our numerical experiments indicate that (1.1) can be solved
numerically if the discrete nonlinear system of equations is solved by a time marching method. An
advantage of the time marching method is that the user only needs access to a Poisson solver to imple-
ment the scheme. The main advantage, however, is that one has numerical evidence of convergence for
nonsmooth solutions in two dimension for a larger class of nonsmooth solutions than what is possible
if one simply uses Newton’s method. Our numerical experiments are for the case f real valued with
f > 0 on Ω . Obviously, the time marching method can also be applied to the discretization proposed
in Brenner et al. (2011), but we believe that, in the context of nonsmooth solutions, the jump terms
in the discretization proposed there may not be necessary. We have chosen not to treat curved bound-
aries for simplicity and to focus on the main ideas. The main motivation to assume that the domain is
smooth and strictly convex is to guarantee the existence of a smooth solution for smooth data. One then
faces the difficulty of practically imposing Dirichlet boundary conditions, a problem solved in Brenner
et al. (2011) by the use of the Nitsche method. Here instead, we will make the assumption ubiqui-
tous in the finite element analysis of numerous problems that the solution is smooth on a polygonal
domain.

We believe that the fixed-point argument used in this paper and/or the strategy of rescaling the
Monge–Ampère equation would prove useful in resolving other outstanding issues about the numerical
analysis of Monge–Ampère-type equations; see, for example, Awanou (2013a). For another example,
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our fixed point-rescaling argument provides an alternative to Neilan (2013) for the proof of the well-
posedness of the discretization proposed in Brenner et al. (2011) for quadratic finite elements. Essen-
tially, the rescaling argument is appropriate whenever an argument can be made that a result holds for
the Monge–Ampère equation, provided the solution is sufficiently small. Thus, instead of describing
the whole rescaling argument, one may simply prove results for the case when the exact solution is
sufficiently small.

In fact, the results of this paper are similar to the ones announced in the context of C1 conforming
approximations in a technical report by the author Awanou (2013b), but the analysis is more involved.
Exploiting that similarity, pseudo-transient continuation methods can be developed for (1.1) by taking
appropriate nonconforming discretizations of the iterative methods proposed in Awanou (2013b). We do
not pursue this line of investigation in this paper. The properties of the Lagrange finite element spaces
used in our analysis, namely an approximation property and inverse estimates, also hold for certain C1

conforming approximations. Thus, our error estimates hold for these as well. The error estimates hold
for the following assumption on the exact solution: u ∈ W 3,∞(K) on each element K is strictly convex
on each element and solves (1.2).

We organize the paper as follows. In Section 2, we give the notation used and recall some facts about
determinants and Lagrange finite element spaces. The properties of the finite element spaces needed for
our analysis are stated as well as the requirements on the exact solution. We prove the existence and
uniqueness of the discrete problem (1.2) with the convergence of the time marching method in Section 3.
In Section 4, we give the numerical results. We conclude with some remarks.

2. Notation and preliminaries

Let Pd denote the space of polynomials of degree � d. We use the usual notation Lp(Ω), 2 � p � ∞ for
the Lebesgue spaces and Ws,p(Ω), 1 � s<∞ for the Sobolev spaces of elements of Lp(Ω) with weak
derivatives of order � s in Lp(Ω). The norms and seminorms in Ws,p(Ω) are denoted by ‖.‖s,p and |.|s,p,
respectively, and, when p = 2, we will simply use ‖.‖s and |.|s. Thus, the Lp-norm is denoted by ‖.‖0.
We will use the simpler notation ‖.‖∞ for the norm in L∞(Ω).

For a function defined on an element K or more generally on a subdomain S, we will add K or S to
the norm and seminorm notation. We will need a broken Sobolev norm

‖v‖s,p,Th =
⎛
⎝ ∑

K∈Th

‖v‖p
s,p,K

⎞
⎠

1/p

,

with the above conventions for the case when p = 2.
For a matrix field A, we define ‖A‖∞ = maxi,j=1,...,n ‖Aij‖∞. We denote by n the unit outward normal

vector to ∂Ω , and by nK the unit outward normal vector to ∂K for an element K.
For two matrices A = (Aij) and B = (Bij), A : B = ∑n

i,j=1 AijBij denotes their Frobenius inner product.
The divergence of a matrix field is understood as the vector obtained by taking the divergence of each
row. We use the notation Du to denote the gradient vector and, for a matrix A, cof A denotes the matrix
of cofactors of A.

A quantity that is independent of h, but which may depend on s, p,Ω , etc., is simply denoted by
C. Throughout the paper, for a discrete function vh, the Hessian D2vh is always computed element by
element. We will assume that 0< h � 1.
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2.1 Computations with determinants

Lemma 2.1 For u, v ∈ C2(K), we have

det D2u − det D2v = cof(tD2u + (1 − t)D2v) : (D2u − D2v),

for some t ∈ [0, 1].

