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Abstract

In this work we propose a discretization of the second boundary condition for the Monge—
Ampere equation arising in geometric optics and optimal transport. The discretization we
propose is the natural generalization of the popular Oliker—Prussner method proposed in
1988. For the discretization of the differential operator, we use a discrete analogue of the
subdifferential. Existence, unicity and stability of the solutions to the discrete problem are
established. Convergence results to the continuous problem are given.
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1 Introduction

In this paper we propose a discretization of the second boundary condition for the Monge—
Ampere equation. Let £2 and £2* be bounded convex domains of R. Let f be a non negative
integrable function on £2 and R > 0 an integrable function on £2*. We are interested in
discrete approximations of convex weak solutions in the sense of Aleksandrov of the model
problem

R(Du(x)) det D%u(x) = f(x)in 2

_ __ 1
Xu($2) = 2%, M

where the unknown is a convex function u on £2 such that du($2) = £2*, Du denotes the
gradient of u and D?u its Hessian. We use the notation du for the local subdifferential of u
and y, denotes the subdifferential of a specific convex extension u to R? of u, c.f. Sect. 4.2.
That convex extension satisfies x,, (R = xu(22) = 2*. The epigraph of u, c.f. Sect. 4.1,
is an unbounded convex set for which there is a notion of asymptotic cone, c.f. Sect. 4. The
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asymptotic cone essentially gives the behavior at infinity of the convex extension u. From £2*,
we construct a convex set K o+ which turns out to be the asymptotic cone of the epigraph of
the extension . The equation x, (£2) = £2* is then equivalent to prescribing the asymptotic
cone of the epigraph of a certain convex extension to R of the convex function u on £2. We
derive an explicit expression of the extension in terms of the asymptotic cone, which we use
to derive the numerical scheme.

We approximate £2* by closed convex polygons ¥ C £2* and give an explicit formula for
the extension of a mesh function uj, on £2 which guarantees that the latter has an asymptotic
cone K associated with Y with x,, (2) C Y, where Xu, denotes some discrete version of
the subdifferential. One then only needs to apply the discrete Monge—Ampere operator in
this class of mesh functions, c.f. (11) below. It was thought [41, p. 24] that ”dealing with an
asymptotic cone as the boundary condition is inconvenient”.

The left hand side of (1) is to be interpreted as the density of a measure w (R, u, .) asso-
ciated to the convex function u and the mapping R c.f. Sect. 2.1. It is defined through the
subdifferential of u. Equations of the type (1) appear for example in optimal transport and
geometric optics. The compatibility condition [, f(x)dx = [. R(p)dp is required, c.f.
Sect. 2.1.

1.1 Short Description of the Scheme

In this paper we consider Cartesian grids and a discrete analogue of the subdifferential
considered in [7, 38] for the Dirichlet problem. Let 7 be a small parameter, a + hZ? for
a € RY be the set of mesh points. The description of the scheme is given in Sect. 2.2. We
assume for now that £2 = (0, l)d, a=1/2,...,1/2), f >0, f € C(£2) and §£2* is aconvex
polygonal domain with vertices a*, j = 1, ..., N*. Denote by £2;, the set of mesh points
in £2 and by 352, the set of mesh points in £2 closest to 952 in directions of the canonical
basis of RY. The unknown in the discrete scheme is a function defined on §2;, which we
refer to as a mesh function. Given a stencil V, i.e. the choice V (x) of a subset of Zd\{ 0}
for x € £2;, and an associated discrete analogue dy u;, of the subdifferential, we define the
discrete Monge—Ampere operator by wy (R, uj, x) = fav(uh) ) R( p)dp for a mesh point
x € §25,. The discretization we analyze consists in solving the nonlinear problem

wv (R, up, x) = h? f(x), x € 2p,

with unknown mesh values u;, (x), x € £2;,. The evaluation of wy (R, uj, x) requires mesh
values uj (x), x ¢ £25,. They are given by the discrete extension formula
= min ma —y)-at ,
up(x) Jmin. 15jfo(x y)-aj +up(y)
motivated by Theorem 10 below. The above formula implicitly enforces the second boundary
condition as we discuss below. For this example, in the case f = 1, the simple choice of
the right hand side h? f(x) assures the discrete compatibility condition (12) below. See (11)
below for a suitable right hand side and Sect. 8 for other modifications.

1.2 Relation with Semi-discrete Optimal Transport (SDOT)
A quantization of f is a partition of the domain £2 into closed cells E;,i = 1,..., N with

diameter diam(E;) jnd non empty interiors such that £; N E; has Lebesgue measure 0 for
i # 7, U,NzlEi = §£2. For x; in the interior of E; and h = max{diam(E;),i = 1,..., N},
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Wn = ZlNz 1 ( /, E; f (x)dx)SX[ weakly converges to the measure with density f. Weak

convergence of measures is discussed in Sect. 6. In SDOT [2, 22, 30, 33, 34, 36], one seeks
a mesh function uj, such that

/ R(p)dp:/ fx)dx,i=1,...N, 2)
Aqup (x;)N§2* E;

where the discrete subdifferential is defined by
daun(xi) ={p € R up(x;) = up(x)) + p- (xj —xp), forall j=1,...,N}.  (3)

The computation of dguj(x;),i = 1,..., N is obtained through the construction of a power
diagram [13, Sect. 5.1]. One then takes the intersection of the diagram with £2*. The cells
oqup(x;),i =1,..., N are usually interpreted in terms of the Legendre transform of uy,, are
known as Laguerre cells and form a partition of R?. Since fQ fx)dx = ZlNzl fEi fx)dx =

Zf\]:l faduh(x,-)ﬂﬂ* R(p)dp = [oiqy R(p)dp where Y = vazladuh(x,-), we see that in
general, the discrete subdifferential is not the usual subdifferential of a piecewise linear
convex function. If this were the case, and the second boundary condition dzuj, (RY) C £2*
holds, then Y C £2*. By the compatibility condition we obtain |Y N £2*| = |£2*|. Since
Y NR* =Y C 2%, we obtain [2%\Y| = 0. This implies that ¥, which is closed, is dense
in 2* and hence ¥ = £2*. By Lemma 10 below, ¥ would be polygonal and recall that £2*
is not necessarily polygonal. Contradiction. We note that for x; in the interior of the convex
hull of x;,i = 1, ..., N, the discrete subdifferential is equal to the usual subdifferential, c.f.
[40, Lemma 2.1].

The method we have proposed can be seen as a variant where the condition du;, (2) C Y C
2* is enforced explicitly through a convex extension. Here, Y is a polygonal approximation
of £2* and we also denote by u;, the piecewise linear convex function with vertices at the
mesh points x;, i = 1, ... N, c.f Sect. 4.2 for adefinition. Letx;,i = N+1, ..., M be points
in R? such that £2 is contained in the convex hull of {x;,i = 1,..., M }. It is required that
for a normal n to a facetof Y andi = 1,..., N, thereis anode x;, j =1, ..., M such that
xj — x; is parallel to n. This ensures that duj(x;) C Y, c.f. Lemma 3 for Cartesian meshes.
The parameter & and duj, (x;) are defined analogously as in SDOT. However, in this context,
the discrete subdifferential is the same as the usual subdifferential, hence the notation, c.f. for
example [6, Lemma 4]. We now require that f8uh(x,-) R(p)dp = fEi fx)dx,i =1,...N
with uj (x;) fori = N + 1,..., M obtained through the discrete extension formula. Here
082y, consists in the mesh points x; on the boundary of the convex hull of { x;,i = 1,..., N},
c.f. Theorem 10. The stencil V is now chosen in such a way that duj (x;) = dyup(x;) for
i =1,..., N.Note that with the assumption f > 0 on £2, for x € 382, |du,(x)| # 0 since
dup(x) CY C 2* and R > 0 on £2*.

We view the method proposed as the natural generalization of the Oliker-Prussner method
[42] in the sense that it uses the notion of asymptotic cone and the usual subdifferential as in
the original studies of the second boundary value problem [8]. Compared with the Dirichlet
problem, where boundary values are given at the additional nodes, here these values are
obtained from the discrete extension formula. Convergence rates for the method proposed
were given in [13]. See also [37]. We shall give a detailed argument of the convergence
without convergence rates.
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1.3 Some Advantages of the Proposed Approach

The main ingredient in the implementation of SDOT is the computation of the convex enve-
lope of a finite set of points. This is a classical and hard problem in itself and is well studied
in computational geometry, so that widely available software libraries can be used. If N is the
number of Dirac masses used in SDOT, a convex hull of N points in R?*! is constructed. Using
for example the quickhull algorithm, this results in a computational complexity O(N log N)
for d = 2 and O(m!¥tD/2]y for d > 3, ie. at least a computational complexity O(N?)
for d > 3. As pointed out in [13, Remark 5.5], the damped Newton’s method used in [30]
requires to find the volume of the intersection of the cells in the power diagram. This has a
worst-case complexity O(N?2). In summary, the use of a damped Newton’s method in SDOT
results in a worst-case complexity O(N?) ford =2 and d = 3.

On Cartesian meshes, the complexity of the proposed approach for setting up the nonlinear
discrete equations is dimension independent and given by O(N#V), where #V denotes the
maximum of {#V (x), x € §2;,} and N denotes the number of mesh points. For the stencil
Vinax discussed below, #V = O(N) and in that case the complexity is O(N?). However, the
proposed approach allows to choose a stencil V for which #V is a constant independent of N,
resulting in a linear complexity O(N). A damped Newton’s method is also used for solving
the nonlinear equations. This requires to compute at each mesh point the volume of the
facets of the discrete subdifferential, resulting again in a complexity O(N#V). In summary,
the proposed approach allows to choose a stencil the size of which has an upper bound
independent of N, leading to a method with linear complexity. In the latter case, convergence
of the discretization then holds for f € C(£2).

For f € L'(2), f > 0, with a stencil V,,4, chosen such that OV Un(x) = 012 (up)(x)
for all x € £2;, and a certain convex envelope I (uj) of uy, our convergence results can be
seen as a version of arguments given in [ 13, Proposition 2.3] as u, is then equal to its convex
envelope on £2;,.

Existence and uniqueness of a solution are proved.

1.4 Relation with Other Work

While there have been previous numerical simulations of the second boundary value problem
(1), c.f. [12, 21, 29, 35, 44], advances on theoretical guarantees are very recent [11, 14, 15,
25, 35]. The approach in [25, 35] is to enforce the constraint yx, (£2) = £2* at the discrete
level at all mesh points of the computational domain. Open questions include uniqueness
of solutions to the discrete problem obtained in [25], existence of a solution to the discrete
problem analyzed in [11] and existence of a solution to the discrete problem obtained in [35]
for a target density R only assumed to be locally integrable.

Our work is closer to the one by Benamou and Duval [11] who proposed a convergence
analysis based on the notion of minimal Brenier solution. Yet the two methods are fundamen-
tally different. For example, the method in [11] is reported to have first order convergence for
the gradient. For our method, taking forward and backward differences resultin a O (1) con-
vergence rate for the gradient, i.e. the numerical errors for the gradient are merely bounded.
The first order convergence rate is nevertheless achieved by selecting an element of the
discrete subdifferential. Our analysis relies exclusively on the notions of Aleksandrov and
viscosity solutions with guarantees on existence and uniqueness of a solution to the discrete
problem. The uniqueness of a solution of the discrete problem is important for the use of
globally convergent Newton’s methods. Unlike the approaches in [11, 25, 35], we do not
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use a discretization of the gradient in the first equation of (1). See also [45] for the Dirichlet
problem. Convergence of the discretization does not assume any regularity on solutions of
(1) and is proven for mesh functions, and their convex envelopes. Convergence of mesh func-
tions implies the convergence of their convex envelopes [6, Lemma 10]. Another difference
of this work with [11] is that we do not view the second boundary condition as an equation
to be discretized. Analogous to methods based on power diagrams [22, 33], the unknown is
sought as a function over only the domain §2 with the second boundary condition enforced
implicitly.

For the approach in [2, 22, 30, 33, 36], for efficiency and a convergence guarantee of
an iterative method for solving the discrete equations, the use of power diagrams with a
damped Newton’s method is advocated [30]. However, that approach results in a worst-case
complexity O(N?) for d = 2 and d = 3. To avoid the complication of constructing power
diagrams in three dimensions for the Dirichlet problem, Mirebeau [38] proposed a scheme
which is medius between finite differences and power diagrams. The discretization of (1)
analyzed in this paper is also medius between finite differences and power diagrams. Dealing
with the second boundary condition requires to take into account the domain £2*, and hence
our discretization depends on £2*. As with [38] the implementation of our scheme does not
require any of the subtleties required to deal with power diagrams in three dimensions. The
proof of convergence of a damped Newton’s method for solving the nonlinear equations
resulting from the discretization, has been given in [4]. As with the approaches in [2, 22, 30,
33, 36, 45], numerical integration may be required.

1.5 Organization of the Paper

We organize the paper as follows: In the next section we introduce some notation and the
weak formulation of (1). We then describe the numerical scheme and recall some results on
the convex envelopes of mesh functions. Existence, uniqueness and stability of solutions are
given in Sect. 3. In section 4 we review the notion of asymptotic cone of convex sets. This
leads to the extension formula which has motivated the numerical scheme. We then recall
the interpretation of (1) as [41] ” the second boundary value problem for Monge—Ampere
equations arising in the geometry of convex hypersurfaces [8] and mappings with a convex
potential [16].” With the notion of asymptotic cone we prove further results about convex
extensions. Section 9 is areview of polyhedral set theory and uses a matrix formalism to revisit
most of the results we prove in Sect. 4 directly from the geometric definition of asymptotic
cone. Section9 may be viewed as an appendix. In Sect. 5 we present results about weak
convergence of Monge—Ampere measures for discrete convex mesh functions. In Sect. 6 we
give several convergence results for the approximations. The results in Sects. 3 and 6 assume
that f > 0in £2. In Sect. 7, we consider the degenerate case f > 0. Numerical experiments
are reported in Sect. 8. We give some additional remarks in the appendix. Therein we revisit
convex extensions in terms of infimal convolution.

2 The Discrete Scheme
In this section, we introduce some notation and recall the interpretation of (1) as the second

boundary value problem for Monge—Ampére equations arising in the geometry of convex
hypersurfaces. We then recall discrete versions of the notion of subdifferential and describe
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the numerical scheme. We now assume that R = 0 on R? \ £2*. Recall that R > 0 on £2*
and R € L'(£2%).

2.1 R-Curvature of Convex Functions

Let v be a convex function on RY. For y € R?, the normal image of the point y (with respect
to v) or the subdifferential of v at y is defined as

() =1g R :v(x) = v(y) +¢ - (x — ), forallx e R? }.

Fory € §2, the local normal image of the point y (with respect to v) or the local subdifferential
of v at y is defined as

() ={geR?:v(x) = v(y)+q-(x—y), forallx € 2}.

Since we have assumed that £2 is convex and v is convex, the local normal image and the
normal image coincide for y € §2 [23, Exercise 1]. We recall that a domain is a non empty
open and connected set. In particular, £2* is non empty.

For ¢,y € R? and 1 € R, the set of points { (x,z) € Rt x e R 7z € R,z =
w~+q - (x —y)}is called a hyperplane. When g € x,(y), v(y) + g - (x — y) is called a
supporting hyperplane. It is known that when v is differentiable at y, x, (y) = { Dv(y) }. For
the function v given by v(x) = |x|, x € R, we have x,(0) = [—1, 1] = x, (R).

For any subset E C R?, the normal image of E (with respect to v) is defined as

Xv(E) = Uxeg xv ().
The set dv(E) is defined analogously.
The presentation of the R-curvature of convex functions given here is essentially taken
from [8] to which we refer for further details. It can be shown that x,(E) is Lebesgue

measurable when FE is also Lebesgue measurable. The R-curvature of the convex function v
is defined as the set function

w(R,v, E) :f R(p)dp,
Xu(E)

which can be shown to be a measure on the set of Borel subsets of R¢. For an integrable
function f > 0 on £2 and extended by 0 to R, equation (1) is the equation in measures

w(R,u, E) = / £ (x)dx for all Borel sets E C 2
E “4)
Xu(R2) = 2%,

This implies the compatibility condition

/ F)dx = f R(p)dp. )
2 2%

In (4), the unknown is a convex fun@n u defined on £2 with a convex extension, c.f. Sect. 4.2,
that satisfies x, (RY) = x,(22) = £2*.
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2.2 Discretizations of the R-Curvature

We consider a non degenerate polygonal domain ¥ C £2* with boundary vertices a;f, j =

1, ..., N*. We first solve an approximate problem where the solution satisfies y, (2) = Y.
In view of the compatibility condition (5), we consider a modified right hand side

y Jany R(p)dp
Sy =0-9efx), e= W

The truncation f depends on Y and that dependence will be made explicit in Sect. 6 where
we use the notation fy.
Note that since R > 0 on 2%, by (5) fg f(x)dx > 0. Furthermore

/ R(p)dp = / R(p)dp — / R(p)dp = / Fo)dx - / R(p)dp < / F)dx,
*\Y 0% Y 2 Y 2

so that 0 < € < 1. Moreover, in view of (5), we obtain

f Fo)dx - f R(p)dp = / R(p)dp — f R(p)dp = / R(p)dp.
7) 21y 2 21y Y

Therefore

(6)

f Foydx = / R(p)dp. )
2 Y

We therefore consider, using a slight abuse of notation for u, the problem: find u convex on
R? such that

o(R,u, E) = / f(x)dx for all Borel sets E C £2
E ®)
xu($2) =Y.

Let & be a small positive parameter and let ZZ = a+{mh, m € Z¢} denote the orthogonal
lattice with mesh length A, with an offset a € R4, Put 2, = 2N ZZ and denote by
{ry, e rq } the canonical basis of RILIEQ = (0, 1)d and we take a = (1/2,---,1/2),

then 2 = Uyeq,x + [—h/2, h/2]¢. This partition of £2 implies the mass conservation
condition (12) below.

Definition 1 A stencil V is a set valued mapping from 2, to the set of finite subsets of
Z4\ (0).

We will make the abuse of notation of writing e € V for e € V (x) when considering the
points x =+ he.

A subset W of Z¢ is symmetric with respect to the originif Vy € W, —y € W. Recall that
a facet of a polygon ¥  R? is a (d — 1)-dimensional face of Y, c.f. Sect. 9 for the definition
of faces.

We define Vi, to be a finite subset of Z4 \{0} which is symmetric with respect to the
origin, contains the elements of the canonical basis of R9, and contains a vector parallel to
a normal to each facet of the domain Y.

