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Abstract
In this work we propose a discretization of the second boundary condition for the Monge–
Ampère equation arising in geometric optics and optimal transport. The discretization we
propose is the natural generalization of the popular Oliker–Prussner method proposed in
1988. For the discretization of the differential operator, we use a discrete analogue of the
subdifferential. Existence, unicity and stability of the solutions to the discrete problem are
established. Convergence results to the continuous problem are given.
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1 Introduction

In this paper we propose a discretization of the second boundary condition for the Monge–
Ampère equation. LetΩ andΩ∗ be bounded convex domains of R

d . Let f be a non negative
integrable function on Ω and R > 0 an integrable function on Ω∗. We are interested in
discrete approximations of convex weak solutions in the sense of Aleksandrov of the model
problem

R(Du(x)) det D2u(x) = f (x) in Ω

χu(Ω) = Ω∗,
(1)

where the unknown is a convex function u on Ω such that ∂u(Ω) = Ω∗, Du denotes the
gradient of u and D2u its Hessian. We use the notation ∂u for the local subdifferential of u
and χu denotes the subdifferential of a specific convex extension u to R

d of u, c.f. Sect. 4.2.
That convex extension satisfies χu(R

d) = χu(Ω) = Ω∗. The epigraph of u, c.f. Sect. 4.1,
is an unbounded convex set for which there is a notion of asymptotic cone, c.f. Sect. 4. The
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asymptotic cone essentially gives the behavior at infinity of the convex extension u. FromΩ∗,
we construct a convex set KΩ∗ which turns out to be the asymptotic cone of the epigraph of
the extension u. The equation χu(Ω) = Ω∗ is then equivalent to prescribing the asymptotic
cone of the epigraph of a certain convex extension to R

d of the convex function u on Ω . We
derive an explicit expression of the extension in terms of the asymptotic cone, which we use
to derive the numerical scheme.

We approximate Ω∗ by closed convex polygons Y ⊂ Ω∗ and give an explicit formula for
the extension of a mesh function uh on Ω which guarantees that the latter has an asymptotic
cone K associated with Y with χuh (Ω) ⊂ Y , where χuh denotes some discrete version of
the subdifferential. One then only needs to apply the discrete Monge–Ampère operator in
this class of mesh functions, c.f. (11) below. It was thought [41, p. 24] that ”dealing with an
asymptotic cone as the boundary condition is inconvenient”.

The left hand side of (1) is to be interpreted as the density of a measure ω(R, u, .) asso-
ciated to the convex function u and the mapping R c.f. Sect. 2.1. It is defined through the
subdifferential of u. Equations of the type (1) appear for example in optimal transport and
geometric optics. The compatibility condition

∫
Ω

f (x)dx = ∫
Ω∗ R(p)dp is required, c.f.

Sect. 2.1.

1.1 Short Description of the Scheme

In this paper we consider Cartesian grids and a discrete analogue of the subdifferential
considered in [7, 38] for the Dirichlet problem. Let h be a small parameter, a + hZ

d for
a ∈ R

d be the set of mesh points. The description of the scheme is given in Sect. 2.2. We
assume for now thatΩ = (0, 1)d , a = (1/2, . . . , 1/2), f > 0, f ∈ C(Ω) andΩ∗ is a convex
polygonal domain with vertices a∗

j , j = 1, . . . , N∗. Denote by Ωh the set of mesh points
in Ω and by ∂Ωh the set of mesh points in Ω closest to ∂Ω in directions of the canonical
basis of R

d . The unknown in the discrete scheme is a function defined on Ωh which we
refer to as a mesh function. Given a stencil V , i.e. the choice V (x) of a subset of Z

d\{ 0 }
for x ∈ Ωh , and an associated discrete analogue ∂V uh of the subdifferential, we define the
discrete Monge–Ampère operator by ωV (R, uh, x) = ∫

∂V (uh)(x)
R(p)dp for a mesh point

x ∈ Ωh . The discretization we analyze consists in solving the nonlinear problem

ωV (R, uh, x) = hd f (x), x ∈ Ωh,

with unknown mesh values uh(x), x ∈ Ωh . The evaluation of ωV (R, uh, x) requires mesh
values uh(x), x /∈ Ωh . They are given by the discrete extension formula

uh(x) = min
y∈∂Ωh

max
1≤ j≤N

(x − y) · a∗
j + uh(y),

motivated by Theorem 10 below. The above formula implicitly enforces the second boundary
condition as we discuss below. For this example, in the case f = 1, the simple choice of
the right hand side hd f (x) assures the discrete compatibility condition (12) below. See (11)
below for a suitable right hand side and Sect. 8 for other modifications.