Proof. The result follows from the mean value theorem and the expression of the derivative of the map-
ping F : u → det D2u. We have F ′(u)(v)= (cof D2u) : D2v. First, note that ∂(det A)/(∂Aij)= (cof A)ij;
see, for example, formula (23) p. 440 of Evans (1998). The result then follows from the chain rule. �

Lemma 2.2 For n = 2 and n = 3, and two matrix fields η and τ

‖ cof(η) : τ‖0 � C‖η‖n−1
∞ ‖τ‖0, (2.1)

‖ cof(η)− cof(τ )‖0 � C(‖tη + (1 − t)τ‖∞)n−2‖η − τ‖0. (2.2)

Proof. The bound (2.1) is given by a direct computation. For n = 2, we have cof(η)− cof(τ )=
cof(η − τ) from which the result follows. For n = 3, we use the mean value theorem. It is enough
to estimate the first entry of cof(η)− cof(τ ) which is equal to

det

(
η22 η23

η32 η33

)
− det

(
τ22 τ23

τ32 τ33

)
= cof

(
t

(
η22 η23

η32 η33

)
+ (1 − t)

(
τ22 τ23

τ32 τ33

))
:

(
η22 − τ22 η23 − τ23

η32 − τ32 η33 − τ33

)
,

for some t ∈ [0, 1]. Direct computation then gives (2.2). �

2.2 Assumptions on the approximation spaces

For the discretization (1.2), one can use either the Lagrange finite element spaces or certain finite-
dimensional spaces of C1 functions. To make our results applicable to other types of discretizations, we
formulate our assumptions on the approximation spaces.

Assumption 2.3 (Approximation property) The finite-dimensional space Vh ⊂ H1(Ω) contains the
Lagrange space of degree d

{ vh ∈ C0(Ω̄), vh|K ∈ Pd , ∀K ∈ Th},
and there exists a linear interpolation operator Ih mapping Cr(Ω̄) for r = 0 or r = 1 into Vh and a constant
C such that if w is in the Sobolev space Wl+1,p(Ω), 1 � p � ∞, 0 � l � d,

‖w − Ihw‖k,p,Th � Caphl+1−k|w|l+1,p, (2.3)

for k = 0, 1, 2.

The interpolant gh used in (1.2) is taken as Ih applied to a continuous extension of g.
When Vh is the Lagrange finite element space, the interpolant Ih is taken as the standard interpolation

operator defined from the degrees of freedom. It is then known that Assumption 2.3 holds (Brenner &
Scott, 2002).
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As a consequence of (2.3),

‖Ihw‖k,p,Th � (1 + Cap)‖w‖k,p, w ∈ Wk,p(Ω), k = 0, 1, 2, (2.4)

for all p.
The Monge–Ampère equation (1.1) involves D2u and the time marching method involves solving

Poisson equations. It turns out that, for the fixed-point argument, one needs to relate the H1-norm of vh

for vh ∈ Vh to ‖vh‖2,∞,Th . We will need inverse estimates.

Assumption 2.4 Inverse estimates

‖wh‖t,p,Th � Cinvhs−t+min(0,n/p−n/q)‖wh‖s,q,Th , (2.5)

for 0 � s � t, 1 � p, q � ∞ and wh ∈ Vh.

The inverse estimates hold for the Lagrange finite element spaces as a consequence of the quasi-
uniformity assumption on the triangulation (Brenner & Scott, 2002).

2.3 Assumptions on the exact solution

Let λ1(A) and λn(A) denote the smallest and largest eigenvalues of a symmetric matrix A. We make the
following assumption on the exact solution.

Assumption 2.5 Local piecewise smooth and strict convexity assumption. The solution u of (1.1) is in
W 3,∞(Th) ∩ H1(Ω), strictly convex on each element K and for constants m′, M ′ > 0, independent of h,

m′ � λ1(D
2u(x))� λn(D

2u(x))� M ′ ∀x ∈ K, K ∈ Th.

Moreover, we require the exact solution u to solve the problem: find u ∈ W 2,∞(Th), strictly convex on
each element T , such that u = g on ∂Ω and

∑
K∈Th

∫
K
(det D2u)v dx =

∫
Ω

fv dx ∀v ∈ Vh ∩ H1
0 (Ω). (2.6)

We note that Assumption 2.5 trivially holds for a strictly convex solution u in C3(Ω̄). In that case
f � c0 > 0 for a constant c0.