The assumption that V,,;, contains a normal to each facet of the domain ¥ may seem
restrictive. However the approximate polygonal domain Y to £2* can be chosen such that
normals to its facets are parallel to vectors in Z2.
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Next, we consider the domain
Rext =2, U{x+he:x €2p,e € Viyin}
Recall that £2, = 2 N ZZ. The stencil V., is defined for x € £2, as
Vinax(x) = {e € Z4\ {0},3y € Q2exr, y = x + he}. )
Assumption The stencil V is required to satisfy
Vinin C V(x) C Vipax (x), x € 82y.
Let
082, = {x € §2j, such that forsome e € {£ry,...,£rg}, x + he ¢ 25, }.
Note that we have by our definition
082y C §24,

andif x € 2, \ 02y, thenforalle € {xry,...,xrg}, x + he € £2y,.

Recall that {ry, ..., rgy } denotes the Enonical basis of RY. For x € £2), and ¢ € Z¢ let
h$ =sup{rh,r € [0, 1] and x + rhe € §2 }. We define
Nhl =2, U{x €0dR,3y e 2,ande € V(y) U{0} such that x =y + hje}.
We also define
NP =(xeZl,x=y+he eV (»)U{O}andy € 2},

where the stencil V4, is given by (9), i.e. e € V4 (x) if and only if x = y — he for
VE Ryt = 25 U{x+he:x €2y, e € Vyin }. Recall that V,,;,, is symmetric with respect
to the origin, contains (rq, ..., rg) as well as vectors parallel to normals of the facets of Y.
We have

N} € 2 c ConvND).

We claim that th = $2.x:. By definition, 2, C .N;lz and for x € 25, and e € V,ip,
X + he € N} since Viyin C Vipax (x). Thus Qexy C N7. Letz € N7,z = y| + he, y| €
2n,e € Viax(y1). Let y2 € 2.5, such that y; = y, — he. Thus z = y; and /\/}% C exs-
This gives N;lz C $2¢x¢- The claim is proved.

The unknown in the discrete scheme is a mesh function (not necessarily the interpolant
of a convex function) on §2;, which is extended to ZZ using the discrete extension formula

vp(x) = ylé}yi}},, (vn () + 12}2‘5XN(X -y -aj), (10)
motivated by Theorem 10 below.

We consider the following analogue of the subdifferential of a function. For x € ZZ and
a mesh function vy, we define

dyun(x) = {p e RY, p- (he) > vp(x) — vp(x — he)Ve € V(x)},

and consider the following discrete version of the R-Monge—Ampere measure

wy (R, vy, E) := / R(p)dp,
dyvp(E)

where dy v, (E) = Uyepdy vy (X).
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For the Dirichlet problem, a discrete version of the R-curvature has been used in [45] where
a generalization of the discretization proposed in [42] for R = 1 was studied. Integration of
the density function R (and hence the need of numerical integration) over power diagrams
appears in the semi-discrete approach to optimal transport [2, 22, 30, 33, 36].

A discretization based on dy v, may not be accurate for V = V,;;, while for V. =V,
one may need to use power diagrams and a damped Newton’s method as in semi-discrete
optimal transport. For the case of the stencil V,,,,, we define

wa(R, vy, E) ::/ R(p)dp.
Winay Vi (E)
The discretization considered in [38] used a symmetrization of the subdifferential. The sub-
script a in the notation w, (R, vy, E) recalls that we use here an asymmetrical version.

The coordinates of a vector ¢ € Z¢ are said to be co-prime if their great common divisor
is equal to 1. For a quadratic polynomial p such that 0 < A < D?p < A and for x €
R?, p(x) = 1/2 xT" Mx for ad x d matrix M with condition number less than « for x > 0,
consistency of dy p(x) at mesh points x at a distance h+/dk from 9£2, can be proven as in
[38, 40], provided V (x) contains all vectors e € V,,,x(x) with co-prime coordinates such
that |e| < 1/2/dxk.

For « > 0, define V, to be a mesh independent stencil such that V, consists of all
vectors e € Zd\{ 0} with co-prime coordinates such that [e| < 1/ 2+/dk. The factor 1 / 2/d
is motivated by Lemma 22 below. Given x € £2;, such that d(x, 9§2) > h/dk, we have
Vi C Vipax(x), since for e € Vi, |he| < h/2«/3/c < hy/dk < d(x,882) and hence
y =x+ he € 2, C £2,y;. If necessary, by taking « large, we may assume that V,,;, C V.

In Sect. 6, we first prove convergence of the discretization for V = V,,,x. Then we
allow V = V, N V., and thus have a two-scale approximation uy .. Note that the size of
Vie N Vipax (x) for x € £25, is uniformly bounded in x, with an upper bound independent of
N. For that reason, the complexity of the resulting method is O(N).

We will show that as h — 0, uy, , converges uniformly on £2 to a continuous function
v, which solves R(Dv) det D*v = f in in the sense of viscosity. For f € C(£2), we then
compare vy to a class of strictly convex quadratic polynomials parameterized by «. The limit
as k — +o0 of v, is a convex function which solves (8).

‘We define for a function vy, on Zd, ecZlandx € Z‘é

Apevp(x) = vp(x + he) — 2u,(x) + vy (x — he).

Definition 2 A mesh function v, on §2; extended to Zz using (10) is discrete convex if
Apevp(x) > O0forall x € 25 and e € V45 (x) such that x &+ he € /\/'h2 A mesh function vy,
is V-discrete convex if Ap.v;(x) > 0 for all x € £2;, and e € V(x) such that x + he € /\/h2

A V41 -discrete convex mesh function is discrete convex. Denote by C, the set of discrete
convex mesh functions.

Definition 3 A mesh function on £2;, which is extended to ZZ using the discrete extension
formula (10), and which is discrete convex is said to have asymptotic cone K associated with
Y.

Below, we will consider only discrete convex mesh functions with asymptotic cone K.
We can now describe our discretization of the second boundary value problem: find u;, € Cp,
with asymptotic cone K such that

oy (R, up, {x}) =/ f(ndt, x € 2y, (1D)
E,
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where (Ey ) cq, form a partition of £2,i.e. Ex N2 = {x}, Uyen, Ex = Q,and E, N Eyis
a set of measure O for x # y. In the interior of £2 one may choose as Ex = x +[—h/2, h/21¢
the cube centered at x with £, N$2, = { x }. The requirement that the sets £, form a partition
is essential to assure the mass conservation (7) at the discrete level, i.e.

> ovRoup {x) =) [E f@ydt = /Q foydt = /Y R(pydp.  (12)

xef2y X€82y

The unknowns in (11) are the mesh values up(x), x € £2;,. For z ¢ $§2;, the value uj,(z)
needed for the evaluation of dy vy (x) is obtained from the discrete extension formula (10).

Let uy, be discrete convex with asymptotic cone K . Recall that the values of uj on hl \ 2y
are given by (10).

Let

hun(x) = {p € RY up(y) = wp(x) + p- (y —x)Vy € Nj },
and recall that
dvup(x) ={p e R, p-(he) > up(x) — up(x — he)Ve € V(x)}.

We consider two kinds of convex envelopes of the mesh function uy

Tup)(x) = sup {L(x): L(y) < up(y) forall y € N} } and
L affine

o)) = sup {L(x): L(y) < up(y) forall y € i),

which are piecewise linear convex functions, c.f. for example [6, p. 11]. We note that N hl
depends on the stencil V. Note also that the definition of the convex envelope I'{ (i) above
allows an “infinite slope” at points of R? not in Conv(\, hl ). If u is a convex function on §2,
we can extend u to RY, c.f. (25) below, by

u(x) = supfu(y) +(x —y)-z,y € £2,z € duy)}.
We denote by yx, the subdifferential of the extended function to RY. Thus xy ) denotes the
subdifferential of the extension to R¢ of I' (up,), i.e. for x ¢ Conv(N, hl)
Ty (up)(x) = sup{ 11 () (¥) + ¢ - (x — ), y € (Conv(N;})°, g € AT (up)(y)}, (13)

where for a set D, D° denotes its interior.
In [6], we introduced the notation

2 (vh(x + hée) — vy (x) N vp(x —h %) — vh(x)>
he + hi¢ he hy ¢ '

Aevp(x) =

A notion of V-discrete convexity was introduced in [6, Definition 3] by requiring A,vp (x) >
0 for all e € V(x). Therein the focus was on mesh functions which converge to a convex
function. To require that discrete convexity holds on all directions supported by the mesh, V
was taken as V = Z¢ \ {0}, which is not correct.

The correct definition of discrete convexity in the sense of [6] is to require that A, v, (x) > 0
for all e € Z¢ for which x + hée € N} and x — he € N}

The above remark also applies to the work in [7]. In addition, the convergence analysis
therein for the Dirichlet problem, holds for a stencil V,;, which contains { e € 74, x+ hée e
N

hThe following theorem follows from [6, Lemmas 6 and 7], [6, Theorem 6] and [6, Theorem
4] where we considered ojuy, in connection with Iy (uy,).
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Theorem 1 If x € 2, and I't (up)(x) = up(x), then 31 (up)(x) = dpup(x). If x € 24, and
I (up)(x) # up(x), then opup(x) =0. If x € Conv(./\/hl),for any p € xryw, (x), Iy € Nhl
such that p € Xy, (X) 0 X1y, (V) and Ty (up)(y) = up(y).

Moreover; for a subset E C (Conv(/\/'hl))", opup(E) =011 (up)(E) up to a set of measure
0 and thus

o (R, ' (up), E) :/ R(p)dp.
Opun(E)

Analogous to Theorem 1, we have

Theorem 2 Ifx € 2, and I>(up)(x) = up(x), then 0I5 (up)(x) = Ay, un(x). If x € §2y,
and Iy (up)(x) # up(x), then dy,,, up(x) = 0. If x € Conv(/\/hz), forany p € xpu,) (%),
3y € N such that p € xryau) (%) O Xy (¥) and Dy (up)(y) = un(y)

Moreover, for a subset E C (Conv(./\/;lz))o, OVpar U (E) = 012 (up)(E) up to a set of
measure 0 and thus

@a(R, up, E) = wq(R, 2 (up), E).

Remark 1 We observe that if f > 0 on £2 and V = V4., a mesh function v, which solves
(11) is discrete convex, as defined in [6]. This follows from Lemma 19 below which gives
v, = I'1(vy) on ./\/h1 Since I7(vy) is piecewise linear convex on N;}, Aqvp(x) > 0 for all
x € 25, 1.e. vy, is discrete convex as defined in [6].

The next lemma shows that the V -discrete convexity assumption is automatically satisfied
for a discrete solution when f > 0.

Lemma 1 If f > Oin $2, a mesh function on $2j, extended to ZZ using (10), and which solves
(11) is V -discrete convex.

Proof 1t is a consequence of Lemma 3 below that a discrete convex mesh function v, which
solves (11) using the discrete extension formula (10) satisfies dy v, (§2,) C Y C §2*. Recall
that R > Oon *. If f > 0in 2, and x € £}, we have wy (R, u, {x}) > 0 and hence
dyvp(x) C £2* is a set with a non zero Lebesgue measure. In particular, it is non empty.
Assume that e € V(x) and x & he € N;lz For p € dy v, (x), we have

vp(x) —vp(x —he) < p - (he) < vp(x + he) — vp(x).
This implies that vy (x) — vy (x — he) < vp(x + he) — v, (x) and hence Apvp,(x) > 0 for all
ee V(x). O

Remark 2 From Lemma 1, the V -discrete convexity assumption does not need to be explicitly
imposed when f > 0 in £2. However, unless V = V,,,,, uniform limit of V-discrete convex
mesh functions need not be convex.

The support function ky of the closed convex set Y is defined by ky (p) = sup,y p - z.
The definition essentially says that for the direction p, Y lies on one side of the hyperplane
p-z=ky(p).Forx = (x1,....xa) € R% put[|xlly = Yy 4 lil.

We need the following lemma which follows from [11, Proposition 4.3].

Lemma 2 Let vy, be a mesh function and e € Vi, such that Ap.vp(x) > 0 for x € §2,
with vy (x) for x ¢ §2p given by (10). Then, for integers k and [ with k > 0,1 < 0 such that
X + khe and x + Lhe are in 2

—ky(—=he) <vp(x +lhe) —vp(x + (I — Dhe)
<vp(x + (k+ 1)he) — vy (x + khe) < ky (he). (14)
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Moreover

lon(x) —vn(W| = Cllx =yl s5)

forx,y e ﬁﬂZ‘é and for a constant C = max{ |ky (—r;)|, |ky(ri)|,i = 1,...,d } indepen-
dent of h and vy,.

Proof Let x € §2, and e € V,;,. Since by assumption Ap.v,(x) > 0, we have
vp(x + he) —vp(x) = vp(x) — vp(x — he).
Therefore for integers k and [ with k > 0, < 0 such that x + khe and x + lhe are in £2p,
v (x + (k + Dhe) — vy, (x + khe) > vy (x + Lhe) — v (x + (I — 1)he).

Let us now assume that k and e are such that x + khe € 2, but x + (k + 1)he ¢ £2;. Then
by definition, since x + khe € 952,

vp(x + (k 4+ Dhe) < 1m}axNhe . a;’f + v, (x + khe).
=J=

It follows that

vp(x + (k + Dhe) — vy (x + khe) <  max he - a?.

<Jj=N
This can be written
vp(x + (k 4+ 1Dhe) — v (x 4 khe) < ky(he).
Assume now that x 4+ (I — 1)he ¢ $2;, but x + lhe € $2;,. Then
vp(x + (= Dhe) < 121]_21fo —he - ajf + v, (x + [he).

It follows that
v (x +lhe) —vp(x + (I — 1)he) > —ky(—he).

In summary, for integers k and [ with k > 0,/ < 0 such that x 4+ khe and x + [he are in £2),
(14) holds.

The proof of (15) is given in [11, Proposition 4.3 (5)]. Note that in (14), x + (k + Dhe
and x + (I — 1)he may not be in §2;,. Let now x and y in £2 HZZ andputy = x + Zf’;l lihr;
where we recall that {rq, ..., ry } denotes the canonical basis of R4 and its elements are in
V() for all z € £2;, by assumption. Rewriting (14) as

—ky(—he) < vy (x +lhe) — v, (x + (I — 1)he) < ky(he)

—ky(—he) < v, (x + (k+ 1he) — v, (x + khe) < ky(he),
we see thatif[; > 0, we have —l;hky (—r;) < vy, (x +1;hr;) — v, (x) < l;hky (r;) while when
l; <0, —|ljlhky (—r;) < vp(x) — vy (x 4+ [ihr;) < |l;|hky (r;). Therefore

[vp(x + lihe) — v (x)| < |lj|h max{ |ky (—=r;)|, |ky (ri)] }, (16)
which gives

d
on(y) = oa () < h Y (i max{ |ky (=), ky ()l i = 1,....d).

i=1

The proof is complete. O
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The next lemma describes how the discrete extension formula (10) enforces the second
boundary condition.

Lemma 3 Assume that Ap.vp(x) > 0 for all x in 2, and e € Vi C V(x), with vy (x) for
x & §2p given by (10). We have

dyvp($2,) C Y.
Proof With k =1 = 0 in Lemma 2, we obtain for x € §2; and e € V,;ip,
—ky(—he) < vp(x) —vp(x — he) < vp(x + he) — vp(x) < ky(he). (17

Let p € dy vy, (x). Since for e € Vyyin, —e € Viyin, we have p - (—he) > v, (x) — vj(x + he)
forall e € V(x), that is

p - (he) < vp(x + he) — vp(x) < ky(he) = hky (e).

This proves that p - e < ky(e) for all e € V,;;;,. Since Vi, contains vectors parallel to the
normals to facets of the polygon Y, we conclude that p € Y and thus dyv,(£2;) C Y. The
proof is complete. O

3 Stability, Uniqueness and Existence

Adding a constant to a solution of (11) results in another solution. We will require that
vy (xhl) = « for an arbitrary number « and a mesh point xhl. Recall that vy, is defined only at
mesh points. We will assume that x,ll — x! forapoint x' € 2.

The stability of solutions is an immediate consequence of (15).

Theorem 3 Solutions v, € Cp of (11) with vy, (x}l) = « for an arbitrary number o and
x}{ € §2y, are bounded independently of h.

Proof Since for v, € Cy and x € §2),, Apovp(x) > 0 forall e € V, vy is bounded indepen-
dently of & by (15). O

Theorem4 For f > 0 in £2, solutions of the discrete problem (11) are unique up to an
additive constant for V.= V4.

Proof The proof is the same as the proof of uniqueness of a solution to (1) in the class of
convex polyhedra, i.e. when the right hand side is a sum of Dirac masses. See for example
[8, Theorem 17.2] for a sketch of the proof for convex polyhedra. The proof therein requires
non trivial Dirac masses, hence our assumption that f > 0.

We first note that if uy, is a solution of (11), then uj + C is also a solution of (11) for a
constant C. Let v;, and wy, be two solutions of (11). We may assume that vy, (x) > wp(x)
for all x € £2;, if necessary by adding a constant to wy,. Furthermore, we may also assume
that there exists x! € £2; such that v, (x!) = wj(x!). For convenience, and by an abuse
of notation, we do not mention the dependence of x! on 4. To prove the existence of x!,
let ¢ = min{v,(x) — wy(x), x € 25, }. Since §2, is finite, there is x! € §2;, such that
a = vp(x') — wy(x1). With s;,(x) = wy(x) + a, we obtain vy, (x) > s;,(x) for all x € £,
with v, (x1) = s, (x1).

It follows from (10) that v, > wy on ZZJ . We show that vy, = wy, and hence any two
solutions can only differ by a constant.
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Since vy (x!) = wp(x!) and vy (x) > wy(x) for all x € Z{, we have dyw,(x') C
dy vy (x!). Next, we note that as f > 0 in £2, dywy(x') is a non empty polygon with facets
given by hyperplanes orthogonal to directions e in a subset V of V. We consider a subset of
V because some faces may only intersect dy wy, (x1) at a vertex.

If there is some & € V such that vy (x! + hé) > wy,(x! + hé), then dy vy (xH\dy wp (x1)
has non zero measure. Since R > 0 on £2* and by Lemma 3 dyv,(x') C £2*, and by
assumption w, (R, vy, {x'}) = wa(R, wp, {x'}), this is impossible from properties of the
Lebesgue integral. We have proved that under the assumption that v, (x By = wy, (x1) we must
have (v, — wy)(x' £he) =0 Ve e V.

Let P; denote the convex hull of x! and the points x! + ke, e € V. By Lemma 19
below we have v, = I>(vy) on §2;. Recall that > (vy,) is a piecewise linear convex function.
Also wy, = I'»(wy,) on £2;,. Therefore I (vy) = I (wy) on 0 Py with w, (R, 13 (vy), {x1 h=
wa (R, s (wy), {x'}). Because I (vy,) and Iy (wy,) are piecewise linear convex, by construc-
tion of V, at all other points x of P, we have w, (R, I2(vy), {x}) = wa (R, I (wp), {x}) =
0. By unicity of the solution to the Dirichlet problem for the Monge—Ampere equation [48,
Theorem 2.1], we obtain I (vy) = I>(wy) on Pi. Hence v, = wy on Py N £2y,.