1.2 Relation with Semi-discrete Optimal Transport (SDOT)

A quantization of f is a partition of the domain Ω into closed cells Ei , i = 1, . . . , N with
diameter diam(Ei ) and non empty interiors such that Ei ∩ E j has Lebesgue measure 0 for
i �= j , ∪N

i=1Ei = Ω . For xi in the interior of Ei and h = max{ diam(Ei ), i = 1, . . . , N },
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μh = ∑N
i=1

(
∫
Ei

f (x)dx

)

δxi weakly converges to the measure with density f . Weak

convergence of measures is discussed in Sect. 6. In SDOT [2, 22, 30, 33, 34, 36], one seeks
a mesh function uh such that

∫

∂duh(xi )∩Ω∗
R(p)dp =

∫

Ei

f (x)dx, i = 1, . . . N , (2)

where the discrete subdifferential is defined by

∂duh(xi ) = { p ∈ R
d , uh(x j ) ≥ uh(xi ) + p · (x j − xi ), for all j = 1, . . . , N }. (3)

The computation of ∂duh(xi ), i = 1, . . . , N is obtained through the construction of a power
diagram [13, Sect. 5.1]. One then takes the intersection of the diagram with Ω∗. The cells
∂duh(xi ), i = 1, . . . , N are usually interpreted in terms of the Legendre transform of uh , are
known as Laguerre cells and form a partition ofRd . Since

∫
Ω

f (x)dx = ∑N
i=1

∫
Ei

f (x)dx =
∑N

i=1

∫
∂duh(xi )∩Ω∗ R(p)dp = ∫

Ω∗∩Y R(p)dp where Y = ∪N
i=1∂duh(xi ), we see that in

general, the discrete subdifferential is not the usual subdifferential of a piecewise linear
convex function. If this were the case, and the second boundary condition ∂duh(Rd) ⊂ Ω∗
holds, then Y ⊂ Ω∗. By the compatibility condition we obtain |Y ∩ Ω∗| = |Ω∗|. Since
Y ∩ Ω∗ = Y ⊂ Ω∗, we obtain |Ω∗\Y | = 0. This implies that Y , which is closed, is dense
in Ω∗ and hence Y = Ω∗. By Lemma 10 below, Y would be polygonal and recall that Ω∗
is not necessarily polygonal. Contradiction. We note that for xk in the interior of the convex
hull of xi , i = 1, . . . , N , the discrete subdifferential is equal to the usual subdifferential, c.f.
[40, Lemma 2.1].

Themethodwe have proposed can be seen as a variantwhere the condition ∂uh(Ω) ⊂ Y ⊂
Ω∗ is enforced explicitly through a convex extension. Here, Y is a polygonal approximation
of Ω∗ and we also denote by uh the piecewise linear convex function with vertices at the
mesh points xi , i = 1, . . . N , c.f Sect. 4.2 for a definition. Let xi , i = N+1, . . . , M be points
in R

d such that Ω is contained in the convex hull of { xi , i = 1, . . . , M }. It is required that
for a normal n to a facet of Y and i = 1, . . . , N , there is a node x j , j = 1, . . . , M such that
x j − xi is parallel to n. This ensures that ∂uh(xi ) ⊂ Y , c.f. Lemma 3 for Cartesian meshes.
The parameter h and ∂uh(xi ) are defined analogously as in SDOT. However, in this context,
the discrete subdifferential is the same as the usual subdifferential, hence the notation, c.f. for
example [6, Lemma 4]. We now require that

∫
∂uh(xi )

R(p)dp = ∫
Ei

f (x)dx, i = 1, . . . N
with uh(xi ) for i = N + 1, . . . , M obtained through the discrete extension formula. Here
∂Ωh consists in the mesh points xi on the boundary of the convex hull of { xi , i = 1, . . . , N },
c.f. Theorem 10. The stencil V is now chosen in such a way that ∂uh(xi ) = ∂V uh(xi ) for
i = 1, . . . , N . Note that with the assumption f > 0 on Ω , for x ∈ ∂Ωh , |∂uh(x)| �= 0 since
∂uh(x) ⊂ Y ⊂ Ω∗ and R > 0 on Ω∗.

We view the method proposed as the natural generalization of the Oliker-Prussner method
[42] in the sense that it uses the notion of asymptotic cone and the usual subdifferential as in
the original studies of the second boundary value problem [8]. Compared with the Dirichlet
problem, where boundary values are given at the additional nodes, here these values are
obtained from the discrete extension formula. Convergence rates for the method proposed
were given in [13]. See also [37]. We shall give a detailed argument of the convergence
without convergence rates.
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1.3 Some Advantages of the Proposed Approach

The main ingredient in the implementation of SDOT is the computation of the convex enve-
lope of a finite set of points. This is a classical and hard problem in itself and is well studied
in computational geometry, so that widely available software libraries can be used. If N is the
number ofDiracmasses used inSDOT, a convexhull of N points inR

d+1 is constructed.Using
for example the quickhull algorithm, this results in a computational complexity O(N log N )
for d = 2 and O(n
(d+1)/2�) for d ≥ 3, i.e. at least a computational complexity O(N 2)
for d ≥ 3. As pointed out in [13, Remark 5.5], the damped Newton’s method used in [30]
requires to find the volume of the intersection of the cells in the power diagram. This has a
worst-case complexity O(N 2). In summary, the use of a damped Newton’s method in SDOT
results in a worst-case complexity O(N 2) for d = 2 and d = 3.