3. Well-posedness of the discrete problem and error estimates

The proof of all lemmas in this section are given at the end of the section.
We first state a fundamental observation about the behaviour of discrete functions near the inter-

polant Ihu.

Lemma 3.1 There exists δ > 0 such that, for h sufficiently small and for all vh ∈ Vh with ‖vh − Ihu‖1 <

δ/(2Cinv)h1+n/2, D2(vh|K) is positive definite with

m′

2
� λ1D2(vh|K)� λnD2(vh|K)� 3M ′

2
,

where m′ and M ′ are the constants of Assumption 2.5. Thus, cof D2(vh|K) is invertible on each
element T .

 by guest on D
ecem

ber 19, 2015
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


6 of 17 G. AWANOU

Let

δh = δ

2Cinv
h1+n/2. (3.1)

By Lemma 3.1, for vh ∈ Vh, ‖vh − Ihu‖1 � δh, vh is piecewise strictly convex with smallest eigenvalue
bounded below by m′/2 and above by 3M ′/2. Put

Xh = {vh ∈ Vh, vh = gh on ∂Ω , ‖vh − Ihu‖1 < δh}.

As a consequence of Assumption 2.5, we obtain the following lemma..

Lemma 3.2 There exists constants m, M > 0 independent of h such that, for all vh ∈ Xh,

m � λ1(cof D2vh(x))� λn(cof D2vh(x))� M ∀x ∈ K, K ∈ Th.

It follows that

m|w|21,K �
∫

K
[(cof D2vh(x))Dw(x)] · Dw(x) dx � M |w|21,K , w ∈ H1(K). (3.2)

The main result of this section is the following theorem.

Theorem 3.3 Let the finite-dimensional spaces Vh ⊂ H1(Ω) contain piecewise polynomials of degree
d � n, n = 2, 3. Assume that the spaces Vh satisfy Assumption 2.3 of approximation property and
Assumption 2.5 of inverse estimates. Assume also that the exact solution u ∈ Wl+1,∞(Th) ∩ H1(Ω),
n � l � d satisfies Assumption 2.5 of strict convexity and solves (2.6). Then, the problem (1.2) has a
unique local solution uh in a small neighbourhood of Ihu. The solution uh is strictly convex on each
element and we have the error estimates

‖u − uh‖2,Th � Chl−1,

‖u − uh‖1 � Chl,

for h sufficiently small. Moreover, with a sufficiently close initial guess u0
h, the sequence defined by,

uk+1
h = gh on ∂Ω ,

ν

αn−1

∫
Ω

Duk+1
h · Dvh dx = ν

αn−1

∫
Ω

Duk
h · Dvh dx −

∫
Ω

fvh dx +
∑

K∈Th

∫
K
(det D2uk

h)vh dx, (3.3)

∀vh ∈ Vh ∩ H1
0 (Ω), converges linearly to uh in the H1-norm for ν = (M + m)/2,α = h5 and for h suffi-

ciently small.

Before we give the proof of the above theorem, we will state several lemmas whose proofs are given
at the end of the section.

We recall that α > 0 is a small parameter which may depend on h. For ρ > 0, let

Bh(ρ)= {vh ∈ Vh, vh = gh on ∂Ω , ‖vh − Ihu‖1 � ρ}.

The ball Bh(ρ) is nonempty as it contains Ihu. If vh ∈ Bh(ρ), ‖αvh − αIhu‖1 � αρ. Note also that if vh is
strictly convex, so is αvh.
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For a given vh ∈ Vh, vh = gh on ∂Ω , define T(αvh) ∈ Vh as the solution of

ν

∫
Ω

DT(αvh) · Dwh dx = ν

∫
Ω

D(αvh) · Dwh dx + αn
∑

K∈Th

∫
K
(det D2vh)wh dx

− αn
∫
Ω

fwh dx ∀wh ∈ Vh ∩ H1
0 (Ω), (3.4)

with αvh − T(αvh)= 0 on ∂Ω and we recall that ν = (M + m)/2, where M and m are the constants of
Lemma 3.2.

We will show that T has a unique fixed point αuh with uh in Bh(ρ) for h sufficiently small.
The motivation to introduce the damping parameter α is that it allows one to solve a rescaled version

of (1.1). Indeed, det D2u = f is equivalent to detαD2u = αnf . Taking α as a power of h will play a crucial
role in proving the well-posedness of (1.2) and obtaining optimal error estimates.

Lemma 3.4 The mapping T is well defined and if αuh is a fixed point of T , i.e., T(αuh)= αuh, then uh

solves (1.2).

The next lemma says that the mapping T does not move the centre Ihu of a ball Bh(ρ) too far.