Next, we choose a point x2 on 3 P; N £2;, and denote by P; the corresponding polygon.
Repeating this process with points on 0 P;_; N §2;,i > 2, we obtain a sequence of mesh
points x’ and associated polygons P; of non zero volumes on which v;, = wy,.

Next, we observe that U; P; = Conv(/\/hz) as the points x! are projections onto R9 of ver-
tices on the lower part of the convex polygon which is the epigraph of I>(wj,) on Conv (N hz).
We conclude that v, = wy,. ]

Lemma4 Let x' € 2, and vy be discrete convex with asymptotic cone K. Assume that

oy (R, vy, {x}) > 0 forall x € 2. Let wy, and q;, be defined on Zz by wp(x) = vp(x)
forx # x',x € 24 and w,(x") = v(x1) — €, qn(x) = vp(x) for x # xt x € 2, and
qn () = v (xY) + €. The values of wy, and qj, on Z‘Z \ £2j, are given by (10). There exists
€0 > 0 such that for 0 < € < €y, wy, and gy, are discrete convex with asymptotic cone K,
qn > vp > wy onZZ.Moreover, ifx1 € 2,\ 082, wy (R, wy, {x1 D > wy (R, vy, {x1 b >
wv (R, g, {x'}).

Proof Let €; = min{ Ap.v;(x),x € 2p,e € V(x),x £ he € ./\/hz}. ‘We have €; > 0 since
w(R, vy, {x}) > 0 forall x € §2;. Otherwise, there would be xo € £2;, and a direction
e € V(xp) such that Ap.vj;(xg) = 0. In that case, dy vy (xp) is contained in the hyperplane
p-e = (vp(xo+he)—vp(x0))/h = (v (x0) —vp(xo—he))/h, and hence wy (R, vy, { X0 }) =
0, a contradiction.

Lete > 0. We have Ahewh(xl) = Ahevh(xl)—l—Ze > €1+ 2¢. We claim that Ay, wp (x) >
€1 —2eforall x € 2, x # x!. This is because, for x € £2; and e € V (x), wy(x + he) >
vy (x + he) — €. When x + he € £2), this follows from the definition of wy,. Assume that
X+ he € ZZ \ £2, and put ¥ (s) = max;—y,. n(x +he —s) -a;f. Let so € 0£2;, such that
wp(x + he) = wy(so) + ¥ (s0). If so = x' and v (x + he) = vu(so) + ¥(so), we have
wp(x +he) = v (x +he)—e. If 59 = x!and v (x +he) = vp(s1) + ¥ (sy) for sy # sg, then
by definition vy, (so) + ¥ (so) > vi(x + he) and thus wy(x + he) = v, (s0) — € + ¥ (so) >
vy (x + he) — e. When sg # x! we have wy, (x + he) = vj,(sg) + W (sg) > vp(x + he). This
proves the claim when x + he € Z‘,f \$2p.

With a similar argument, we have Aheqh(xl) = Apevp (xl) — 2¢ > € — 2¢ and
Aneqn(x) > € forall x € 2, x # x'.

We have Ap.wp(x) > €1 — 2¢€ for all x € £2;,. We conclude that for € < €1/2, wy, is
discrete convex. By construction wy, has asymptotic cone K. Similarly, Ap.qn(x) > €] — 2¢
for all x € §2;,. So, for € < €1/2, gj, is discrete convex with asymptotic cone K.
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It is immediate that g5, > v, > w; on ZZ. Let {e1,...,en} C 74 denote a set of
normals to the facets of dygn(x') and let {s1,...,s, ) C Z% denote a set of normals to
the facets of dywy, (xl). By construction of dy vy @h, {er,....em} C V(xl). Similarly

{(51,...,8,} C V(x"). When x! € £2,\052;, we get v, (x) = wy,(x) = g5 (x) for x # x!.
Thus

dvwp(x) ={peR, p-(hsj) <wp(x' +hsj) —wpx").j=1,....n}
={peRy p-(hsj) <vp(x' +hsj) —vxH+e j=1,....n)
D{peR p-(hs)) <vop(x' +hs)) —vp(x)), j=1,....n)
S{peR? p-(he) <vp(x' +he) —vp(x'), Ve € V(x')} = dyup(x)).
We conclude that |3y wy, (x1)| > |8y v, (x D). Similarly,
dvan(x") ={p eRY p-(her) < qu(x" +her) — quxh).i=1,....m)}.

This gives Bvqh(xl) ={pe Rd,p - (he;) < vp (x! +he) —v(xhH —e,i=1,...,m} -
{(p e Ry, p.(he;) < vp(x" 4+ hey) — vp(x"),i = 1,...,m} = dyv,(x"). This implies
[0y gn(xH)| < |9y vp(x")]. The proof is complete with €y = €1 /2. o

When V # V., it may be necessary to have additional requirements for uniqueness.
Let uy be a solution of (11) and let us assume that we have N}% = Nia u /\/’,ﬁb with
th.a N th’b = (). Assume furthermore that for x € £2;, N ./\/ia, and e € V(x) such that e is
a normal to a facet of dyuy(x), we have x + he € NZ o A similar requirement is made for
xeyn ./\/h2 »- Then, adding a constant to u;, on /\/’,? , may result in another solution.

In the next theorem, we observe that when V # V.., if uj, and vy, are solutions and uy,
is not equal to v, up to a constant, it is not possible to have u;, > vy up to a constant with
equality only at one point.

Theorem 5 Assume that f > 0in 2 and Viyin CV C Viyax. Let uy, and vy, be two solutions
of the discrete problem (11) such that up to a constant added to uj,, we have ujy, > vy, on $2),.
Then it is not possible to have equality up to a constant only at one point x' € 2;\082y,. If
in addition V (x) = Vi (x) for all x € 082y, then it is not possible to have equality up to a
constant only at one point x' € 382y,.

Proof Let uj, and v, be two mesh functions which are discrete convex with asymptotic cone
K.

Part 1 Assume that there exists z € £2, such that uy, (x) — v (x) > up(z) — vy (z) for all
x € $25,. We prove that wy (R, up, {z}) > wyv (R, vy, {2}).

We claim that for x ¢ £2;, we have up,(x) — vy (x) > up(z) — vp(z). Let y; and y; in
3082y, such that up, (x) = up(y1) +ky(x — y1) and vy (x) = vy (y2) + ky (x — y2). We have by
definition of vj, (x), vy (y2) + ky (x — y2) < vp(y1) + ky(x — y1). Moreover

up(x) —vp(x) = up(y1) — va(y2) + ky (x — y1) —ky(x — y2)
> up(y1) — vp(y2) +vp(y2) — v (1) = up(y1) — va(y1)
> up(z) — vp(2),

since 082, C £2j.
Next, for e € V(z), we have

up(z +he) —vp(z + he) > up(z) — vp(2),
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and thus for p € dy v, (z)

up(z +he) > vp(z + he) +up(z) —vp(z) = vp(2) + p - (he) +up(z) — vp(z)
=up(z) + p - (he),

which shows that p € dyuy(z). This proves the claim.
Part 2 Let ¢ > 0. Assume now that u;, and v;, are two solutions of (11). For all x € £2,

oy (R, up, {x}) =wyv(R, vy, {x}) > 0.

As in the proof of Theorem 4, we may assume that uj;(x) > v, (x) for all x € £2) with
up(xh) = vy (x!) forsome x! € $2),. By assumption, for x € £2, and x # xLup () > vy (x).

We consider the case that x! € $2,\082y, so that we can use Lemma 4. Let wy, denote the
perturbation of vy constructed in Lemma 4 with €. We have

oy (R, wy, {x'}) > oy (R, vy, {x')).
Let g denote the perturbation of u; constructed in Lemma 4. We have
oy (R, up, {x'}) > ov(R, qn. {x')).
Since wy (R, up, {x'}) = oy (R, vy, {x'}), we obtain
oy (R, wp, {x' ) > oy (R, gn. {x'}). (18)

Recall that for € sufficiently small, both wy, and g, are discrete convex with asymptotic cone
K. Assume that u;, # vy and choose € sufficiently small such that

2¢ < min{up(x) —vp(x) : x € 2p, up(x) > vp(x)}.
We have g;, > uj, > vy > wy on §2;,. Moreover, using up (b = v (xh,
gn(xh) —wp(xH = up () + € — () — € = 2e.

In addition, for x # x', x € 25, qn(x) — wy, (x) = up (x) — v (x) = 2 = g (x") —wp (x1).
Therefore, g, — wy, has a minimum at x' and are both discrete convex with asymptotic cone
K. From Part 1, we conclude that wy (R, gy, {x1 D > wy (R, wy, {)cl D). This contradicts
(18). We conclude that u;, = v, at more than one point.

Part 3 Next, we consider the case that x! € 9£2),. By the assumption that V (x) = V,;4x (x)
forall x € 982, f > 0 on £, and Theorem 2, we have I3 (v;)(x') = v, (x!) = up(xh =
I (vp)(x1). As in the proof of Theorem 4, we consider the convex decomposition U;’:l P =
Conv (N, hz) associated with I (vy) with x! € Pj. Here P is the convex hull of x! and
the points xlthe, e € ‘7, where V C V(xl) denotes the set of normals to the facets of
0V, 0x Vh (x1). As in the proof of Theorem 4 we get (u, — v)(x! £ he) =0Ve € V.

By assumption, forx € §2j, andx # x5 up(x) > vp(x). Therefore fore € V,x—i—he ¢ 2.
By assuming that / is sufficiently small or the domain §2 is large relative to the size of e € v,
we conclude that all points x + he for e € V are in the same closed half-space. But the set
of normals to the facets of a polygon cannot all lie in the same half-space, as a consequence
of [31, Proposition 1]. That is, if a, denotes the volume of the facet of dy,,, vy (x!) with

normal e, Zee‘; a,e = 0. If for a unit vector w, we have w - ¢ > 0 for all e € ‘7, then

> ecp Gew - e =0and hence w - e =0 forall e € V. Since the set of normals to the facets
of the non degenerate polygon dy,, v (x') span RY, we obtain w = 0. Contradiction. We
conclude that u;, = v;, at more than one point. O
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The proof of existence of a solution to (11) in the case V = V,,4 is identical to the case
of convex polygonal approximations [8, Theorem 17.2].

Lemma5 Let vZ be a sequence of discrete convex mesh functions with asymptotic cone K
such that vlg (x) = vp(x) forall x in 2. Then vy, is discrete convex with asymptotic cone K
and for all x € 2y, wy (R, vﬁ, {x}) — wv(R, vy, {x}).

Proof Let x € Z‘,f \ £2;, and assume that v]}f (x) = vp(sk) + (x — s) - aff for some s € 982y,
and a vertex a;f of Y. Here max;—y, . n(x — k) ~a;‘ = (x —s¢) - ajf. Since §2;, is finite, up to
a subsequence, we obtain for k sufficiently large, sy = s € 982, and ] = a™ for a vertex a*
of Y. We thus have v, (x) = v;(s) 4+ (x —s) -a* withmax;—; . n(x —s) -aj =(x—s)-a*.
Hence v;‘l (x) = vp(x) forall x € ZZ and vy, has asymptotic cone K.

By a similar argument, if for x € 2, ande € V, Ahevﬁ(x) > 0, then Apevp(x) > 0.

We now prove that for all x € £2, w,(R, vﬁ, {x}) — wi(R, vy, {x}). We have for
X € 2

/ R(p)dp — f R(p)dp
dyvf () By g (x)

R(p)dp — / R(p)dp.

favv,ﬁ O\ vy (x) By va ()\dy vk (x)

If p e oy v’,j(x) \ dy vy (x) there exists e € V such that
vp(x + he) —vp(x) < p-(he) < vl}f(x + he) — vﬁ(x).

Puta = vy (x +he) —vp(x) and B = vz(x + he) — vﬁ(x). We have |p - (he) — (@ + B) /2| <
B —a. Ask — oo, B — «a. Therefore, given § > 0, there exists ko such that for all
k > ko, |p - (he) — a| < §, where we used @ = (o + B)/2 — (B — «)/2. This also gives
|p-(—=he) — (—a)| < 4.

Recall that oy vﬁ (x) C Y isbounded. We conclude that there is a constant C which depends
on ¢ and & such that |dy v],j (x)\ dyvp(x)| < C§. Since R is integrable, there exists § > 0 such
thatif | S| < C§, wehave [ R(p)dp < €/2.1t follows that | favv},’(x)\avvh(x) R(p)dp| < €/2
for k > kg.

With a similar argument, we have |f6vvh(x)\avv’;,(x) R(p)dp| < €/2 for k > k; for an
integer k. This proves that for k > max{ ko, k1 }, |ov (R, v’}f, {x}) —wyR, v, {x}D] <€
and completes the proof. O

The last statement of the above lemma can also be proven from the continuity of the
mapping v, — favv;,(x) R(p)dp, c.f. for example [30, Proposition 2.3].

Definition 4 [22, Sect.2.2] A convex subdivision 7 of aconvex polyhedron P is a subdivision
of P into convex polyhedra K, also called cells, such that

- UKETK =P
— if K and L are both in 7, then so is their intersection
— if K e7Tand L C K, then L € 7 if and only if L is a face of K.

Associated to the piecewise linear convex function u(x) = max{x-p; +h; :i =1,..., M},

where p; € RY, h; € R for all i, is a convex subdivision of R whose top dimensional cells
are given by
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Wi={xeR x pi+hi>x-pj+hj,j=1,....,M},

fori=1,..., M.

Remark 3 The proof of existence of a solution in the case V = V., given below, uses
the convex subdivision of a piecewise linear convex function. For V not necessary equal to
Vinax the proof of convergence of a damped Newton’s method for solving (11) given in [4]
also gives existence of a solution to (11). Therein, a subsequence of the damped Newton’s
iterations is shown to converge to a solution. If the problem is known to have a unique
solution, then the whole sequence converges to the unique solution.

Theorem 6 There exists a solution to (11) for f > 0on 2 and V = Vy4y.

Proof Let 2, = Uf‘il{xi}and wi = fEl_f(x)dx,i =1,..., M. Let A denote the set of

discrete convex mesh functions on £2y, with asymptotic cone K such thatforv, € A, vy, xhH =
afora € Rand 0 < w (R, vy, {x'}) < pi,i = 2,..., M with w,(R, vy, {x'}) =
Jy Rpydp =315 0 (R, vy, {27 ).

The set A is not empty since v, given by the restriction to £2;, of k(xl,a)(x) = o+

max;=1i,.. N a;‘ - (x — x') is in A. Note that kx1 o) i @ piecewise linear convex function

with only one vertex (x!, @), c.f. Sect. 4.4, and 0k (x1 ) xhH = Bk(xl,a)(Rd) =Y. We then
observe that I (vy) = k(Xl’a) [6, Theorem 3] and by Theorem 2, up to a set of measure
0, dy,, vn(x!) = 0k(y1 o) (x1). Next, we consider the mapping L : RM — A defined by
L(¢) = vy with vy, definedby vy (x') = ¢, i = 1,..., Mand ¢ = (&)i=1
L is a bijection and we put A = L™ A.

We claim that A is a compact subset of RM. Let ¢ € A, k > 1 such that ¥ — ¢ and
put v;‘l = L(¢%). By assumption, {1" = « for all k. Thus {1 = «. It follows from Lemma 5
that the set A is closed. By Lemma 2 and (15), for all ¢ € A and vy, = L(¢) we have
lop(x;)| < C,i =1,...,dand C is independent of i. Thus A is bounded. We conclude that
A is a compact subset of R?.

Define F : RY — Rby F(¢) = Z,Ail g;. Since A is compact, F has a minimum fo at
some 0 € A. Put L(¢%) = v]?. We show that vg solves (11).

Assume that vg does not solve (11). Since w, (R, vg, {x') < pi,i =2,..., M we must
have for some / € {2..., M}, (R, v), {x'}) < ;. Define 9, by

m. The mapping

.....

o (x’) = vg(xi),i # [ and 9, (x") = vg(xl) —¢,

for € > 0. The values of 0, on ZZ\.Q;, are given by (10).

We have F(0;,) = fo — €. We show that for € sufficiently small 9, € A and hence this
yields a contradiction and concludes the proof. By construction 9y, (x!) = « and by Lemma 4,
0y, is discrete convex with asymptotic cone K for € < €y and €y > 0.

Fori # [l and i > 2 we have w,(R, 0y, {xi D < wq(R, vg, {xi }) < ;. Arguing as in
Lemma 4 we have w, (R, Uy, {xl D > wq(R, v?l, {xl }) and using Lemma 5, for € sufficiently
small we obtain w, (R, vg, {(x'}) < wa(R, Op, {x'D) < .

Finally, by Lemma 3, 3VU2(-Qh) C Y and Zlﬂil wq(R, vg, {(x'}) = fY R(p)dp by
assumption. Therefore dy vg(ﬂh) = Y since dy vg(.Qh) is a union of polygons. Also, by
Lemma 3, 9y 0, (£2,) C Y. We claim that dy v, (§2,) =Y.

Let p € Y and assume that p € vag(x),x € 2, If x = x!, then p € 8vv2(x) -
Ay 0 (x) C Ay Dy (2). If x # x!, we have either p € 9y 0, (x) C 3y 0, (25) or p & dy O (x).
Assume that p ¢ 9y 0, (x). We show that p € dy 05 (x'). Since p ¢ dy0p(x), I é € V such
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that
Up(x + he) — 0p(x) < p - (he).

We must have x + hé = x!. Otherwise, as x # x!, we would have 0y, (x + hé) = vg(x + he)
and vy, (x) = vg(x), thus a contradiction with p € dy vg(x). Thus

p - (=hé) < Op(x! — hé) — Dy (xh). (19)

Since p € dyv)(x), we have foralle € V, p - (he + hé) < v)(x + he + hé) — v)(x) =
v(x! + he) — v)(x! — hé). This gives by (19) p - (he) < Dp(x' + he) — j(x!) where
we also used x! + he # x!. We conclude that p € Ay on(xy and Y C dy0n(2n). As
a consequence wq (R, Oy, {x1}) = Jy R(p)dp — Zf\iz wa (R, Oy, {x'}). Here, we use the
observation that for x € £2j, w, (R, Oy, {x}) = wa (R, I1(Vy), {x }) and for x, y € §2; with
x # v, (0p)(x) N3 (05)(y) is a set of measure 0. This concludes the proof that 05, € A.

O

4 Asymptotic Cone of Convex Sets

In this section we first review the geometric notion of asymptotic cone and give an analytical
formula, with a geometric interpretation, for the extension to RY of a convex function on
a polygon £2, in such a way that it has a prescribed behavior at infinity, i.e. a prescribed
asymptotic cone. The prescribed asymptotic cone will be constructed from a polygon Y
which approximates the domain £2* appearing in the second boundary condition. We will
use the term polygon to also refer to a polygonal domain. Figure 3 taken from [5] illustrates
the results discussed in this section. Using the notion of asymptotic cone we reformulate the
second boundary condition. This allows to prove more results about convex extensions.