Lemma 3.5 We have

‖αIhu − T(αIhu)‖1 � C1α
nhl−1‖u‖n−1

2,∞‖u‖l+1. (3.5)

The next two lemmas establish the contraction mapping property of T under the assumption that
d � n and α = h5.

Lemma 3.6 For h sufficiently small, and 0<ρ < δh, T is a strict contraction mapping in the ball αBh(ρ),
i.e., for vh, wh ∈ Bh(ρ),

‖T(αvh)− T(αwh)‖1 � a‖αvh − αwh‖1, 0< a< 1.

Lemma 3.7 For h sufficiently small and ρ = δ/(4Cinv)hl, n � l � d, where δ and Cinv are the constants
in (3.1), T is a strict contraction in αBh(ρ) and maps αBh(ρ) into itself.

The previous lemmas will readily allow us to conclude the solvability of (1.2) and derive error
estimates in the H1-norm by using the explicit expression of the radius ρ of the above lemma. We can
now give the proof of Theorem 3.3.

Proof of Theorem 3.3. Since the mapping T is a strict contraction which maps αBh(ρ) into itself,
the existence of a fixed point αuh with uh ∈ Bh(ρ) follows from the Banach fixed-point theorem. By
Lemma 3.4, uh solves (1.2).

From the expression of ρ given in Lemma 3.7, we get, using the value of α= h5,

‖u − uh‖1 � ‖u − Ihu‖1 + ‖Ihu − uh‖1 � Chl|u|l+1 + Chl

� Chl,

 by guest on D
ecem

ber 19, 2015
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


8 of 17 G. AWANOU

which proves the H1 error estimate. By (2.3) and (2.5),

‖u − uh‖2,Th � ‖u − Ihu‖2,Th + ‖Ihu − uh‖2,Th

� ‖u − Ihu‖2,Th + h−1‖Ihu − uh‖1

� Chl−1|u|l+1 + Chl−1,

which proves that
‖u − uh‖2,Th � Chl−1.

Finally, we prove the convergence of the time marching method (3.3). Since T is a strict contraction in
αBh(ρ), the sequence defined by αuk+1

h = T(αuk
h), uk+1

h = uk
h on ∂Ω converges linearly to αuh. Simpli-

fying by αn, we get the convergence of (3.3). �

We conclude this section with the proofs of Lemmas 3.1–3.7.

Proof of Lemma 3.1. Recall that the eigenvalues of a (symmetric) matrix are continuous functions of its
entries, as roots of the characteristic equation, Ostrowski (1960) Appendix K, or Harris & Martin (1987).
Thus, for all ε > 0, there exists δ > 0 such that for v ∈ W 2,∞(Ω), |v − u|2,∞ � δ implies |λ1(D2v(x))−
λ1(D2u(x))|< ε a.e. in Ω .

By Assumption 2.5, λ1(D2u(x))� m′, a.e. in Ω , and with ε = m′/2, we obtain λ1(D2v(x)) >m′/2,
a.e. in Ω . We conclude that, for |v − u|2,∞ � δ, λ1(D2v(x)) >m′/2 a.e. in Ω .

Now, by (2.3), |u − Ihu|2,∞ � Caphd−1|u|d+1,∞. So, for h sufficiently small, |u − Ihu|2,∞ � δ/2.
Moreover, by (2.5) and the assumption of the lemma

|vh − Ihu|2,∞ � Cinvh−1−n/2‖vh − Ihu‖1 � δ

2
.

It follows that λ1(D2vh(x)) >m′/2 a.e. in Ω , as claimed.
If necessary, by taking δ smaller, we have |λn(D2vh(x))− λn(D2u(x))|<M ′/2 a.e. in Ω . Thus,

λn(D2vh(x))� λn(D2u(x))+ M ′/2 � 3M ′/2. This concludes the proof. �

Proof of Lemma 3.2. We first note that, by Lemma 3.1, there exists constants m, M > 0 such that m �
λ1(cof D2vh(x))� λn(cof D2vh(x))� M a.e. inΩ for vh ∈ Xh. To prove this, recall that, for an invertible
matrix A, cof A = (det A)(A−1)T. Since a matrix and its transpose have the same set of eigenvalues, the
eigenvalues of cof A are of the form det A/λi, where λi, i = 1, . . . , n is an eigenvalue of A. Applying this
observation to A = D2u(x) and using Lemma 3.1, we obtain that the eigenvalues of cof D2vh(x) are a.e.
uniformly bounded below by m = (m′)n/M ′ and above by M = (M ′)n/m′.

Since λ1(D2vh(x)) and λn(D2vh(x)) are the minimum and maximum, respectively, of the Rayleigh
quotient [(cof D2vh(x))z] · z/‖z‖2, where ‖z‖ denotes the standard Euclidean norm in R

n, we have

m′‖z‖2 � [(cof D2vh(x))z] · z � M ′‖z‖2, z ∈ R
n.