4.1 Asymptotic Cones

We will use the notation R4*! for a set of points and for a vector space over R endowed
with the operations of scalar multiplication and addition. This makes R“*+! a Euclidean space
with associated vector space R?*!. When emphasizing the geometric nature of some of the
notions discussed below, we will use capital letters for points in the Euclidean space R?+!
and lower case letters for vectors. Thus we have a mapping R9*t! x R4*+! — R+ which
maps (P, e) to P + e. We will use the notation O for the origin in R If 0 = P + ¢ we
write e = P—>Q

Let L be a line in R?*!, A be some point of L, and e € R?*! be a direction vector of L.
The sets

4 — _ —
Ly, ={XeL AX=%e,x>0}and Ly, ={X €L, AX =)e, 1 <0},

are the rays of L with vertex A.

The Minkowski sum of § ¢ R4t and T ¢ R*! is definedtobe S + 7 = {s +¢,s €
S,teT}.

Let M C R%*! be a set. We denote by K 4 (M) the set of points in M lying on the rays
starting from the point A € M. If there are no suchrays, we set K4 (M) = { A }. We say thata
set K is a parallel translation of K> if K» = e+ K for some direction e € R4t Ttis known
that when M is convex, K 4 (M) is convex and independent (up to a parallel translation) of
the point A € M and is called asymptotic cone of the convex set M [8, Theorem 1.8 and
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Fig.1 A polyhedral angle in R3. The dashed polygon is a virtual cut of the unbounded set. To emphasize that
a polyhedral angle has non zero Lebesgue measure, a filled version is shown

Corollary 1]. For a convex bounded set M, we have K4(M) = {A}forall A € Mand{A}
is a parallel translation of { B } forall A, B € M.

Definition 5 The asymptotic cone K 4 (M) of a convex set M is defined for A € M as

{B:BeLXeforeeRdandLXeCM}={B:B=A+,ue,,u20,ee]Rd+],
A+Xree MVYL>0}.

It is unique up to parallel translation, and is in that sense independent of the point A, i.e.
—
Kp(M) = Ka(M) + AB.

The reason of the term “cone” in the name asymptotic cone will be clear from Sect. 9
below where we give a formal definition of cone. Moreover, we will be interested in a specific
example of cone which we will refer to as polyhedral angle (formal definitions are in Sect. 9).
An intuitive notion of cones and polyhedral angles as illustrated in Fig. 1 is enough for this
paper.

We denote by Conv(D) the convex hull of the set D C R, i.e. the smallest convex set
containing D. It is known that Conv(D) is the set of all convex combinations of elements of
D, ie.thesetof elements Y ;_; Aixj,n € N,x; € D, A; € [0,1]and ) 7 ;A = 1.

Let Y C R be a convex polygon with vertices aj, a3, ..., ay. € R, We have Y =
Conv{aj,a3, ..., ax. }. Inthis paper, we use the mention * for objects related or which will
be related to £2*. As we will associate below a cone K to Y, we avoid the * notation for ¥
to avoid confusion with the dual of a cone. We assume that Y is non degenerate in the sense
that it has non zero Lebesgue measure. Define for (p, i) € £2 x R the function on R¢

= —p)-af
kp,uy(x) = lglzil)]i]*(x p)-a; +u. (20)
Recall that the epigraph of k() is the set
K ={(x,w) e RT x R, w > k(p (%) }.

We will refer to sets of the type K, ) as polyhedral angles, and refer to Figs. 1 and 2 for
illustrations. In other words, a polyhedral angle is the epigraph of a function of type k(; ;)
given in (20). In Sect. 9 we give a more general definition of polyhedral angle. We only need
the class of polyhedral angles introduced above in this paper.
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Fig.2 Epigraph of k(, ) witha
parallel translation as epigraph of
k(g.,y)- The dotted lines at the top
of the figure represent virtual cuts
of the unbounded epigraphs. As
y < w in the figure, more of the
unbounded epigraph is shown

p q

It is crucial for the reader to see the connection between the graph of a function k(,, ., for
given (p, u) and the polyhedral angles depicted in Figs. 1 and 2. For another example, the
function defined on R by w = |x|, i.e., w = max{—x, x } is a function of the form &, ).
Its epigraph is a polyhedral angle.

To the polygon Y we associate the polyhedral angle

K = K(O,O),

which depends only on the vertices of Y. In Sect. 6, we will approximate the closure of the
bounded convex domain £2* by polygons ¥ C £*. The polyhedral angle K associated with
Y is an example of a more general construction, which we now describe.

For each p € £2* one associates the half-space Q(p) = {(x,z) € RY xR,z > p-x}.
The convex set Ko+ is defined as the intersection of the half-spaces Q(p), p € 2%, i.e.

Ko« :=N,c0+ Q(p). 20
Recall that the support function of the closed convex set £2* is defined for x € R? by

ko+(x) := sup p-x. (22)
peS*
The convex set K o+ is the epigraph of ko+ and the latter is a supremum of affine functions
(x — p - x), the gradients of which are in £2*. A slight abuse of notation is made in the
notations K o+ and kg« for convenience, as previously, a point (p, i) was used as a subscript
for K and k.

In the case 2* = Y is a non degenerate convex polygon with vertices a;", i=1,...,N*
although the corresponding convex set K o+ is by definition the intersection of an infinite num-
ber of half-spaces, i.e. N,ey Q(p), we claim that if 2¥ = Y, we have Ko+ = ﬁl’.vz*l O(a}).

Indeed, Npey O(p) C ﬂf\: 1 Q(a’). To prove the reverse inclusion, note that if p € Y,
p= ZlNz*l riarf, ZINZ*I Ai=1,0<X <1l .Let(x,z) € ﬂf\fl O(af). We have z > a] - x
foralli and thus z > p - x,i.e. (x,2) € Npey O(p).

Thus Ko+ for 2% = Y is the polyhedral angle K introduced above, i.e. Ky =
ﬂf.vz*l Q(a}) = K. In this case, ko« (x) = k(,0)(x) = max;—1,__ n+(x - a}).

The result given in the following lemma is illustrated in Fig. 2.

Lemma6 The epigraph of k(p, ) for (p, u) € RY x R is a convex set in R equal to its
asymptotic cone. Furthermore, the epigraph of k(p, ;) can be obtained from the one of kg, )
for (q,v) € R? x R by a parallel translation.
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Proof As the maximum of convex functions, k(. ) is a convex function and hence K, ;) is
a convex set. Next, we show that K, ) = Kg,y) — (@ — p, ¥y — ).

Let (r,n) € RY x R. We show that (r, n) € K, if and only if (r,n) € K4 ) —
(g — p,y — ). Using the definitions and a few algebraic calculations, one shows that
n > kep,(r) if and only if n + (y — ) > k¢, (r + (¢ — p)). Note that n > k(p, ) (r)
if and only if (r,n) € K(p,u). Also, n + (y — u) > ki, (r + (g — p)) is equivalent to
r+q—pn+y—w=@n+@—p,v—un € Kgy,y.Thus, (r,n) € K, ;) if and
onlyif (r,n)+ (g —p,y — i) € Kig,y),1e. (r,n) € Kg,y) — (g — p, ¥y — w). This proves
the claim.

By definition of asymptotic cone of a convex set M, we have K4 (M) C M for A € M.
Thus Ky, 1) (K(p,1)) C K(p, ), i.e. the asymptotic cone of K, ;) is contained in K, ,).

Let now (¢', ') € K(p,;1)- We find a direction e € RY*! such that the ray L&,m,e with
direction e and vertex (p, ) is contained in K, ;) and (q’, y') is on that ray.

Pute = (¢ — p,y' — ). Then (¢’, y") = (p, ) +e.So (¢, y)) € L;;.m’e. Since
(q',v") € K(p,u) we have

Y =@ —p)-a+p, Vi=1,...,N.
It follows that
wAAY =W =g —p)-ai+u, Vi=1,...,N.

From the definition of k(p, ) we have u + A (y’ — ) > k(p . (p + A(g" — p)) which proves
that (p, u) + e € K(p ) forall 2 > 0. ]

Recall that, by Lemma 6, K, ;) = K(0,0)+ (p, ) = K +(p, ). We recall the following
equivalent characterization of the asymptotic cone [3].

Lemma7 Let M C Rt be a closed convex set, e € R and A € M. The following two
statements are equivalent

1. Ly, cM
2. A e R, A > 0, Ay — oo and A, € M, k € N such that Ay /Ay — e as k — oo.

Proof Assume that L;e C M andlet Ay — o0o0. Then Ay = A+ Age € M and Ap /A — e.

Conversely suppose Ay — ocoand Ay € M issuchthat Ay /A — e.Putdy = (Ax—A)/Ak.
Then Ay = A + Ardy € M and dy — e. Let & > 0 and choose k sufficiently large such that
A < Ak. Since M is convex

A+rd, =11 * A+ 2 A
is in M and hence its limit A 4+ Ae isin M as M is closed. m]

Recall the convex set K o+, c.f. (21).

Lemma 8 Let S be a closed and bounded convex set and let M denote the convex hull of the
union of S and A + Ko« for A € S. Then the closure of M is given by S + K +.

Proof Let x € M. There exist points A; € S,i = 1,...,m and points C; € Kgo+,i =
m+ 1, ..., n for integers m and n with scalars ¢, i = 1, ..., n such that
m n n
x=) @A+ Y a(A+C), with Y o =1,0<0 <1
i=1 i=m41 i=1
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Since K+ is convex and the origin O € Ko+, (>7L; )0 + Y /_, 1@ Ci € Kg+. On
the otherhand ) /2 oy A; + 7, | %A € S.Thus M C S+ Ko+, and soM C S+ Kg-.

Letnow x € S+ Kgo+,1.e. x = s + z withs € S and z € Kgp+. Let € > 0 and note that
z/€ € Kgo+. We consider the point

A6=A+z+<1—e)(s—A)ze(A+§)+<1—e)s.

The point A, is a convex combination of a pointin K o+ 4+ A and a pointin S. Thus A, € M.
Ase — 0, Ac — s + z = x. This proves that x € M.

We have S + Ko+ € M C S + Ko+. To conclude the proof, we show that S + K« is
closed. Since S is a closed and bounded set and K o= is closed, S + K+ is closed. To prove
this claim, let x; = s; + a; be a sequence in S + K+, 57 € S and q; € Kgo+. We assume
that x; converges to x. If necessary, by taking a subsequence, as S is bounded and closed,
we may assume that s; converges to s in S. Then, a; = x; — s; converges as the difference of
two convergent sequences to an element a € K o+ as K o+ is closed. We have ¢ = x — s and
hence x =a + s € S + Kg+. We conclude that S + K+ is closed. The proof is complete.

O

‘We note that in the above lemma the closure of the convex hull of the union of § and
A + Ko+ for A € S is independent of the choice of A.

We illustrate Lemma 8 in Fig. 3. But first, we rewrite the Minkowski sum of two sets as a
union of sets.

Let S and 7 be two subsets of RYt!. Then we have S+ 7T = {t+S,teT}=VUrt+S.
We say that the sum S + 7 is obtained by sweeping the set S over 7T,

S+ T =VUert + S. (23)

Clearly,ifr € S+ T,r =s+tforsomes € Sandr € T. Thus r € ¢t + S. The reverse
inclusion is also immediate.

We have S 4+ Ko+ = Uses (s + Kgo+). Note that the sets s + K+ are parallel translates
of each other. Thus Lemma 8 says that the closure of the convex hull of the union of S and
A + K+ for A € S is obtained by sweeping K o+ over S.

Recall Definition 5 of asymptotic cone of a convex set.

Theorem 7 Let S be a closed and bounded convex set and let M denote the convex hull of
the union of S and A + Ko+« for A € S. Then Kp(M) = A + Ko+, i.e. the closure of M has
asymptotic cone A + K o+.

Proof BylLemma3, M = S+ K o+. Recall the notation K 4 (W) for A € W for the asymptotic
cone of the convex set W. We prove that K4 (S + Ko+) = A + Kgo+. We first note that if
S CTandA € S,then K4(S) C Ka(T). Indeed if B € K 4(S), then there is a direction e
such that B € LX’e cScT.

Since A+ Ko+ C S+ Kgo+wehave A+ Ko+ = Kg(A+Kgo+) C KAo(S+ Kgo+). Letnow
B € K4 (S + Kgo+) and let e such that B = A + pe for some p > 0 and Lj’e C S+ Ko
We show that L;e C A+ Kg=.

By Lemma 7 there exists a sequence Ay — oo and sequences sy € S and by € Ko+
such that (sx + bx)/Ax — e. But S is compact and so we may assume that the sequence s
converges to s € S. This implies that s; /Ay — 0 and hence by /Ay — e. By Lemma 7 again,
Lae C K+, where O is the origin of R4+t follows that L;e C A+ Ko+. ]
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4.2 Convex Extensions

Let us consider a convex function ug € C(£2) such that duo(£2) = £2*. One can extend u
to RY by

ii(x) = inf{ug(y) + sup (x —y) -z, y € 2}. (24
zeQ*
The above formula was interpreted as a minimal convex extension in some sense or a special
form of infimal convolution [11, (15)]. Another extension formula used in [17, p. 157] is
given by

u(x) = sup{uo(y) + (x —y) -z, y € £,z € dup(y) }- (25)

We consider below a generalization of (24).

We recall that a point (x, ut) is on the lower part of the boundary of a convex set M ¢ R4+!
if (x,n) € Mand (x, ) —(0,...,0,1) ¢ M forall A > 0. Recall also that given a domain
UcRY eg U= orU =R? and a function v defined on U, the graph of v is the subset
of RY*! given by

{(x,v(x)):x e U}

Let u be a piecewise linear convex function on §2 and E C £2 bounded. The graph
M, = {(x,u(x)),x € E} of u is the lower part of the boundary of a convex polygonal
domain § = {(x, ) € R x € E,u(x) < it < fmax }, Where flpmar = maxyer u(x).
We refer to the vertices of S on M,, as the vertices of u.

The projection U C RY of a convex set M C RY*t! is the set {x : x € RY,3r €
R, (x, A) € M }. We give an example of projection of a convex set in Fig. 3.

Definition 6 A convex set M C R?+! defines a function v on its projection U C R if the
graph of v on U is equal to the lower part of the boundary of M.

As an example, the polyhedral angle K (, ,,) defines the function k(, ;) on R?. We also say
that the polyhedral angle K, ;) has boundary given by the graph of k(, ;). The convex set
Ko+, c.f.(21), defines the convex function kg+, c.f. (22), on R?. It is known that Xk (RY) =
2%, [41, p. 22].

Definition 7 We say that a convex function v on R has asymptotic cone K o+ if its epigraph
M has asymptotic cone A + Ko+ for A € M.

Recall that the asymptotic cone of a convex set M is a particular convex set associated
with M. It contains all half-lines starting at a point A € M and contained in M. When M is
the epigraph of a function v, the lines in the asymptotic cone K 4 (M) give the behavior of v
at infinity.

Lemma9 Let v be a convex function on R? such that x,(R?) = 2%. Then v has asymptotic
cone Ko+,

Proof A point A € R+ is denoted (x, z) for x € R? and z € R. Let M denote the epigraph
of vand assumethat A; = (ay, u1) € dM.Note that M isunbounded and 0 M is the lower part
of the boundary of M. We first prove that A; + Ko+ C K4, (M). Let (x, w) € A1 + Ko+
and put e = (x, w) — (ar, u1). We show that for all A > 0, A; + e € M. Assume by
contradiction that this does not hold. Let B be the point of intersection with d M of the line
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through A; and with direction e. The half-line LE . 18 then not contained in M. Choose
CeL;ﬁe,C # B and put

= (xp,zB) = A1 + e = (ay, uy) + w1 (x —ay, w —uy)
C = (xc,z¢c) = A1 + uoe = (ar, uy) + po(x —ay, w — uy),

for 1 > 0, and puy > 0. By construction uy — ;> 0. Now let p € x,(xp). Since the
plane z = p - (x — xp) + zp is a supporting hyperplane to M at B, we can choose C ¢ M, in
additionto C € L'g oo C # B,suchthatze < p-(x¢ —xp)+zp.Butzg = ur+pu(w—uy),
zc =uy +po(w —uy), xp =ay +p1(x —ay) and xc = a; + pa(x —ay). Aszc —zp =
(2 — p)(w —up) and x¢ — xp = (U2 — u1)(x —ay), we obtain w —uj < p - (x —ay).

By assumption XU(Rd) = Q% and hence p € 2*. Since (x,w) € A + Ko+, (x, w) —
(a1, u1) € Ko+, and by the definition (21) of K+, we have w > p - (x — ay) + u;. This
contradicts w —uy < p - (x — ay).

Next, we prove that K4, (M) C A + Kg«. Let (x, w) € K4,(M). The half-line LXl’e is
contained in M with e = (x, w) — (ay, uy). Thatis (aj, u;) + A(x —a;, w —uy) € M for
all L > 0.

For each p € 2* we can find Xp € R such that z = p - (x —xp) +v(xp) is a supporting
hyperplane to M at (x,, v(x))). Thus

up +r(w —uy) = p-(a; +rlx —ap) —xp) +v(xp).

This gives w —u; > p-(x —ay) + (p - (‘L_ xp) +v(xp) —uyp)/A. Taking & — oo we
obtain w > p - (x —ay) + uj for all p € 2*. Thus (x, w) € A1 + K+ and the proof is
complete. O

Let S be a closed bounded convex set and let S denote its projection onto R?. Let v denote
the convex function defined by S on S. Put

* = 9u((9)°).

Assume that (:S;)O # @ and D* C £2*. Recall that K o« is the epigraph of sup pea P X
c.f. (21). The set Ko+ + S = Uses (s + Ko=), which is convex by Lemma 8, also defines
a convex function on RY which extends u to R?. This is proven in the next theorem where
the assumption that D* C £2* is used to prove that u = v on S. By sweeping K+ over
S, Ko+ + S is the union of parallel translations of K o+ and hence the values of the convex
function  on R?, i.e. the lower part of the boundary of Ko+« + S, can be obtained from the
lower part of the boundaries of some s + K o+, s € S. Note that the lower part of the boundary
of (y, ) + Ko+ for (y, ) € R? x R is the epigraph of u + SUp e P (x — ). In the
appendix we give a different proof of the next theorem using results on infimal convolution.

Theorem 8 _Let S be a closed bounded convex set which defines a convex function v on the
projection S of S onto R?. Let D* = av((S) ) and assume that (S)° #* 0 and D* C Q2%
The convex set Ko+ + S defines a convex function u on R which extends v from StoRY by

u(x) =infv(y)+ sup p-(x —y),x ¢ S. (26)
yes peR*

Proof Elements of S take the form (y, ), y € S and n € R. We have by Lemma 8 and (23)

S+ Ko+ =Ugy, es(y, b) + Kox. 27N

We refer to Fig.3 for an illustration of the above equality in the case K+ is polygonal,
in which case (26) simplifies to (29) below. Equation (29) is also illustrated in Fig.3. By
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Definition 6, S + Ko+ defines a convex function u on R?. This means that for x € RY,
(x,u(x)) € S+ Ko+ and if (x, u) € S + Kg+, then u > u(x), since by definition of lower
part of S + Ko+, when A < u(x), (x,1) ¢ S+ Kgp+. Recall that v denotes the convex
function on S defined by the convex set S. We first show that u = v on S.