This implies

m|w|21,K �
∫

K
[(cof D2vh(x))Dw(x)] · Dw(x) dx � M |w|21,K , w ∈ H1(K).

�
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Proof of Lemma 3.4. The existence of T(αvh) solving (3.4) is an immediate consequence of the Lax–
Milgram lemma.

If T(αuh)= αuh, then

αn
∑

K∈Th

∫
K
(det D2uh)vh dx = αn

∫
Ω

fvh dx ∀vh ∈ Vh ∩ H1
0 (Ω),

and thus uh solves (1.2). Conversely, if uh solves (1.2), αuh is a fixed point of T . �

Proof of Lemma 3.5. From (2.3) and (2.4), we obtain

‖u − Ihu‖2,K � Chl−1|u|l+1, (3.6)

‖Ihu‖2,K � C‖u‖2. (3.7)

Put wh = αIhu − T(αIhu) and note that wh ∈ H1
0 (Ω). Since the exact solution solves (2.6), we have

∫
Ω

fwh dx =
∫
Ω

(det D2u)wh dx.

With vh = Ihu in (3.4), we obtain

ν

∫
Ω

D[T(αvh)− αvh] · Dwh dx = αn

⎛
⎝ ∑

K∈Th

∫
K
(det D2Ihu − det D2u)wh dx

⎞
⎠. (3.8)

Put

zh = det D2Ihu − det D2u.

We have, by Lemma 2.1,

zh = (cof(tD2Ihu + (1 − t)D2u)) : (D2Ihu − D2u),

for some t ∈ [0, 1]. Thus, by Lemma 2.2, (3.7) and (3.6),

‖zh‖0,K � C‖tD2Ihu + (1 − t)D2u)‖n−1
∞ ‖D2Ihu − D2u‖0,K

� C(‖Ihu‖2,∞ + ‖u‖2,∞)n−1‖Ihu − u‖2,K

� C‖u‖n−1
2,∞hl−1‖u‖l+1,K � Chl−1‖u‖n−1

2,∞‖u‖l+1,K .

By Lemma 3.4 and (3.8), we obtain

ν|wh|21 � Cαn
∑

K∈Th

‖zh‖0,K‖wh‖0,K

� Cαnhl−1‖u‖n−1
2,∞‖u‖l+1‖wh‖0 � Cαnhl−1‖u‖n−1

2,∞‖u‖l+1‖wh‖1.

The result then follows by Poincaré’s inequality. �
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Proof of Lemma 3.6. We define

VK = {vh|K , K ∈ Th, vh ∈ Xh},

and denote by V ′
K the space of linear continuous functionals on VK . For F ∈ V ′

K , ‖F‖ will denote the
operator norm of F. We define a mapping TK : αBh(ρ)→ V ′

K defined by

〈TK(αvh), zh〉 = α

∫
K

Dvh · Dzh dx + αn

ν

∫
K
(det D2vh)zh dx − αn

ν

∫
K

fzh dx.

Note that the restriction of elements of αBh(ρ) to K are in VK .
Step 1: We claim that, for vh ∈ Bh(ρ) and wh ∈ VK , ‖T ′

K(αvh)(αwh)‖ � a‖wh‖1,K for a constant a
such that 0< a< 1 and h sufficiently small.

〈T ′
K(αvh)(αwh), zh〉 = α

∫
K

Dwh · Dzh dx + αn

ν

∫
K

[div(cof D2vh)Dwh]zh dx

= α

∫
K

Dwh · Dzh dx − αn

ν

∫
K

[(cof D2vh)Dwh] · Dzh dx

+ αn

ν

∫
∂K

zh[(cof D2vh)Dwh] · nK ds,

and we used the expression of the derivative of the mapping u → det D2u also used in the proof of
Lemma 2.1. Therefore,

〈T ′
K(αvh)(αwh), zh〉 = α

∫
K

[(
I − 1

ν
cof D2αvh

)
Dwh

]
· Dzh dx

+ αn

ν

∫
∂K

zh[(cof D2vh)Dwh] · nK ds, (3.9)

where I is the n × n identity matrix. We define

β = sup
wh∈VK ,|wh|1,K=1

∣∣∣∣
∫

K

[(
I − 1

ν
cof D2αvh)

)
Dwh

]
· Dwh dx

∣∣∣∣ .

By assumption ρ < δh. Thus, by (3.2) we obtain

(
1 − Mαn−1

ν

)
|w|21,K �

∫
K

[(
I − 1

ν
(cof D2αvh)

)
Dw

]
· Dw dx �

(
1 − mαn−1

ν

)
|w|21,K .

Since ν = (M + m)/2, we have

1 − αn−1M

ν
= m + M − 2Mαn−1

m + M
< 1,

1 − αn−1m

ν
= m + M − 2mαn−1

m + M
< 1.
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Thus, since for h sufficiently small

αn−1 <
m + M

2M
� m + M

2m
,

we have
0 � β < 1.

Define ph = wh/|wh|1,K and qh = zh/|zh|1,K for wh |= 0 and zh |= 0. Then,

| ∫K[(I − (1/ν) cof D2αvh)Dwh] · Dzh dx|
|wh|1,K |zh|1,K

=
∣∣∣∣
∫

K

[(
I − 1

ν
cof D2αvh)

)
Dph

]
· Dqh dx

∣∣∣∣ . (3.10)

We can define a bilinear form on VK by the formula

(p, q)=
∫
Ω

[(
I − 1

ν
(cof D2αvh)

)
Dp

]
· Dq dx.

Then, because
(p, q)= 1

4 ((p + q, p + q)− (p − q, p − q)),

and using the definition of β, we obtain

|(ph, qh)| � β

4
|ph + qh|21,K + β

4
|ph − qh|21,K = β,

since ph and qh are unit vectors in the |.|1,K seminorm. It follows from (3.10) that

| ∫K[(I − (1/ν) cof D2αvh)Dwh] · Dzh dx|
|wh|1,K |zh|1,K

� β.

We then have, for vh, wh ∈ VK ,∣∣∣∣
∫

K

[(
I − 1

ν
cof D2αvh

)
Dwh

]
· Dzh dx

∣∣∣∣ � β|wh|1,K |zh|1,K � β‖wh‖1,K‖zh‖1,K .

In other words,
| ∫K[(I − (1/ν) cof D2αvh)Dwh] · Dzh dx|

‖wh‖1,K‖zh‖1,K
� β. (3.11)

Next, we bound the second term on the right of (3.9). We need the scaled trace inequality

‖v‖L2(∂K) � Ch−1/2
K ‖v‖L2(K) ∀v ∈ Vh. (3.12)

We have, by Schwarz inequality, (3.12) and (2.5),
∫
∂K

zh[(cof D2vh)Dwh] · nK ds � Ch−1‖(cof D2vh)Dwh‖0,K‖zh‖0,K

� Ch−1|vh|n−1
2,∞,K‖wh‖1,K‖zh‖1,K

� Ch−(1+n/2)(n−1)−1‖wh‖1,K‖vh‖n−1
1,K ‖zh‖1,K . (3.13)
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By (3.11) and (3.13),

|〈T ′
K(αvh)(αwh), zh〉|
‖wh‖1,K‖zh‖1,K

� α(β + Cαn−1h−(1+n/2)(n−1)−1‖vh‖n−1
1,K ).

We conclude, using the expression of α = h5 and assuming ρ � 1, that

‖T ′
K(αvh)(αwh)‖ = sup

zh |= 0

|〈T ′
K(αvh)(αwh), zh〉|

‖zh‖1,K

� α(β + Ch(4−n/2)(n−1)−1‖vh‖n−1
1,K )‖wh‖1,K

� α(β + Ch(4−n/2)(n−1)−1(‖vh − Ihu‖1,K + ‖Ihu‖1,K)
n−1)‖wh‖1,K

� α(β + Ch(4−n/2)(n−1)−1(ρ + ‖u‖1)
n−1)‖wh‖1,K

� (β + Ch1/2(1 + ‖u‖1)
n−1)‖αwh‖1,K ,

and we recall that n = 2, 3, allowing us to treat the two cases in a unified fashion.
Since β < 1, for h sufficiently small a = β + Ch1/2(1 + ‖u‖1)

n−1 < 1. This proves the result.
Step 2: The mapping TK is a strict contraction, i.e., for vh, wh ∈ Bh(ρ), ‖TK(αvh)− TK(αwh)‖ �

a‖αvh − αwh‖1,K , 0< a< 1.
Using the mean value theorem,

‖TK(αvh)− TK(αwh)‖ = ‖
∫ 1

0
T ′

K(αvh + t(αwh − αvh))(αwh − αvh) dt‖

�
∫ 1

0
‖T ′

K(αvh + t(αwh − αvh))(αwh − αvh)‖ dt.

Since Bh(ρ) is convex, vh + t(wh − vh) ∈ Bh(ρ), t ∈ [0, 1], and by the result established in Step 1,

‖TK(αvh)− TK(αwh)‖ �
∫ 1

0
a‖αwh − αvh‖1,K dt = a‖αwh − αvh‖1,K .

Step 3: The mapping T is a strict contraction in αBh(ρ).