Since 0 € Ko+, S C S+ K+ and recall that for x € §, (x,v(x)) € S C S+ Kgo+. Thus
u(x) <v(x)forall x € S.

Assume that there exists x € S such that u(x) < v(x). As (x, v(x)) is on the lower part of
the boundary of S, (x, u(x)) ¢ S. But (x, u(x)) € S+ Ko+. By (27), we can find (y, n) € S
such that (x, u(x)) € (y, u) + Kg=. Since D¥ C £2*, we have Ko+ C Kp+. Indeed, let
(x,w) € Kp+. Wehave w > p - x for all p € £2*. In particular, w > p - x for all p € D*
and hence (x, w) € Kp=. This proves the claim. Therefore, (x, u(x)) € (v, u) + Kp=.

Let ¥ denote the convex extension of v to R? using supporting hyperplanes, i.e. the
procedure described by (25). By [6, Lemma 4] x3(S) = Xg(Rd) = D*. By Lemma 9, v has
asymptotic cone K p+. Thus, if M denotes the epigraph of v, forall (y, u) € M,y € R4, n e
R, we have (y, n) + Kp+ C M and therefore for x € Sand (x,u(x)) e (y,u)+Kp= C M,
we have u(x) > v(x) = v(x).

Next, we give an analytical proof of (26). Note that for (y, u) € S, (v, n) + Ko+ defines
the convex function k(y, ,)(x) = SUp % P - (x — y) + p. Here, we make a slight abuse
of notation, c.f. (20) where a max over a finite number of points is used for Ky, ;). Since
(y, )+ Ko+ C S+ Ko for each (y, u) € S, we have > u(x) < k(y,u(x) for (y, u) € S. As
u(y) =v(y) fory e S we have (y, u(y)) € Sfory € S. We conclude that for x € R?

u(x) < k(yuy)(x) = sup p-(x —y)+uy), (28)
pef*

fory e S. We next show that for x ¢ § we can find y € S such that u(x) = key,u(y) ().

Since (x, u(x)) € S+ Ko+, by (27) we can choose (y, ) € S such that (x, u(x)) €
(v, n) + K o+. Using the definition of lower part of the boundary of (y, i) + Ko+, . > v(y)
for (y, ) € Sandu = v on §weget

sup p-(x—y)+p=sup p-(x—y)+uv(y)

u(x) > k(y,u) ()C)

pe* pef*
= sup p-(x—y)+u®y).
pe®
We conclude from (28) that (26) holds. ]
Let a;'.‘, j =1,..., N* denote the vertices of a non degenerate convex polygon ¥ C R<.

Thus, the interior of Y is a convex domain in R¥. Recall that K denotes the polyhedral angle
which is the epigraph of maxj<;<y+(x - a;f). Recall also that when 2* = Y, K+ is the
polyhedral angle K. In this case, (26) becomes

u(x) =inf max (x —y)- a; T4u(y), x ¢S (29)
)ES I<j=<N*

where we used u = von S.

Let S be the polygon with vertices (ap, uy), ..., (G, Up) in RI+1 The projection S
of S onto R? is the convex hull of {ai,...,ay}. Let us assume that {ay,.. "alL} for
p < m consist of the vertices which are on the boundary of S. It is assumed that (8)° #
. The purpose of the next theorem is to show that the infimum in (29) can be restricted
to the boundary of S. Such a formula is of interest for computational purposes, since the
minimization in the extension formula of the next theorem is over a set much smaller than
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(V)

Fig.3 Let S denote the polygon with vertices A(—1.5, 1), B(=1,0), C(1,0) and D(1.5, 1). The polygon S
is the convex hull of its vertices. The polyhedral angle K associated to £2* = [—3, 3] is the intersection of the
half-spaces { (x1, x2) € R? : x2 > 3x1 }and { (x1,x0) € R? : xp > —3x1 }. Parallel translates £+ K, A+ K
and D + K are shown. Put M = Conv(S U (E + K)). To visualize M, note that S C M and E + K C M.
Then draw line segments connecting A or D to points on the boundary of E + K. Note that M is obtained
by sweeping K over S. The projection of the convex set S on R is [—1.5, 1.5]. The convex set S defines a
piecewise linear convex function # on [—1.5, 1.5], with graph the lower part of the boundary of S. By Lemma 8,
‘M = S + K is the convex hull of S and A + K. By Theorem 10, the piecewise linear convex function on the
real line defined by M, i.e. the convex function with graph the lower part of the boundary of M, is a convex
extension of u and is obtained by the extension formula. By Theorem 7 M has asymptotic cone A + K. The
ray with vertex A and slope —3 and the ray with vertex D and slope 3 are called extreme rays. The set M is
the convex hull of its vertices A, B, C and D and its extreme rays. Image reproduced from [5]

S. This motivates the discrete extension formula (10) where we consider the minimization
over mesh points on 92;. As explained in the introduction, the discrete extension formula
is needed for the discrete scheme.

The points a;f are not related to the points g;, the same way the domain £2* is not related
a priori to the domain 2.

Theorem 9 Let S denote the projection on R of the lower part of the boundary of a polygon
S. Let K denote the polyhedral angle which is the epigraph of max|<;j<yx(x - a;‘.‘), for given
vectors a* j=1,..., N* which are vertices of a non degenerate convex polygon ¥ C R¥.
Assume furthermore that D* C Y where D* = 8u((S) ) and u is the function defined by S

on S. Assume also that (5)° # . The convex set S + K defines a piecewise linear convex
Sunction u which is given for x ¢ S by

u(x) = inf_ max (x —s)- a + u(s).
5€dS 1<j<N*

Proof The above formula is illustrated in Fig. 3 where the polyhedral angles (using the nota-
tion of the caption of Fig.3) A + K and D + K have portions of the lower part of their
boundaries coincide with the graph of the extension.

Part 1 We show that u is a piecewise linear convex function and characterize yx, (x) for
X ¢ S. Recall the representation (29) which follows from Theorem 8 and Y being polygonal.
Since S is the convex hull of a finite number of points, the function u it defines on S is
piecewise linear. Note that the polygon S is an intersection of half-spaces, and the function
defined on R? by a half-space is a linear function.

As in the proof of Theorem 8, let for y € §, k(y,u(y))(¥) = maxj<j<yx(x —y) ~a; +u(y).
By [27, Chapter 4, Theorem 3], for any x € R4, Xk (yui)) (x) is the closed convex hull
of a subset of {aj,...,ay.},ie. x,(x)is a polygon with vertices in {a], ..., ay. }. For
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1<j<N*% a.’; is a vertex of x, (x) ifand only if u(x) = (x — y) ~a;‘.‘ ~+ u(y). We now show
that for all x ¢ S, there is y € S such that x,, (x) = Xk, (), (*)-

Letxg ¢ Sand P € xu(xp). Wechoose x € R? and have u (x) > u(xo)+ p-(x —xp). Since
Sis compact, we can find yp € S such that u(x0) = k(yo,u(yo)) (¥0). Recall that the graph of
u is the lower part of the boundary of M = S + K and M = S + K has asymptotic cone K
by Theorem 7. This means that (yo, #(yp)) + K C M. Thus, for x € RY, (x, k(yo,u(yo)) (X))
is in (yo, u(y0)) + K C M and thus kyy u(y))(x) = u(x) > u(xo) + p - (x — x9) =
k(yo u(y0)) (x0) + p- (x — x0), i.e. pE Xk(\o u(0)) (x0).

Conversely, if p € Xyt (x0), p is in the convex hull of the vectors a for which
u(xp) = (xo —y) -a* +u(y). It can be readily checked that x, (x¢) is convex. We show that
any of the vectors af is in x, (xo) and thus Xk(yo.u030) (x0) C xu(x0).

Letx € RY. We have by (29)u(x) > max1<j<N*(x y)-at +u(y) > (x—y)-a* +u(y)
(x — x9) - a T (xo—y)- a +u(y) (x —xq) - a +u(y) This proves thata € xu(x0)
and completes the proof.

We conclude that yx, (x) is a polygon with vertices in {a1 \ -Gy} forany x ¢ S. This
also shows with (29) that u is also piecewise linear on R7\ S.

Part 2 We show that the minimum in (29) is actually on 3S. Let xo ¢ S. We can then
find an index kg such that a,fo € xu(x0). Define

Vo={xeR af € xu(x)}.

We first show that the non empty set Vp is convex with Vp N s # . Then we choose
s1 € Vo N S. Next, we denote by sq the point of intersection with 35 of the line through xo
and s1. Finally, we show that s is a point where the infimum in (29) is realized when x = xo.

Since xg € Vo, Vo # @. The convexity of Vj follows immediately from the definitions.
Let x1,x2 € Vgand A € [0, 1]. For y € R4, we have u(y) > u(xy) + (Qy —x1) ~a,f0 and
u(y) = ux2)+(y—x2)-af,. Thus u(y) = Au(ep)+(1—0)u()+—rx; —(1—2)x2)-af,.
which shows by the convexity of u that a,fo € xu(Ax; + (1 — A)x2). We conclude that Vj is
convex.

Next, we show that Vo N S # ). Using (29), since Sis compact, we can find 51 € S such
that u(xg) = u(s1) + maxj<j<y+(xg — s1) - a;f. Using a,fo € xu(x0), we have for y € RY,
u(y) = u(xo) + (y — xo) - aj, . Thus

u(s1) = u(xo) + (s1 = xo) - ag, = u(s1) + (s1 — xo) - @, + max (xo —s1) - aj.
1<j<N*

It follows thatmaxlSjSN*(xo—sl)ﬂ;‘ < (xo—sl)«a;:o andhencemaxlSjSN*(xo—sl)'a;‘ =
(xp — 51) - a,’fo. We conclude that

u(xo) = u(s1) + (xo — 51) - @z, (30)

Since a,’:o € xu(xo), wehavefory € R? u(y) > u(xo)—i—(y—xo)-a,fo = “(51)+(y_51)'az0~
This gives a,’fo € xu(s1) and hence s; € Vo N S.

Let now sgp be the point on S such that X0, S0 and s; are colinear. By the convexity
of Vy and since both x¢ and s; are in Vj, 5o exists and is in Vj. Since u is a piecewise
linear convex function, it must be that on Vy, u is a linear function, i.e. for all x € Vj,
u(x) = u(sy) + (x —s1) - a,’(“o. In particular, u(so) = u(sy) + (so — s1) - a,’(“o and by (30) we
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get u(xg) = u(so) + (xo — so) - a,fo. Using y = s in (29), we have

u(xo) = u(so) + (xo — s0) - @, > u(so) + ISIEIESIFZ(\]*(XO —50) - a} = u(s0) + (xo — 50) - a,
= u(xo)

and thus u(xo) = u(so) +max;<;j<ny+(xo — o) -a’; for 5o € 8S. We conclude that for x ¢ S

u(x) = inf_. max (x —s)- a + u(s).
s€dS 1=j<N*

The proof is complete. o

Theorems 7 and 9 provide the formula for the extension of a convex function, defined by
the lower part of the convex hull of a finite set of points, to have a given asymptotic cone.
The notation for the domain of the function in the following theorem was chosen so that its
statement is similar to the one of Theorem 9. Recall the notation ky for the support function
of the convex set Y.

Iheorem 10 Let u be a piecewise linear convex function on R?. Assume > that the convex hull
S of the vertices of u is a bounded set. If du(R?) = Y, then forall x ¢ S

u(x) = minu(s) + ky (x — ).
sedsS

Proof The proof is the same as the proof of Theorem 9. O

We have the following generalization of Theorem 8 where the infimum in (20) is replaced
by an infimum on the boundary of S.

Theorem 11 Let S be a closed bounded convex set which defines a convex function v on the
projection S of S onto RY. Let D* = 9v((S)°) and assume that D* C 2*%. The convex set
Ko« + S defines a convex function u on RY which extends v to R? by

u(x) = 1nf v(y)+ sup p-(x —y),x ¢ S. 31
pe¥

Proof We first note that (26) also holds for x € S as by (28), for all x € RY, u(x) <
infyeg v(y) + SUp % P - (xN— y). Next, let x ¢ S and suppose that u(x) = v(y;) +
SUp,co% P (x —yp) for y; € S and furthermore SUp % P (x —y1) = p1-(x —y1) where
we used the compactness of S and 2*. That is, u(x) = v(y1) + p1 - (x — y1). Define

Vo={yeR sup p-(y—y)=pi- G-y}
peR*

It can be readily checked that Vo is convex and contains both x and y;. Let yl denote the
p01nt of intersection with S of the half-line through x starting at y;. Since Vp is convex,

¥} € Vo and thus sup o= p - () — y1) = p1 - (y] — y1). So, by (26)

u(yp) <u(y) + pi- vy — y. (32)

Similarly, the set

Vi={yeRY pj-(x=y)=p-(x—y)Vpe ¥},
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is convex and contains both x and y;. Thus sup, &+ p - (x — ¥}) = p1 - (x — y{). Since
v(y1) = u(yy), it thus follows from (26) and (32)
u(x) <u(yp +pr- (= yp) <u@y)+pr- (= y) = ux),
which shows that the minimum is reached at y| € 3S. O
The above result can be used to simplify the proof of Theorem 9. However, the proof of

Theorem 9 illustrates the structure of piecewise linear convex functions. The following result
was mentioned in the introduction.

Lemma 10 Letu(x) = max;—1,. kXx-p;i+h; forp; € R4 distinct and h; € R be apiecewise
linear convex function on R4, Then du(RY) = Conv{ p1, ..., pk }-

Proof For x € R, du(x) = Conv{ p;,i € Cy }, where
Ce={i,1<i<kux)=x-pi+h}
c.f. for example [27, Chapter 4, Theorem 3]. It follows that
du(®R?) c Conv{ p1, ..., pr}. (33)

Given a function ¢ on R?, recall its Legendre transform defined on R¢ by ¢* (y) = SUP, cRd X+
y—¢(x).Lety € Conv{ p1, ..., pr }. Wehave u™(y) < oo, c.f.[22, p. 387] or [26, Theorem
2.2.7 ] for an explicit expression. Given x € du*(y) we have by [49, Proposition 2.4] y €
du(x). Thus Conv{ p1, ..., pr } C du(R?). We conclude that du(R?) = Conv{ p1, ..., px }.
]

4.3 The Second Boundary Condition in Terms of an Asymptotic Cone

Let v be a Borel measure on R¥.

Theorem 12 [8] Assume that f.(z* R(p)dp = v(£2). There exists a convex function v on R?
with asymptotic cone K o+ such that

(R, v, E) = v(E) for all Borel sets E C £2.
Such a function is unique up to an additive constant.
Corollary 1 [41, p. 23] The function v given by Theorem 12 satisfies x,(2) = 2*.

Extending the function v from Corollary 1 to R? using any of the procedures (36) or (35)
below results in a function 9 on R? which solves x;(RY) = x;(£2) = 2* by Lemma 14
below, and hence # has asymptotic cone Ko+ by Lemma 9. Thus © = v and so x,(RY) =
Xv(82) = §2%.

Theorem 12 and Corollary 1 give existence of a convex solution v on R? which solves
(4). Its unicity up to a constant follows from Theorem 12 and Lemma 9.

The second boundary value problem is often presented as the problem of finding a convex
function u on §2 such that

ow(R,u, E) = / f(x)dx for all Borel sets E C 2
E (34)

u(2) = 2*.
The extension & based on (25) of a solution u of (34) solves (4), c.f. Lemma 11 below. Since

solutions of (4) are unique up to a constant, a solution of (4) must be the extension of a
solution of (34).
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4.4 Convex Extensions Revisited

Recall that £2 and £2* are assumed to be convex. We prove below that the two extensions i
and u given by (24) and (25) are equal. For that we will need the following lemma

Lemma 11 Let uy € C(£2) such that duy($2) = $2*. For the convex extensions ii and u
given respectively by (24) and (25), the epigraph M of u has asymptotic cone A + Ko+ for
A € M and xz(2) = ya(R?) = 2%,

Proof Put [i,qy = max g uo(x). By Theorem 8, the epigraph of i is equal to S+ K o+ where
S is the closed bounded convex set { (x, i), x € £, u0(x) < i < [lmax }. By Theorem 7,
S 4+ K+ has asymptotic cone A + Ko+ for A € M. Note that by construction, & = ug on
2 and (24) gives the values of i outside of £2.

The claim that x is a convex extension of u with x;(£2) = £2* follows from [6, Lemma
4]. ]

Lemma 12 Let ug € C(82) such that duo(§2) = 2*. The convex extensions ii and u given
respectively by (24) and (25) are equal.

Proof For a Borel set E C £2 we define w(R, ii, E) := w(R, up, EN £2) and w(R, u, E)
‘= w(R,up, EN ), that is, (R, it, E) = w(R,u, E) for all Borel sets E C £2. By
Lemma 11 the epigraph M of i has asymptotic cone A + Ko+ for A € M and x7(2) = £2*.
Thus # has asymptotic cone K+ and by Lemma 9, u also has asymptotic cone Kgo+. We
conclude from Theorem 12 that &z = u since it = u = ug on £2. m}

The results we now prove were used in the proof of the equivalence of (4) and (34) in
Sect. 2.1. Let E C £2 and let u be a convex function on £2. To extend u|g, one may want to
take into account du(d E). We thus consider the following variant of (25)

a(x) =sup{u(y)+(x—y)-z,y € E,z€du(y)}. (35)
First, we note

Lemma 13 Let E C 2, E bounded, §2 open and u € C(52). Then u(E) is closed.

Proof Let p, € du(E) and assume that p,, — p, p € R?. Leta, € E suchthat p, € du(ay).
Forallx € 2 u(x) > u(an)+ pn - (x —ay). Since E is bounded, we may assume thata, — a
fora € E. We thus obtain u(x) > u(a) + p - (x —a) forall x € £2. It follows that p € du(a)
and du(E) is closed. u]

As with [6, Lemmas 3 and 4] we have

Lemma 14 Let E C 2, E bounded and u a bounded convex function on S2. The extension
it of ulg given by (35) is convex on R? and if du(E) is bounded, for all x € E we have
Xi(x) = du(x). Moreover

u(E) = x3(E) C xz(RY) c Conv(du(E)).

Proof We only need to prove that for all x € E, Xi(x) C du(x). The other statements are
proved as for [6, Lemmas 3 and 4], using the observation from Lemma 13 that du(E) is
closed.