∫
Ω

D(T(αvh)− T(αwh)) · Dψh dx = α

∫
Ω

D(vh − wh) · Dψh dx

+ αn

ν

∑
K∈Th

∫
K
(det D2vh − det D2wh)ψh dx

=
∑

K∈Th

〈TK(αvh)− TK(αwh),ψh〉.
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With ψh = T(αvh)− T(αwh), we obtain, using the result from Step 2 and the observation that ψh = 0
on ∂Ω ,

|T(αvh)− T(αwh)|21 �
∑

K∈Th

‖TK(αvh)− TK(αwh)‖‖ψh‖1,K

� a
∑

K∈Th

‖αvh − αwh‖1,K‖ψh‖1,K

� a

⎛
⎝ ∑

K∈Th

‖αvh − αwh‖2
1,K

⎞
⎠

1/2 ⎛
⎝ ∑

K∈Th

‖ψh‖2
1,K

⎞
⎠

1/2

= a‖αvh − αwh‖1‖ψh‖1

� aCp‖αvh − αwh‖1|ψh|1,

where Cp is the constant in the Poincare’s inequality. It follows that ‖T(αvh)− T(αwh)‖1 � a‖αvh −
αwh‖1. �

Proof of Lemma 3.7. Since ρ = δ/(4Cinv)hl and l � n for n = 2, 3, we obtain l � 1 + n/2 and thus
ρ < δh.

Let vh ∈ Bh(ρ). Then, using Lemma 3.5 and the observation that hl+1 � (1 − a)ρ for h sufficiently
small

‖T(αvh)− αIhu‖1 � ‖T(αvh)− T(αIhu)‖1 + ‖T(αIhu)− αIhu‖1

� a‖αvh − αIhu‖1 + C1α
nhl−1‖u‖n

l+1,∞

� a‖αvh − αIhu‖1 + Cαhl+5n−6

� a‖αvh − αIhu‖1 + Cαhl+1

� a‖αvh − αIhu‖1 + (1 − a)αρ

� aαρ + (1 − a)αρ

� αρ,

and we conclude that

‖T(αvh)− αIhu‖1 � αρ.

This proves the result. �

Remark 3.8 Let us assume that (1.2) has a strictly convex solution uh (independently of the smoothness
of u). If, in addition, its eigenvalues are bounded below and above by constants independent of h, then
using again the continuity of the eigenvalues of a matrix as a function of its entries, we obtain the
existence of δ′ > 0 such that, for vh in

Yh = {vh ∈ Vh, vh = gh on ∂Ω , ‖vh − uh‖1 <Cδ′h1+n/2},
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Table 1 Test 1 d = 2, ν̄ = 50

h Iterations ‖u − uh‖L2 Rate ‖u − uh‖H1 Rate
1
4 71 4.38 × 10−2 2.05 × 10−1

1
8 54 2.18 ×10−2 1.00 1.04 × 10−1 0.98

1
16 461 9.00 × 10−3 1.28 4.19 × 10−2 1.31

1
32 493 2.76 × 10−3 1.70 1.28 × 10−2 1.71

1
64 459 7.35 × 10−4 1.91 3.40 × 10−3 1.91

1
128 448 1.86 × 10−4 1.98 8.65 × 10−4 1.97

vh is convex. It is not difficult to see that the mapping T is also a strict contraction in Yh for h sufficiently
small. One obtains the linear convergence of the iterative method (3.3) to uh as follows:

‖αuk+1
h − αuh‖1 = ‖T(αuk

h)− T(αuh)‖1 � a‖αuk
h − αuh‖1, 0< a< 1.

Simplifying by α proves the claim.

4. Numerical results

The implementation is done in Matlab. The computational domain is the unit square [0, 1]2 which is first
divided into squares of side length h. Then, each square is divided into two triangles by the diagonal
with positive slope. We use standard test functions for numerical convergence to viscosity solutions of
nondegenerate Monge–Ampère equations, i.e., for f > 0 in Ω .

Test 1: u(x, y)= e(x
2+y2)/2 with corresponding f and g. This solution is infinitely differentiable.

Test 2: u(x, y)= −
√

2 − x2 − y2 with corresponding f and g. This solution is not in H2(Ω).
Test 3: g(x, y)= 0 and f (x, y)= 1. No exact solution is known in this case.
The initial guess was taken as the finite element approximation of the solution of the Poisson

equation
Δu0 = 2

√
f in Ω , u0 = g on ∂Ω .

We define
ν̄ = ν

αn−1
,

where ν and α are the parameters in (3.3). It is not easy to estimate the lower and upper values m and
M . Thus, trial and error are used in the selection of ν̄. If the numerical error is deemed not accurate, one
increases ν̄. In Awanou (2013d), it is shown that if one regularizes the data, the sequence of problems
associated with (1.2) have solutions which are piecewise strictly convex. In that case, trial and error
should also be used for the choice of ν̄. In Tables 1 and 2, we used the value of ν̄ that gives a sufficiently
accurate solution at the finest level of refinement displayed. On coarser meshes, a smaller value of ν̄
may be used, and hence the solution could be obtained with fewer iterations.

For the test function in Test 1, which is a smooth function and the one in Test 3 (Fig. 1), we used the
iterative method of Theorem 3.3. For the nonsmooth solution of Test 2, we found the following truncated
version more efficient. For m = 1, 2, . . ., we consider truncating functions χm(x) defined by χm(x)= −m
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Table 2 Test 2 d = 2, ν̄ = 150, m = 250

h ‖u − uh‖L2 Rate ‖u − uh‖H1 Rate
1
16 106 1.79 × 10−1 1.1718

1
32 249 6.54 × 10−2 1.45 5.47 × 10−1 1.10

1
64 554 1.24 × 10−2 2.40 1.52 × 10−1 1.85

1
128 886 2.10 × 10−3 2.56 6.00 × 10−2 1.34

1
256 993 4.91 × 10−4 2.09 4.27 × 10−2 0.49

Fig. 1. Test 3 d = 2, h = 1
2

8
, ν̄ = 50, with three iterations.

for x<−m, χm(x)= x for −m � x � m and χm(x)= m for x>m and the sequence of problems

ν̄

∫
Ω

Duk+1,m
h · Dvh dx = ν̄

∫
Ω

Duk,m
h · Dvh dx +

∑
K∈Th

∫
K
χm(det D2uk,m

h − f )vh dx,

with uk+1,m
h = gh on ∂Ω .

Compared with C1 conforming approximations or mixed methods, the standard finite element
method is less able to capture convex solutions. However, we note the unusual high-order convergence
rate in the L2-norm for the nonsmooth solution of Test 2. The optimal convergence rate of Theorem 3.3
is an asymptotic convergence rate. For higher-order elements, better numerical convergence rates are
obtained with the iterative methods discussed in Awanou (2013c) or the finite element version of the
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ones discussed in Benamou et al. (2010). It could just be that the time marching method is not accurate
enough to approximate the solution for high-order elements. In summary, the discrete problem (1.2) has
a unique local solution, and the time marching method proposed in this paper is efficient for nonsmooth
solutions, with f > 0, and quadratic elements. In particular, the time marching method is not robust
enough to handle the situation, where the right-hand side of (1.1) is a measure, i.e., a Dirac distribution.
For these situations, in the context of standard discretizations, one may have to use mixed methods as
in Lakkis & Pryer (2013) or Neilan (2014). In addition, Newton’s method can then be applied directly
to the resolution of the nonlinear system resulting from the discretization of (1.1). It seems that the time
marching method is enough to handle easily strictly convex viscosity solutions for the discretization
discussed in this paper. The extension of the analysis in Awanou (2013d) to the case of mixed methods
will be discussed in Awanou (2014).

5. Concluding remarks

Remark 5.1 The motivation to choose the test functions in (1.2) to be in H1
0 (Ω) stems from the use of

Lagrange elements in (3.3).

Remark 5.2 Numerical evidence of convergence of standard discretizations of the Monge–Ampère
equation to nonsmooth solutions has been discussed for a long time in the finite element context (Feng
& Neilan, 2009; Glowinski, 2009; Lakkis & Pryer, 2013) and the references therein. In Benamou et al.
(2010), for the two-dimensional Monge–Ampère equation, it was proposed to discretize, with the stan-
dard finite difference method, the following iterative method:

Δuk+1 = ((Δuk)
2 + 2(f − det D2uk))

1/2 in Ω , uk+1 = g on ∂Ω .

As for the time marching method (3.3), the above approach requires solving only Poisson equations, and
can be used for numerical evidence of convergence to nonsmooth solutions even with a finite element
discretization. However, even for smooth solutions, its convergence properties are not understood.

Remark 5.3 With regard to general fully nonlinear equations, the time marching method has been
applied to the Pucci equation and the Gauss curvature equation in a previous version of Awanou (2013b).
Since the proof of convergence for the Monge–Ampère equation exploits the divergence form of the
equation, it is not clear whether the techniques used here can be extended to other fully nonlinear
equations. It should also be noted that the Monge–Ampère equation has a geometric structure, as evi-
denced by the version of the Aleksandrov theory, which consists in approximation by smooth functions.
This makes it easier to understand convergence of standard discretizations to nonsmooth solutions; see
Awanou (2013d).
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