Letx € E and p € y;(x). Let y € RY. We have 4(y) > a(x) + p - (y —x) =
u(x)+ p-(y —x). As E and du(E) are bounded, we can find yy € E and zg in du(yg) such
that it(y) = u(yo) +z0- (y —yo). If y € 2, we have u(y) > u(yo) +20- (y — yo) = ii(y) =
u(x) + p - (y — x) which shows that p € du(x). This completes the proof. O
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We note that du(E) C du(E) and du(E) can be larger than du(E). However, if du(E)
is convex, it follows from [6, Lemma 4] that du(E) = xz(E) where we recall that u is the
extension of u# based on (25) which does not take into account J E.

The extension i of u|g given by (24) would take into account only du(E’). We therefore
consider the following variant

i(x) =inf u(y)+ sup (x —y)-z,y € E} ) (36)
z€du(E)

Analogous to Lemma 12, we have

Lemma 15 Let E C £2, E bounded, convex and u a bounded convex function on §2. Assume
also that du(E) is bounded and convex. The extensions ii and it of ulg given by (35) and (36)
are equal.

Proof The proof is the same as for Lemma 12. Put D* = du(E) = x;(E) and let K p+
denote the convex set associated with D* following (21). Then both # and 1 have the same
asymptotic cone K p+ and satisfy the same Monge—Ampere equation on E. O

We finish this subsection with an observation on the convex extensions of a piecewise
linear convex function u on §2. The result is used in the proof of Lemma 19 below. Let now
E C £2 be a bounded convex polygonal domain.
kX-pi+hforp; R4 distinct and /; € R.

.....

.....

which we also denote by u.

It is known that ¥ = du(R?) is the convex polygonal domain Conv{ py, ..., px }, c.f.
Lemma 10. Let p € Conv{ p1,..., pr} and x € R4 such that p € du(x) = Conv{ p;,i €
C, }. This means that the hyperplanes { (x, z) € R+ 7 = x. pi + hi,i € Cy} have a
non-empty intersection and since u(x) = max;—y, X - p; +h; on E as well, thereis y € E
such that u(y) = x - p; + h;j,i € Cy,ie. p € ou(y). Thus Conv{p,...,pr} =Y =
Au(RY) c du(E) C du(R?) C Conv{ p1, ..., pr } where we used (33). We conclude that
Y = 0u(E) is a convex polygonal domain.

Lemma 16 Let E C 52 be a bounded convex polygonal domain and let u be a piecewise linear
convex function on 2. Assume that all the vertices of u in §2 are in E. Then the extensions
it and 1 of u|g based respectively on asymptotic cones and supporting hyperplanes, i.e. (36)
and (35) are equal to u on S2.

Proof Note that E is closed and du(E) is bounded and convex. By Lemma 15, &z = i on
R?. We show that #i = u on £2. Let us assume that on £2, u(x) = max;—; i X - pi + h;, for
pi € R distinct and h; € R. We define

,,,,,

v(x) =sup{u(y) +pi-(x—y),y€E, pi,i € Cy}.

By definition, for all x € R?, fi(x) > v(x). Let y € E and z € du(y). Put z = Zier Ai Dis
0<A <1land Ziecv Ai = 1. Since v(x) > u(y) + p; - (x — y) foralli € C,, we obtain
v(x) > u(y) + z- (x — y) and thus v(x) > i(x). We conclude that v = i.

Next, recall that by definition of Cy, if p; € du(y) andi € Cy, wehaveu(y) = y-p; +h;.
Itfollows that v(x) = sup{x-p; +h;,i € Cy,y € E} = max;—1,...k X - p; +h;. We conclude
that u = v = u on 2. 0
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5 Weak Convergence of Monge-Ampére Measures for Discrete Convex
Functions

Definition 8 We say that u;, converges to a function u uniformly on £2 in the sense of [6] if
and only if for each sequence ~;y — 0 and for all € > 0, there exists #_; > 0 such that for
all iy, 0 < hy < h_1, we have

max |up, (x) —u(x)| < e.
xeNy

Theorem 13 [6, Theorem 7] Let uy converge to a convex function u uniformly on 2 in
the sense of [6]. Assume also that u is bounded. Then (R, I'1 (up,), .) weakly converges to
w(R,u,.).

Theorem 14 [6, Lemma 6] Let uj, be discrete convex. If up converges uniformly on compact
subsets of §2 to a function u € C(2) in the sense of [6], u is convex on S2.

Theorem 15 [6, Theorem 12] Let uj, be a family of discrete convex functions in the sense
of [6] such that |uy,| < C for a constant C independent of h and xr, (uh)(/\/;,l) is uniformly
bounded. Assume furthermore that uy, is uniformly Lipschitz on 2 and u, = I'(up) on
d Conv(N, ,} ). Then there is a subsequence hy such that uy, converges uniformly in the sense
of [6] to a convex function v on £2.

The above theorem gives not only the convergence of a subsequence of I (u;) but also
the convergence of a subsequence of u,. For the latter, we used a piecewise linear interpolant
which is defined on a domain containing £2, and is equal to Iy (u,) outside of Conv(/\/’hl).
The assumption u;, = I (u;) on 3 Conv(N, hl) is needed to make the interpolant globally
Lipschitz. The latter assumption holds for the Dirichlet problem [6, Lemma 5].

Recall that for V = Vj,4x, wy := w,. The results in [6] are essentially for mesh functions
and their convex envelopes. Theorems 13-15 hold for I3 (uy), dv,,, un with the following
definition of uniform convergence on £2 which uses N;lz whereas Definition 8 uses N, hl
Discrete convexity was defined in Sect. 2.2, Definition 2.

Definition 9 We say that uj, converges to a function u uniformly on £2 if and only if for each
sequence iy — 0 and for all € > 0, there exists 71 > 0 such that for all hx, 0 < hy < h_y,
we have

max |up, (x) —u(x)| <e.
xe ,%k

Theorem 16 Let uj, be a family of discrete convex functions such that uy converges to a
convex function u uniformly on 2. Assume also that u is bounded. Then w, (R, uy,, .) weakly
converges to w(R, u, .).

Theorem 17 Let uy, be discrete convex. If uy, converges uniformly on compact subsets of §2
to a function u € C(S2), u is convex on §2.

For the analogue of Theorem 15, note that ./\/hl C £2 and the convex extension to R?
of I'{ (uy,) is used in [6] to have an interpolant defined on £2. Lemma 2 gives the Lipschitz
continuity on EHZZ of a discrete convex function with asymptotic cone K. However 952 HZZ
may be empty. But we can use the Lipschitz continuity of u; on £2;. An interpolant of uj,
equal to I (uy,) outside of Conv(§2,) can be constructed.
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Theorem 18 Let uy, be a family of discrete convex functions such that |uy| < C for a constant
C independent of h and ¥, u,) N, hz) is uniformly bounded. Assume furthermore that uy, is
uniformly Lipschitz on 2 and up, = I>(uy,) on d Conv(82y,). Then there is a subsequence hy
such that uy, converges uniformly to a convex function v on 2.

If £2 is a rectangle, and uy, is discrete convex with asymptotic cone K, by Lemma 2, uy,
is Lipschitz on on ZZ and a piecewise linear interpolant I (u;,) of uj, on Conv(£2 N Z‘;f) is
uniformly Lipschitz on £2 and uniformly bounded. By the Arzela-Ascoli theorem, there is a
subsequence &, such that up, converges uniformly to a function v on §2 which is convex by
Theorem 17. We therefore have the following theorem.

Theorem 19 Assume that S2 is a rectangle and uy, is discrete convex with asymptotic cone
K. There is a subsequence hy such that uy, converges uniformly to a convex function v on
Q2.

We will use the above theorem in Sect. 6.2 for stencils V = V, NV, with size uniformly
bounded and allow x — 0.

Lemma 17 If a mesh function uy solves (11) for f > 0 on $2, then dyu,(2y) = Y for
V = Viax-

Proof By assumption, a solution of (11) has asymptotic cone K. Since f > 0 on 2,
dyup(x) # @forx € 2, and uy is discrete convex by Lemma 1. By Theorem 2 9 I (1) (x) =
dyup(x). But for x # y, 95 (up)(x) N (uy)(y) is a set of measure 0 by [24, Lemma
1.1.8]. We conclude that fuxe.@havuh(x) R(p)dp = Y .co, @a(R,up, {x}) = [, R(p)dp
where we used (12). Since by Lemma 3 we have dyuy, (£2;) C Y we get Uye, dvup(x) =Y
up to a set of measure 0. Since Y is a polygon and for each x € £2j, dyup(x) is also a
polygon, we obtain dyu,(£2,) =Y. ]

Theorem 19 is enough to extract a converging subsequence for solutions of (11). In addi-
tion, by [6, Lemma 10], the uniform convergence of u, implies the uniform convergence of the
convex envelopes I (uy). The following lemma gives conditions under which xr, ;) WV, hz)
is uniformly bounded. It can be used to extract a convergent subsequence from I (1) when
V = Vinax-

Lemma 18 Assume that uy is discrete convex with asymptotic cone K. Then xp,u,)(
Conv(£2,)) C Y and sz(uh)(/\/',%) = XFg(uh)(Rd) is uniformly bounded.

Proof Part 1 We first prove that if z € £2;, and I>(up)(2) = up(2), then xpy,)(z) C
dyup(z) C Y.

Let then p € xpry(u,)(z). We have forall s € RY, Do (up)(s) > Do(up)(z) + p-(s—2z).1If
s € N}%,wegetuh(s) > Do (up)(s) = up(z)+p-(s—z). Inparticular, fore € V(2) C Viyax (z)
ands = z+he weobtainuy (z+he) > uj(z)+p-(he). This proves that x r, ;) () C dvup(2).
By Lemma 3, dyup(z) C Y.

Part 2 We prove that xr,,)(Conv(£2,)) C Y. We use notions of faces of polyhedra
reviewed in Sect. 9. Recall from Definition 4 the convex subdivision 7;, associated with the
piecewise linear convex function I> (uy,) on Conv(N, ,%). If o € 7, o is a convex polyhedron
in RY, Conv(NV?) = Uyer,0,if 0,7 € Ty, theno Nt € Ty, andif 0 € T and T C o,
T € 7, if and only if 7 is a face of 0. On each d-dimensional cell o € 7y, I (up) is a linear
function.
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Recall that for a vertex x of 7j,, we have I (up,)(x) = uj (x), c.f. for example [6]. For x in
the interior of Conv (N, hz), let w(x) denote the collection of the d-dimensional cells o € 7,
such that x € o. Itis known, using for example [6, Theorem 5] that 0 I (uj,)(x) is the convex
hull of the constant gradients of I (uy,) on elements o € w(x).

Let z € Conv(£2;,) and let T denote a d-dimensional cell in 7;, such that z € 7. If all
vertices of T are in ]Rd\ Conv(£2y,), then z ¢ Conv(£2y,). Thus, at least one vertex x of t is in
2.

If z € °, then 01%(up)(z) = {p} where p is the gradient of I>(u;) at z. Thus
o (up)(z) C 015 (up)(x), and since I (up)(x) = up(x) we get 015 (up)(z) C Y.

If z € 9t and 7 is a vertex of 7, we must have z € §2), since z € th and z € Conv(£2y).
Also, I>(up)(z) = up(z). We then have 015 (up)(z) C Y.

Suppose z € dt and z is not a vertex of 7. Let y be a lowest dimensional cell such that
7 € y. At least one vertex x of y must be in £2,,. For 0 € w(z), o0 Ny is a cell of 7;, which
must be a face of y and contains z. By the assumption on y, we have ¢ N y = y and hence
X € 0,i.e.0 € w(x). We conclude that w(z) C w(x) and hence 915 (uy)(z) C 15 (up)(x).
As above, we obtain 31 (u;,)(z) C Y.

Part 3 Put D* = 01 (u;,)(Conv(£2;,)°). Let S be a closed convex set the projection of
which on R? is equal to Conv(£2;,). We have D* C Y. By Theorem 9, the convex set S + K
defines a convex function v on R? which extends I (tn)|conv(e2;,) and such that v(z) for
z € R\ Conv(£2;,) is given by Theorem 9, i.c.

v(z)= _inf  D(up)(y) +ky(z —y). (37)
yed Conv(£2y,)
By Lemma 11, y, (]Rd) = Y. Thus, there exists a constant C independent of / such that for
all,

lu(x) —v(Y)| < Clx — yl, Vx, y € N2, (38)

where [x]2 = x - x.

Moreover, for x € /\/,%\.Qh, up(x) = infyepe, un(y) + ky (x — y). Therefore, by (37),
v(x) < up(x) forall x € /\/'hz\Qh. Since by construction v = I (up) on Conv(£2y,), we
obtain v(x) < uy(x) for all x € N; }f As I (up) is the largest convex function majorized by
uy on J\/',?, we obtain

v(x) < Da(up)(x) for all x € N7, (39)

which can also be seen by taking a supporting hyperplane to the graph of v and the definition
of FZ (uh).

Let now x € th\ Conv(£2;) and g € Xy, (x). We have g - (z — x) < I2(up)(z) —
Dy(up)(x) forall z € R?. Lete;,i = 1,...,d be a set of independent vectors such that
zi = x +cje;j isin £2, for ¢; > 0. Using z; € £2, (39) and (38), we obtain

q - (cie;) <v(z;) —v(x) < Clz; — x| =¢;Cle;].

We conclude that g - ¢; /|e;| < C,i =1,...,d.
Next, let/; > ¢; > Osuchthats; = x — l;e;,i = 1,...,d is notin Conv(/\/'hz). We have
using Theorem 8, I (up)(s;) < I (up)(zi) + ky(s;i — z;). Thus

lig - (—ei) = q-(si —x) < I2(up)(si) — Daup)(x) < Daup)(si) — v(x)
< Do(up)(zi) +ky(si — zi) —v(x) = v(z;) —v(x) +ky(si —zi)
< ¢iClei| + 2ciky(—e;).

A
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We conclude that g - (—e¢;)/|ei|l < C + 2ky(—e;/|ei|). Since Y is bounded, it follows that
q - (£e;)/leil < C for a constant C independent of /. This proves that sz(uh)(./\/}%) is
uniformly bounded. By Lemma 11 sz(uh)(N;LZ) = Xrg(u,,)(Rd)-- O

For f > 0 on £2, by Theorem 2 and Lemma 17, as we will see, convergence of the
discretization (11) for V. = V,,,, reduces to proving convergence results for the convex
envelope I (u;). Analogous to Lemma 18, we have

Lemma 19 Assume that uy is discrete convex with asymptotic cone K. Then xpu,)(
Conv(£2,)) C Y and x (uh)(Nhl) =Xn (uh)(]Rd) is uniformly bounded.

6 Convergence of the Discretization

Recall the truncation f of f defined by (6). Set
f(t) = 0 outside 2.

Given a Borel set E C §2 we define

v(E)= Y f(0dt.

xeBng, Y Ex

We recall that a sequence p,, of Borel measures converges to a Borel measure p if and only
if u,(B) — w(B) for any Borel set B with £ (dB) = 0. Let h; be a sequence converging to
0. Then vy, weakly converges to the measure v defined by v(B) = f B f (t)dt.

In this section, we first give the convergence of the discretization for V = V,,,,,. We then
consider the case V not necessarily equal to V,,,,x and f € C(£2). We finish with a result
about convergence of approximations when §2* is approximated by polygons.

6.1 Convergence when dyu, () =Y

WhenV = V,,,.,by Lemma 17 0y uy, (£25) = Y forasolution of (11). Recall from Theorem 3
that solutions u;, of (11) with uh(x}l) = « for an arbitrary number o and x}l e §2p, are
uniformly bounded in /.

Theorem 20 For f > 0 on 2 and V = Vy,4x, solutions uy, of (11) with u;,(x}l) = « for x,]l
in 2, and xli — x!' € 2, converge uniformly on §2 to the unique solution u of (4) with
u(x!) = a.

Proof Part 1 Existence of a converging subsequence with converging measures.

By Remark 1 of Sect. 5, a discrete convex function is discrete convex as defined in [6].
Since V. = Viax, un = I'i(up) on 2. By Lemma 19 xpyu) N C xR is
uniformly bounded. Thus, by [6, Lemma 15] we have

lup (x) — un(y)| < Cllx — yll1, Vx, y € Nj,

i.e. the discrete convex mesh functions u;, are uniformly Lipschitz on £2. As uy, (x,ll) =«
we have |up| < C with C independent of i. Therefore, by Theorem 15, there exists a
subsequence & such that uj, converges uniformly on 2, as defined in Definition 8, to a
convex function v on §2, which is necessarily bounded. By Lemma 19, Theorems 2, 1 and 13,
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wa(R,up,,.) = o(R, >(up,),.) = o(R, I'(up,), .) weakly converges to @ (R, v, .). We
conclude that

o (R, v, E) :/ fdt = w(R, u, E),
E

since from (11), w, (R, uy, E) = v, (E) for all Borel sets E C £2.

Part 2 The limit function has asymptotic cone K.

We claim that uj,, converges pointwise, up to a subsequence, to v on R4\ §2 with v given
for x ¢ £ by

v(x) = inf wv(s) —|— max (x —5)- a (40)
s€02 =1,..,

Let x;, — x as h — 0. We may assume that x;, ¢ £2,. Therefore uj (xp) = up(yn) +

N*(Xp —yn) - a; * for y, € 082y. Let y,, be a subsequence such that y,, — y € Q.

.....

Slnce yn € 0825, we have y € 382. If necessary, by taking a further subsequence, we use
the uniform convergence of uy, to v on 2 to conclude that uy, . ) = v(y). We may write
max;—p .. N* (th Vi) ~a;? = (Xp, —Yn) -a}‘k, and again up to a subsequence, this converges
to (x —y)-af forsomel € {1,..., N*}. Since (xp, — yn,) - a,k > (Xn, — Vi) - a for all
Joweget(x —y)-af =maxj=1,_ nN+(x—Y)- a;?. We conclude that up, (xp, ) converges to

.....

v(y) + rlnax x—y)- a , fory € 0802.
Next,ifz € 92 andz, — 2,2 € 382, wehaveup, (xp) < up(zp)+max -1, .n+(xp—2n)-a}
and repeating the same argument, we obtain for all z € 02

v(y) + rlnax x—=y)- a <v(z) + rlnax (x—2z2)- a
This proves (40). As a consequence, by Theorem 11, the limit function v coincides with
a function on R with asymptotic cone K, i.e. v has asymptotic cone K. We conclude by
Corollary 1 that

Xv (5) =

As a consequence
w(R, v, 2) :/ R(p)dp = w(R, u, ). 41)
Y

Part 3 The limit function solves (4).

Since uj, converges uniformly to v on 2,by [6,Lemma 10] Iy (up, ) converges uniformly
on compact subsets of £2 to v. By [24, Lemma 1.2.2], for each compactset K C U C UcR
for an open set U, 0v(K) C liminf,, .o 017 (up, )(U) = liminf,, o dyuy, (U) up to a set
of measure 0. Here, we also used Lemma 19. We recall from Lemma 3 that dy uy, (§25,) C Y.
Thus x,(£2) C Y.

Next, we recall that the set of points which are in the normal image of more than one point
is contained in a set of measure 0, [24, Lemma 1.1.12]. As x,(£2) = Y and x,(2) C Y, we
have x,(02) C dY up to a set of measure 0. In other words, | x,(952)| = 0. We conclude
that

w(R,v,E) =w(R, v, EN2)+w(R, v, ENIN) =w(R,v, EN )
=wR,u, ENY) <w(R,u, E),
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for all Borel sets E C £2. Thus, it is not possible to have w (R, v, E) < w(R, u, E) for a
Borel set E since that would give

o(R,v, 2)=w(R, v, E)+w(R, v, 5\ E)y<w(R,u, E)y+w(R, u, ﬁ\ E)=w(R, u, 2),

contradicting (41). We conclude that w (R, v, E) = w(R, u, E) for all Borel sets E C Q.
As up, converges uniformly to v on 2 andx;{ — xl, Uy, (x,fk) — v(x!). Thus v(x!) = a.

Since (4) has a unique solution with u(x!) = o and v(x') = a, we have u = v and hence

uy, converges uniformly on £2 to u. O

6.2 Convergence When dyuj, (2p) is Not Necessarily Equal to Y

In this section we consider the case Vi, C V C Vj4y. For a solution of (11), we have
dyup(£2) C Y, but we may have dyuy (§2,) # Y. Thus arguments for convex functions no
longer apply. We will use arguments for convergence to viscosity solutions. But we will also
use the Lipschitz continuity of mesh functions to extract subsequences, c.f. Theorem 19. Our
convergence results are thus for §2 a rectangle. There is no loss of generality as Problem 1
has an equivalent formulation on a larger rectangular domain 7] by setting f = 0 on Q \ 2.
Recall that for a solution u of (1), we have x,(2) = x.(RY) = £2*. The existence of
solution to (11) in the degenerate case f > 0 is discussed in Sect. 7. If V(x) = Vj0x(x)
for all x € 92y, then convergence on a bounded convex domain can be proven based on
Theorem 18.

We denote by |.| the matrix norm induced by the Euclidean norm |.| on R?. Let M be
a symmetric positive definite d x d matrix and p(x) = 1/2x7 Mx be a strictly convex
quadratic polynomial. Recall that the condition number of M is given by /| M| |M~1|. Let A
and A denote the smallest and largest eigenvalues of M. It is known that |M| = A and thus
similarly |M~!'| = 1/A. So the condition number of M is «/A/A.

If p(x) = 1/2xT Mx and M has condition number less than «, we say that p is a quadratic
polynomial with condition number less than «.

Definition 10 A convex function u# € C(£2) is a viscosity solution of
R(Du(x)) det D*u(x) = f(x), (42)
in £2 if for all ¢ € C%(£2) the following holds

— at each local maximum point xg of u — ¢, f(x0) < R(D¢(x¢)) det D2¢ (x0)
— ateach local minimum point xg of u—, f (xo) = R(Dé¢ (x0)) det D>¢ (xo),if D*¢ (xg) >
0,1i.e. D%¢(xg) has positive eigenvalues.

As explained in [28], the requirement D2¢(xp) > 0 in the second condition above is
natural for the two dimensional case. The space of test functions in the definition above can
be restricted to the space of strictly convex quadratic polynomials [24, Remark 1.3.3]. We
will refer to the conditions above as the conditions in the definition of viscosity solution for
the test function ¢.

Definition 11 A convex function u € C(£2) is a k-viscosity solution of (42) if the conditions
in the definition of viscosity solution hold for all strictly convex quadratic polynomials with
condition number less than «.

A viscosity solution of (42) is a «-viscosity solution for all k > 0.
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6.2.1 Equivalence with Aleksandrov Solutions

We recall that an Aleksandrov solution of (42) is a convex function u € C(§2) such that
(R, u, E) = [, f(x)dx for all Borel sets E C £2.

For f > 0 and f € C(£2), one proves as with [24, Propositions 1.3.4 and 1.7.1] that a
convex function # € C(£2) is an Aleksandrov solution of (42) if and only if it is a viscosity
solution of (42).

6.2.2 Convergence to the Viscosity Solution

The scheme (11) is said to be monotone if for z, and wy, in Cp, z;,(y) > wp(y), y # x with
Zn(x) = wp(x), we have o (R, z, {x }) > (R, wp, {x }). One proves as with [7, Lemma
3.7] that the scheme (11) is monotone.

We say that the scheme (11) is consistent if for all C? convex functions ¢, a sequence
X, > x €82

Jim hidwue, 6. (x1 ) = det D2 (x).

We will also use the terminology of consistent with a class of smooth functions.
Analogous to [7, Theorem 3.9] and similarly to the end of Part 3 of the proof of Theorem 20,
we have

Theorem 21 Assume that V. = V4, and the scheme (11) is consistent. If the solution uy,
of (11), with uy (x,ll) = «o for x,i in 25 and x}l - xl e @, converges uniformly on 2 to a
convex function v, then v is a viscosity solution of (42) with v(x') = .

Recall the definition of the stencil V, from Sect. 2.2, i.e. V, consists of all vectors e €
z4 \ { 0 } with co-prime coordinates such that [e| < 1/ 2/dk. Analogous to the above theorem
we have

Theorem 22 Assume that V. = Vi N Vyax and the scheme (11) is consistent for strictly
convex quadratic polynomials with condition number less than k. If the solution uy, , of (11),
with up (x;) = « for x}i in 25 and x}l — x| € 2, converges uniformly on 2 to a convex
function v, then v, is a k-viscosity solution of (42) with v (x') = a.

We establish below the consistency of (11) for V. = V. N V,,,, for strictly convex
quadratic polynomials, at interior points at a distance Ch of d52. To check the conditions in
the definition of viscosity solution at a point x € £2, one first take 4 sufficiently small and
check the conditions at mesh points xj, close to x. See the proof of Theorem 22 in Sect. 6.2.5
below.

Theorem 23 Let §2 be a rectangle. Assume that uy, , is discrete convex and solves (11) for
V = VieNViax withup, (x}l) = ozforx,]l in 82y, andx,i — x! € 2. There is a subsequence hy,
suchthatuy, . converges uniformly on §2 to a continuous convex function v, with v, (x = q.

Proof By Theorem 19, there is a subsequence 4 such that u, , converges uniformly on £2
to a continuous function v,. The latter is convex by Lemma 17. O

As the family v, consists of convex functions with uniformly bounded gradient, we can
extract a subsequence which converges uniformly on £2 to a convex function v as k — +00.
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Theorem 24 Let k = n and assume that vy, is a k-viscosity solution of (42) which converges
uniformly on $2 to a convex function v as n — +o00. Then v is a viscosity solution of (42).

Proof The proof is the same as the proof of stability of viscosity solutions under uniform
convergence. Let ¢ be a strictly convex quadratic polynomial. We may assume that ¢ (x) =
1/2xT Mx for a symmetric positive definite matrix M, since for a linear function L(x),
det D% L(x) = 0. Assume that M has condition number ng.

Let xo € §2 and assume that v — ¢ has a maximum in the closed ball B(xg, §). Using
¢(x) + |x — xolz, we may assume that v — ¢ has a strict local maximum in B(xg, §). By
[9, Lemma 2.4], since v, — ¢ converges uniformly on £2 to v — ¢, there exists a sequence
Xp € $2 such that x, — x¢ and v, (x,) — ¢ (x,) > v, (x) — ¢(x) for all x in B(xg, §).

We get R(D¢ (x;,)) det D2p(x,) > f(xy) forn > ngandthus R(D¢(xp)) det D2p(xo) >
£ (x0).

The other condition in the definition of viscosity solution is proved similarly. O
We now summarize Theorems 22-24.

Theorem 25 Let 2 be a rectangle. Assume that V.= Vi N Vyuax and the scheme (11) is
consistent for strictly convex quadratic polynomials with condition number less than k. There
is a subsequence hy such that the solution up, , of (11), with uy, (x,ik) = « for x,llk in 2y, and

x,llk — x! € 2, converges uniformly on $2 to a convex function v.. Moreover, as k — +00,

v, converges uniformly on §2 to the unique convex solution u of (4) with u(x') = a.

Proof By Theorem 23, there is a subsequence /1 such that uj, . converges uniformly on Q2
to a continuous convex function v, with v, (x!) = a. By Theorem 22, v is a k-viscosity
solution of (42) with v, (x!) = a. By Theorem 24, as k — 400, v, converges uniformly on
£2 to a convex function v which is a viscosity solution of (42) with v(x!) = «. Arguing as in
Part 2 of the proof of Theorem 20, the convex function v has asymptotic cone K. Recall the
equivalence of viscosity and Aleksandrov solutions from Sect. 6.2.1. The convex function v
is then equal to the unique solution of (4). All subsequences thus converge to the latter. This
completes the proof. O

Remark 4 The requirement for convergence that solutions of (11) are discrete convex can be
removed when f > 0 on £2 by using the viscosity solution reformulation of convexity.

We finish this section by addressing consistency for quadratic polynomials. We first review
a topic which is curiously called geometry of numbers.

6.2.3 Geometry of Numbers

The material for this section is adapted from [18] to which the reader is referred to for
additional details.

Recall that {r, ..., r;} denotes the canonical basis of R?. Here r; € Z% for all i. We
view Z as a lattice, i.e.

Z4 = (& + ...+ Cara, & € Zforall i ).

The determinant d(Z%) of the matrix with column vectors r;,i = 1,...,d is independent of
the choice of the basis and called determinant of the lattice. We have d(Z%) = 1.
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Let M be a symmetric positive definite matrix and consider the distance on R given by
dy(e, e) = |le — ¢'||y where ||v]|p := vvT M. For eg € Z%, we define the Voronoi cell

Vor(eg) = {p € R, |Ip —eolly < |lp — ellu, Ve € Z}.

We denote by int Vor(eg) the interior of Vor(ep). It can be shown [18, p. 343] that (recall that
7 is infinite)

R? = U,eza Vor(e) 43)
int Vor(e) Nint Vor(¢') = @, fore, e’ € Z, e # €.

We also note that for ey € Z4
Vor(eg) = Vor(0) + eg,

i.e. Vor(ep) is a Z4-translate of Vor(0). In the terminology of [18, p. 337], (43) says that the
74 -translates of Vor(0) form a tiling of R?. By [18, Proposition 11 Chapter VIII],

| Vor(0)| = d(z9) = 1. (44)
We consider the open half-space

Ge=1{peRpllm <llp—ellu},
and the hyperplane
H,={peRplly=Ilp—ellu}
We have G, = G, U H, and [18, p. 342-343]
Vor(0) = meezd\{o}a.
In fact, there are a finite number of points ¢; € 74.i =1, ...,1 such that
Vor(0) = nl_, G,

with the above representation irredundant, in the sense that it no longer holds if one omits
one of the half-spaces G,.

Note that Vor(0) is convex, and recall that a subset A of Vor(0) is a face of Vor(0) if A
is convex and if y, y’ € Vor(0) and the open line segment (y, y') intersects Vor(0), then
v,y € Vor(0). The (d — 1)-dimensional faces of Vor(0) are called facets. The distinct
facets of Vor(0) are given by the intersections Vor(0) N H,,i = 1,...,[ and the vectors
e;,i =1,...,[ are the facets vectors of the lattice 74,

The notions introduced above are dependent on the distance d; induced by the symmetric
positive definite matrix M. In [38, 39], the facets of the Voronoi cell are called Voronoi facets
and the facets vectors are called strict M-Voronoi vectors. M-Voronoi vectors are the vectors
e € 74 for which Vor(0) N H, # . Equivalently

Vor(0) = { p e R, 2(Mp) - e < ¢' Me, Ve € 7% }.
6.2.4 Interior Consistency for Strictly Convex Quadratic Polynomials
Foraset S, hS = {hx,x € S}and MS = {Mx,x € §}. We note that the definition of

dyq(x) uses the values of the quadratic function g only when x € £2;,. For x ¢ £2;, the
discrete extension formula (10) is used.
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In this section, we take V = V. N V,,4. The results of this section are needed at mesh
points at a distance Ch of 952, c.f. the proof of Theorem 22 below. For those mesh points
Vie N Vipax = Vi. We therefore assume that the stencil V is mesh independent in the statement
of the results below.

Lemma20 Let M be a symmetric positive definite d x d matrix and g(x) = 1/2xT Mx a
quadratic polynomial. We have for all x € §2), such that x + he € 2, foralle € V

|0y (x)| = h* det(M)| Vor(M, V),
where Vor(M, V) is the Voronoi cell of M associated with the stencil V, i.e.
Vor(M,V)={peR¢ 2(Mp)-e <e Me,Ve e V).

Proof We have

1 h?
q(x + he) = E(x + he)TM(x + he) = q(x) + hxMx + 7eTMe.

Thus dy ¢ (x) is equal to
d T h d h r
{(peR p-e<x Me—i—ie Me,NecV}={peR ,(p—Mx)-efie Me,
1
VeeV}:{hqeRd,2(q—EMx)~e§eTMe,VeeV}:h{qeRd,
1 1
2(q—ZMx) e <elMe,Ve € Vi=hM{r e ]Rd,Z(Mr—ZMx)«zSeTMe,Ve eV}

Buttheset {r € R4, 2(Mr —1/h Mx)-e < el Me,Ne e V } is a translate of Vor(M, V) by
1/h Mx, and thus they have the same volume. The result then follows. O

We next give sufficient conditions on V so that | Vor(M, V)| = 1 so that consistency
holds for strictly convex quadratic polynomials.

Lemma 21 Let M be a symmetric positive definite d x d matrix. If the stencil V contains
all strict M-Voronoi vectors, then | Vor(M, V)| = 1. Therefore, for q(x) = 1/2xT Mx and
X € 82y such that x + he € 2, for all e € V we have

|0y q(x)| = h? det M.

Proof We show that under the conditions of the lemma we have Vor(M, V) = Vor(0). The
result then follows from Lemma 20 and (44).

We have from the definitions Vor(0) C Vor(M, V). Let S be the set of strict M-Voronoi
vectors. We have

Vor(0) = {p e R, 2(Mp) - e < " Me, Ve € S}.
ItS Cc V,weget Vor(M, V) C Vor(0). The result then follows. ]

The following characterization of the set of all strict M-Voronoi vectors was given in [38,
39].

Lemma22 Let M be a symmetric positive definite d x d matrix and let k = /|M| |M~1|.
Then all strict M -Voronoi vectors are contained in the set

1
S = { ec Zd, le] < E\/EK, e has co-prime coordinates } . (45)
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6.2.5 Proof of Theorem 22
Recall the half-relaxed limits defined for x € £2 by

v*(x) = limsup up,(y) = ;ig})sup{uh,x(y),y €2, |ly—x|<80<h<é}

y—>x,h—0

vi(x) = liminf wup,(y) = iminf{up,(y),y € Qp, [y —x[ <8,0<h <5}
y—>x,h—0 §—0

By construction v is the uniform limit of continuous functions which interpolate uj, , and
hence v, € C(£2). Since up, converges uniformly on 2 to vy, we have v, = u* = u, on
2. At this point, it is not known yet that the limit convex function v, is a viscosity solution
of (42).

We show that v, = u, is a k-viscosity super solution of R(Du(x)) det D2u(x) = f(x)at
every pointx of 2. Let xo € £2 and ¢ be a strictly convex quadratic polynomial with condition
number less than k such that v, — ¢ has alocal minimum at xg with (v, — ) (xg) = 0. Without
loss of generality, we may assume that xg is a strict local minimum.

Let By denote a closed ball contained in £2 and containing x in its interior. We let x;, be a
subsequence in By such that x;,, — xo with uy, (x,) = v«(x0). As h; — 0, we may assume
that for all x € By, d(x,82) > h/dk.If e € V., le| < 1/2+/dx by definition and thus
|hie| < hi/di. We conclude that for x € By, we have x + he € §2 and hence x + he € 2,
for all e € V.. Therefore V, N Va0 (x) = V, for all x € By.

Let x; € By N §2p, be defined by

cri=(up, — ) (x)) = minup, — ¢.
Bo

Since the sequence x; is bounded, it converges to some x| after possibly passing to a subse-
quence. Since (up, — ¢)(x[’) < (up, — @) (xp,) we have

(s — @) (x0) = lim (up, — ¢)(xp,) = lim inf (up, — D) (x]) = (v — ) (x1).

Since xg is a strict minimizer of the difference v, — ¢, we conclude that xo = x; and ¢; — 0
as [ — oo. By definition

up (x) = ¢(x) + ¢, Vx € Bo N &2y,

with equality at x = x/, and thus, by the monotonicity of the scheme

1 1
0= hjw(R, wp s Ax] ) = f(x)) = hjw(R, o+ {x D) — fx))

[ I

1
= Ea)(R’ d’? {X[/ }) - f(x[/)a
which gives by the consistency of the scheme R(D¢ (xp)) det D2 (xo) — f(xp) <O.

Similarly one shows that if ¢ is a strictly convex quadratic polynomial with condition

number less than « such that v* — ¢ has a local maximum at xo with (v* — ¢)(xg) = 0,
we have R(D¢(xp)) det D¢ (xo) — f(xo) > 0. It follows that v, = u* = u, on £ is a
K-viscosity solution of R(Du) det D%u = f.
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6.3 Polygonal Approximations of Q*

We now add~ress the convergence of solutions of (8) to the solution of (4) as ¥ — £2*.
Recall that f as defined by (6) depends on Y. Here we make the dependence explicit. Put

fr@) = f.
The distance of the point x to the set K is denoted d(x, K). The Hausdorff distance
d(K, H) between two nonempty subsets K and H of R is defined as

max{ sup[d(x, K),x € H],supld(x, H),x € K]}.

We say that a sequence of domains §2,, is increasing to £2, if £2,, C 2,41 C §2 and
d(082,,,082) — 0asm — o0.

Theorem 26 Let Y,, be bounded non degenerate convex polygonal domains increasing to
£2*. Then the convex solution u,, of

w(R,u, E) = / fv,,(x)dx for all Borel sets E C Q2
E

1 (2) = Yo (46)

u(xo) =q,

for x° € 2 and a € R converges uniformly on $2 to the solution u of (4) with u(x°) = a.

Proof Recall that fy, (x) = f(x) — € f(x) where €} = f.(z*\Y,,, R(p)dp/ Jo fx)dx.
As Y, — Q2% e — 0.Thus [, fy, (x)dx — [ f(x)dx for all Borel sets E C £ with

>tm

|0 E| = 0. For the purpose of using results on Monge—Ampere equations stated for bounded
domains in [24], we may assume that the Borel sets E C £2 are contained in a larger bounded
domain £2 such that 2 C U C £ for an open set U, and set fy, (x) = 0and f(x) =0
outside £2.

Recall that £2* is bounded. Let C such that |p| < C, Vp € £2*. We claim that the functions
u,, are Lipschitz continuous with the same Lipschitz constant. The proof is analogous to
the one for [24, Lemma 1.1.6]. Essentially because (2) ¢ 2* for all m. Thus for all

X,y € 2, we have for a constant C independent of m

ltm (x) = um ()| = Cllx = yll1.

Moreover since u, (x°) = « and 2 is bounded, we conclude that the sequence U, is
uniformly bounded and equicontinuous on £2. By the Arzela-Ascoli theorem, there is a
subsequence also denoted u,, which converges uniformly on the compact set £2 to a func-
tion v on £2. It is known that such a function v is convex. By the weak convergence of
R-curvatures [8, Theorem 9.1], w(R, u,,, .) weakly converges to w(R, v,.) We conclude
that (R, v, E) = fE f(x)dx for all Borel sets E C §2.

Next we show that x,(£2) = 2*. Let p € £2*. There exists a sequence p,, € Y, such
that p,, — pin R4, see for example [46, Theorem 1.8.8-a]. Therefore there exists x™ € Q
such that p,, € x,, (x), i.e.

U (¥) =ty (X™) + p - (v —x™)Vy € RY.

The bounded sequence x™ converges up to a subsequence to a point x € 5.2\/6 conclude
that v(y) > v(x)+ p-(y —x) forall y € £2. Thus p € x,(£2) and 2* C x,(£2). A similar
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argument shows that x, (£2) is closed. Therefore 2* C x,(£2). Using (5)

/  R(p)dp = o(R,v. ) = /ff(x)dx= / F)dx = / R(p)dp
X 2 2 Q%

v(§2)

Q*

= / R(p)dp.

Therefore |x,(£2) \ £2%] = 0. We conclude that 2* is dense in x,(£2). But £2* is closed.
Thus x,(2) = 2*.

Moreover, if K is compact and U is open such that K € U C U C £2, we have up
to a set of measure 0, x,(K) C liminf,,_ 0 Xu,, (U), by [24, Lemma 1.2.2]. This implies
Xv(§2) C £2%*. As in the proof of Part 3 of Theorem 20, using [24, Lemma 1.1.12] which says
that the set of points which are in the normal image of more than one point is contained in a
set of measure 0, we obtain |x,(3§2)| = 0. So we actually have w(R, v, E) = fE fx)dx
for all Borel sets E C £2.

Clearly v(x?) = « and so v is the unique solution of (4) which satisfies v(xY) = a. It
follows that the whole sequence u,, converges uniformly to u on £2. O

7 The Degenerate Casef > 0

For the uniqueness of a solution, we needed the assumption f > 0. In the case f > 0, from
an implementation point of view, and for the existence of a solution, we may consider the
approximate problem analogous to (11)

wa(R,u;,{x}):/ F)dt + €|Ex|, x € 24, (47)
E,\f

where € > 0 is taken close to machine precision and for a polygon Y we choose Y. such that
Y C Y. and the compatibility condition

> ou®ou () = [ R,

xXey Ye

holds. Here uj, is required to have asymptotic cone K. associated with Y. As € — 0 uj,
converges to a solution uj, of (11) and Y. — Y. This proves existence of a solution to (11)
in the degenerate case f > 0.

For the convergence of the discretization in the case V = V,,4y, i.e. the analogue of The-
orem 20, note that because of Lemmas 2 and 3, the approximations are uniformly Lipschitz
on 2. It then remains to verify that x n ("Z)(N ,}) is uniformly bounded. But this is also an
immediate consequence of Lemma 18.

We have for all p € xp, (u;)(./\fhl)

llpll = CCy,Cq.

Since Ye — Y as € — 0, the result follows. For a subsequence A, uj, converges uniformly
on £2 to a convex function v¢. The latter can be shown to converge to a solution of (4) using
the arguments of Sect. 6.3.

We note that the convergence argument to a viscosity solution of Sect. 6.2 do not require
f>0.
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8 Numerical Experiments

For the implementation of the numerical method (11), note that the set dy vy (x), for a mesh
point x, is a polygon defined by a finite number of inequalities. There are programs available
on MATLAB Central which allow to compute the vertices of a polygon from the defining
inequalities. In our MATLAB implementation, we found the vertices of dy vy, (x) by param-
eterizing its edges using the linear inequalities. Numerical integration over a triangulation
of the polygon can then be used to compute wy (R, vy, { x }) for x € £2,. Formulas for the
Jacobian matrix are given in [4]. To deal with a possible singular Jacobian, as in [12], we
added a small constant to the diagonal elements. The parameters § and p in the damped
Newton’s method [4] were taken as p = 1 and 6 = 1/2.

We give numerical experiments for d = 2 and 2 = (0, 2. Here 2, = 2 N (a + Zﬁ)
where a = (1/2, 1/2). For integration over edges, for the entries of the Jacobian matrix,
we used a Gaussian quadrature rule with degree of precision 7. For the right hand side, a
three point quadrature rule with degree of precision 2 was used. The stencil V was taken
as V = —V; U V| where V) consists of the vectors (1, 0), (0, 1), (1, 1), (1, —-1), (2, 1),
(—=1,2), (1, 2) and (—2, 1). For the imposition of the constraint vy @xhH =0, we approximate
the solution of the equation R(Du) det D%y = f +u(x"). The compatibility condition (5)
implies that u(x') = 0. Inour experiment we used xt=a+ o, h).

The discrete convexity assumption was not enforced. Starting with an initial guess which
is discrete convex, we require that subsequent iterates are V-discrete convex by choosing the
step size in the damped Newton’s method.

Note however that since we are using in (11) the approximation f E, f)dt ~ h? f(x)
and numerical integration for the evaluation of wy (R, up, {x}) for x € £2;, the discrete
mass conservation (12) will not hold, i.e. ZXE-Qh wy (R, up, {x}) # erf?h 2 f(x). A
discrete solution with some value of uy, (xl) is computed and we add a constant ¢ to have
up(x 1 )+c = 0. Alternatively, to assure a discrete mass conservation, one could also consider,
for a constant ¢ to be adjusted, wy (R, up, {x }) = hzf(x) +c ZXE-Qh up (x). This approach
naturally requires adding a small constant to the diagonal elements of the Jacobian matrix.

First we consider the exact solution u(x, y) = x2/2 + xy + y2. In this case £2* is the
polygon of area 1 with vertices (0, 0), (1, 1), (1, 2) and (2, 3). We take R(x, y) = x +y with
corresponding right hand side f (x, y). As in [44] we take as initial guess a function u° such
that x,0($2) is a rectangle contained in £2*.

Table 1 shows an asymptotic quadratic convergence rate for # while the convergence rate
for Du is linear. Figures 3 and 4 show the deformatlons of a grid by the gradient mapping.
Here, the initial guess was taken as «u” where 4 is a function such that y,,0 (£2) is a rectangle
contained in £2* and o = fg* R(p)dp. For this case, unlike the results in [11], there is no
collapse of grid points near the boundary of the circle (Fig. 5).

9 A Review of Polyhedral Set Theory

The purpose of this section is to relate the notions introduced in Sect. 4 to the standard
polyhedral set theory. It may be skipped in a first reading.

Any convex set which does not contain a line and consisting of the union of rays with the
same common vertex is called a convex cone. The common vertex of all these rays is called
the vertex of this convex cone. Formally
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Table 1 Maximum errors for a smooth solution

h

1725 1/20 1727 1/28 1/2°
Error for u 2721074 8.01 1073 2311073 6.5210° 1.82107°
Rate 1.76 1.79 1.82 1.84
Error for Du 6.27 1073 3301073 1561073 8.23107% 3.92107%
Rate 0.93 1.07 0.93 1.07
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Fig.4 Constant density on a square mapped to constant density on the unit disc 4 = 1 /27

1 -05 0 05 1

Fig.5 Constant density on a square mapped to the Gaussian e 05 (& 4y?) on the unit disc & = 1,28

Definition 12 A convex set D C R9+! which does not contain a line is a convex cone with
vertex A if there is a subset S of R?*! such that D = UeeSLX o

See Figs. 1 and 3 for examples of convex cones.

Lemma23 A convex set D C Rt which does not contain a line is a convex cone with
vertex A, if and only if for X € D, we have A + X AX € D forall » > 0.
Proof Assume that D is a convex cone. Let X € D and e € R?*! such that X € Lj .- Let

n > Osuchthatﬁ = pe,ie. X = A + pe. Then B := A+)\ﬁ( = A + Aue which
means that B € LXE C D.

Conversely, with S = {e:e = IB)( X e D},wehave D = U,_,GSLX o O
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Let M be a convex set which does not contain a line and let A € M. The asymptotic cone
KA(M) of M is a convex cone. For another example, the epigraph of the function &, ;)
in (20) is a convex cone in RY*t! with vertex (p, ) (it is equal to its asymptotic cone by
Lemma 6).

Lemma 24 A convex cone has only one vertex.

Proof Assume that D is a convex cone such that D = UeeSLje and D = Ugeg L},
for subsets S and S of R¥t! and vertices A and B. Let ¢ € § and u > 0 such that
A =B+ ue. Letalsoe € Sand A > 0 such that B = A + \e. Wehave)\e—l—;w =0.

If x =0o0ori =0, A= B.Otherwise ¢ = —A/u e and by assumption LB , C D. But
L; o LJr whe = L . Thus D contains the line with direction ¢’. Recall that by
Definition 12 a convex cone does not contain a lime. Contradiction. O

Let D be a convex cone with vertex A and put D = A+ K where K is a convex cone with
vertex at the origin. The condition K N —K = { O } is equivalent to requiring that K does not
contain a line. A convex cone as defined above is also refereed to as pointed convex cone [1,
p. 2]. In other words, the convex cone A 4+ K is pointed in the sense that K N —K = { O }.
We restrict to this class of convex cones because of the applications considered. We are
interested in convex functions on R¢ whose graphs form the boundary of the Minkowski
sum of a convex cone and the convex hull of a set of points. Note that the epigraph of such a
convex function do not contain a line. See Fig. 3 for the graph of a piecewise linear convex
function which is the boundary of the Minkowski sum of a convex cone and the convex hull
of a set of points.

Following [8], the points Xg, Xi,..., Xx are in general position if the vectors
Xo0X1, ..., XoXy are linearly independent. The points Xy, X1, ..., Xy are thus necessar-

ily distinct. If k > d they cannot be in general position.

We shall say that a set S C R4+ is k-dimensional 0 < k < d + 1 if it contains
k + 1 points in general position but does not contain k + 2 points in general position. A
hyperplane in R%*! is a d-dimensional set of the form {x : x € RI*! a* . x = b* } for
a* e RAt1 g* # 0 and % € R. By a closed half-space in RI+! we mean a set of the form
{x:x e R a* . x > b* ) fora* € R a* £ 0and b* € R.

A k-convex polyhedron P is a k-dimensional set which is the intersection of a finite
number of closed half-spaces,

P={x:x e R A*x > b*},

where A* is am x (d + 1) matrix and b* € R4t1,

The hyperplane F = {x : x € R4 g% . x = b* } is a supporting hyperplane to the
convex polyhedron P if P C {x : x € R g% . x > b* },i.e. P is contained in (one of)
the closed half-space with boundary F, and F contains one or more points of P.

A face of a convex polyhedron P is a non-empty intersection of P with one or more
supporting hyperplanes. If a face of P has dimension k, i.e. it is a k-dimensional set, it is
called a k-face. The O-faces and 1-faces of P are called vertices and edges of P if they exist.

A polyhedral angle, also called pointed polyhedral cone using the terminology of [3], is
a convex cone which is a convex polyhedron. Recall that by our convention a convex cone
does not contain a line and hence has only one vertex by Lemma 24. A polyhedral angle can
be written as A + K where A € R*+! and

K={x:x e R4 A*x >0},
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for am x (d + 1) matrix A* of rank d + 1. If we let a¥,i = 1, ..., m denote the rows
of A*, the rank condition ensures that the origin is the only point in the intersection of the
half-spaces {x : x € RA+HL, a;“ -x > 0,7 =1, ..., m}. This implies that the polyhedral angle
has only one vertex A. See also [43, Proposition 4.29].

We now state some results of basic polyhedral theory c.f. for example [43]. The particular
results used in this paper (Lemma 8 and Theorem 7 ) were proved above.

The asymptotic cone of an unbounded convex polyhedron which does not contain a line
is a polyhedral angle, i.e. if P is unbounded of the form P = {x : x € Rt A*x > b*}
with A* of rank d + 1, then P has asymptotic cone A + K where A€ Pand K ={x : x €
RIH A*x >0 }. The set K is also known as recession cone or characteristic cone of P [43,
Proposition 2.15]. In fact P = S + K where S is the convex hull of a finite number of points
[43, Theorem 2.8 and Proposition 2.15].

An extreme ray of a polyhedron P is a ray which is a face of P. Klee, [32] or [47,
Theorem 3.6.14], proved that a polyhedron which does not contain a line is the convex hull
of its vertices and its extreme rays. See also [46, Theorem 1.4.3]. The above decomposition
P = S+ K of aline free polyhedron also follows [46, Corollary 1.4.4], using the observation
that a point on an extreme ray is the sum of a vertex of P and and an element of its recession
cone K. A similar result is the following theorem by Bakelman who gave a simple geometric
proof.

Theorem 27 [8, Theorem 4.2] Every unbounded convex polyhedron which does not contain
a line is the convex hull of its vertices and its asymptotic convex polyhedral angle, which is
placed at one of its vertices.

In this paper we are interested in a particular kind of polyhedral angle. Let us illustrate
how Lemma 6 follows from polyhedral theory.

Let Y C R? be a d-convex polygon with vertices aj, a3, ..., ay.. This implies that
{al,a3, ..., a}.}is d-dimensional, i.e. it contains d + 1 vectors in general position. Thus
the matrix with columns af —aj,i =2, ..., N* has rank d. It follows that the N* x (d + 1)
matrix A* with rows ((alfk )T —1) has rank d + 1. For the purpose of matrix multiplication,
elements of RY are column vectors. For simplicity below, if no matrix multiplication is
involved, an element of RY is a d-tuple.

The graph of the linear function x aj‘ - x on RY, { e, xq41) @ (x,Xx441) €
R x R, Xg+1 = a; - x} is a hyperplane of the form {(x,xs41) : (x,xq41) € RY x
R, (x,x441) - (af, —1) = 0}. The closed half-space {(x,xg4+1) : (x,x411) € RY x
R, (x, xg+1) - (af, —1) > 0} is the epigraph of the linear function x411 = a} - x.

The convex cone K = K g,0) introduced above and associated with the polygon Y is the
convex cone {y = ((x)T xd+1)T :y e RY x R, A*y > 0}. It is equal to its recession cone.
Thus the epigraph of k(g,0) is a convex cone equal to its asymptotic cone.

Lemma 8 is just a special case of Bakelman’s theorem, Theorem 27. To see this, recall
that S is the convex hull of a finite number of points. One first establishes that P := S + K
is a polyhedron and hence has recession cone K, i.e. asymptotic cone A + K for a vertex A
of P. By Theorem 27, P is the convex hull of its vertices (the vertices of §) and A + K.

A convex cone D C R?*! s said to be finitely generated if there is a (d + 1) x m matrix
B such that D = { BA, A € R", 1 > 0}. By Minkowski’s theorem [43, Theorem 1.13], the
polyhedral cone K = {x : x € R¥T! A*x > 0} is finitely generated. Thus § + K is a
polyhedron since K is finitely generated, c.f. for example [43, Theorem 2.8]. It follows that
P := S + K has recession cone K and hence asymptotic cone A 4+ K for any element A of
S.
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For Theorem 7, by Lemma 8, the closure of the set M is given by S + K and hence has
recession cone K.
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Appendix

We gave a geometric proof for Theorem 8 based on Lemma 8. Here we give an analytical
proof based on infimal convolution. The epigraph of the infimal convolution illustrates with
an analytical argument Lemma 8.

Let v be a continuous convex function on a closed convex set S with non empty interior.
Let S denote the epigraph of v. Here S is unbounded unlike in Lemma 3. Let us consider
another extension of v to R as an extended value function

v(x) ifxe S
+00 otherwise .

Voo (X) = {

Recall the function kg« from (22). The infimal convolution of vy and kg« is a function
VooTkos 1 RY — R U {400} defined as

vnotkge (1) = inf o () + kee (x — ).
yeRd

Since v (y) = 400 for y ¢ S, we have

Vook o+ (x) = inf v(y) + ko+(x — y).
yes

Let epiu denotes the epigraph of a function u. Note that epi v = epi vy as +00 ¢ R. For
given functions ¢ and ¢, from R? to RY U {400} we have epi¢) + epigr C epidiogp;.
The infimal convolution is said to be exact at x € R? if there exists y € R? such that
H10¢2(x) = 1 (¥) +da(x — y). If p10¢, is exact atall x € RY, epi ¢ +epi o = epi o,
[20, Lemma 2.8].

Given x € RY, the function y = v(y) + ko+(x — y) is continuous on S and hence has a
minimum on S. Thus VoTk g+ 1s exact at all points x € R4 and we conclude that

epi vook+ = epiv + epi ko,

i.e. M = S + K+ where M = epi vook+. This is essentially the content of Lemma 8.
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Theorem 28 A necessary and sufficient condition for veotko+ to be a convex extension of v
is that 9v((S)°) C £2*.

Proof Recall that a function ¢ defined on R is proper if there exists xo € R? such that
¢ (xg) < 400 and ¢p(x) > —oo forall x € RY. As voo and ko« are proper convex functions,
VUsok g+ 1s @ convex function by [19, Proposition 2.56].

Recall that ko (RY) = 2*. Let us first assume that veotko+ = v on S. Then for all
x € (3’)“’, dv(x) = 0vsokg+(x). This follows from the locality of the subdifferential c.f.
[23, Exercise 1].

By [10, Proposition 16.48 (i) ], we have for x € (§)°, Av(x) = dVeok*(x) = Vo (¥) N
dkgo+(x — y), where y € S with Vook# (X) = Voo (V) + ko+(x — y). Here y = x and
dkgo+(0) = 2*. We conclude that dv((5)°) C 2*.

Let us now assume that 8v((§)°) C £2%. We show that va,0ko+ is a convex extension of
v. Letx € (§)°. We have vyotko+ (x) < v(x). Assume by contradiction that veooko+(x) <
v(x). This means that we can find y € S such that

v(y) + ke (x —y) <v(x). (48)
Letnow p € dv(x). We have p € £2*. By definition, v(y) > v(x) + p(y — x). Thus, by (48)

v(y) > v(y) +kex(x —y)+p-(y—x).

It follows that p - (x — y) > ko+(x — y) = SUp % P - (x — y) This contradicts p € 2*.
We conclude that v = veooko+ on (S)° Recall that v 1s continuous on S. Also, voomkg* is
a proper convex function which is bounded above on S, and hence continuous on S, c.f. [6,
Lemma 2]. It follows that vaooko+ = v on S. m]
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