OnCartesianmeshes, the complexity of the proposed approach for setting up the nonlinear
discrete equations is dimension independent and given by O(N#V ), where #V denotes the
maximum of { #V (x), x ∈ Ωh } and N denotes the number of mesh points. For the stencil
Vmax discussed below, #V = O(N ) and in that case the complexity is O(N 2). However, the
proposed approach allows to choose a stencil V for which #V is a constant independent of N ,
resulting in a linear complexity O(N ). A damped Newton’s method is also used for solving
the nonlinear equations. This requires to compute at each mesh point the volume of the
facets of the discrete subdifferential, resulting again in a complexity O(N#V ). In summary,
the proposed approach allows to choose a stencil the size of which has an upper bound
independent of N , leading to a method with linear complexity. In the latter case, convergence
of the discretization then holds for f ∈ C(Ω).

For f ∈ L1(Ω), f > 0, with a stencil Vmax chosen such that ∂Vmax uh(x) = ∂Γ2(uh)(x)
for all x ∈ Ωh and a certain convex envelope Γ2(uh) of uh , our convergence results can be
seen as a version of arguments given in [13, Proposition 2.3] as uh is then equal to its convex
envelope on Ωh .

Existence and uniqueness of a solution are proved.

1.4 Relation with OtherWork

While there have been previous numerical simulations of the second boundary value problem
(1), c.f. [12, 21, 29, 35, 44], advances on theoretical guarantees are very recent [11, 14, 15,
25, 35]. The approach in [25, 35] is to enforce the constraint χu(Ω) = Ω∗ at the discrete
level at all mesh points of the computational domain. Open questions include uniqueness
of solutions to the discrete problem obtained in [25], existence of a solution to the discrete
problem analyzed in [11] and existence of a solution to the discrete problem obtained in [35]
for a target density R only assumed to be locally integrable.

Our work is closer to the one by Benamou and Duval [11] who proposed a convergence
analysis based on the notion of minimal Brenier solution. Yet the twomethods are fundamen-
tally different. For example, the method in [11] is reported to have first order convergence for
the gradient. For our method, taking forward and backward differences result in a O(1) con-
vergence rate for the gradient, i.e. the numerical errors for the gradient are merely bounded.
The first order convergence rate is nevertheless achieved by selecting an element of the
discrete subdifferential. Our analysis relies exclusively on the notions of Aleksandrov and
viscosity solutions with guarantees on existence and uniqueness of a solution to the discrete
problem. The uniqueness of a solution of the discrete problem is important for the use of
globally convergent Newton’s methods. Unlike the approaches in [11, 25, 35], we do not
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use a discretization of the gradient in the first equation of (1). See also [45] for the Dirichlet
problem. Convergence of the discretization does not assume any regularity on solutions of
(1) and is proven for mesh functions, and their convex envelopes. Convergence of mesh func-
tions implies the convergence of their convex envelopes [6, Lemma 10]. Another difference
of this work with [11] is that we do not view the second boundary condition as an equation
to be discretized. Analogous to methods based on power diagrams [22, 33], the unknown is
sought as a function over only the domain Ω with the second boundary condition enforced
implicitly.

For the approach in [2, 22, 30, 33, 36], for efficiency and a convergence guarantee of
an iterative method for solving the discrete equations, the use of power diagrams with a
damped Newton’s method is advocated [30]. However, that approach results in a worst-case
complexity O(N 2) for d = 2 and d = 3. To avoid the complication of constructing power
diagrams in three dimensions for the Dirichlet problem, Mirebeau [38] proposed a scheme
which is medius between finite differences and power diagrams. The discretization of (1)
analyzed in this paper is also medius between finite differences and power diagrams. Dealing
with the second boundary condition requires to take into account the domain Ω∗, and hence
our discretization depends on Ω∗. As with [38] the implementation of our scheme does not
require any of the subtleties required to deal with power diagrams in three dimensions. The
proof of convergence of a damped Newton’s method for solving the nonlinear equations
resulting from the discretization, has been given in [4]. As with the approaches in [2, 22, 30,
33, 36, 45], numerical integration may be required.

1.5 Organization of the Paper

We organize the paper as follows: In the next section we introduce some notation and the
weak formulation of (1). We then describe the numerical scheme and recall some results on
the convex envelopes of mesh functions. Existence, uniqueness and stability of solutions are
given in Sect. 3. In section 4 we review the notion of asymptotic cone of convex sets. This
leads to the extension formula which has motivated the numerical scheme. We then recall
the interpretation of (1) as [41] ” the second boundary value problem for Monge–Ampère
equations arising in the geometry of convex hypersurfaces [8] and mappings with a convex
potential [16].” With the notion of asymptotic cone we prove further results about convex
extensions. Section9 is a reviewof polyhedral set theory and uses amatrix formalism to revisit
most of the results we prove in Sect. 4 directly from the geometric definition of asymptotic
cone. Section9 may be viewed as an appendix. In Sect. 5 we present results about weak
convergence of Monge–Ampère measures for discrete convex mesh functions. In Sect. 6 we
give several convergence results for the approximations. The results in Sects. 3 and 6 assume
that f > 0 in Ω . In Sect. 7, we consider the degenerate case f ≥ 0. Numerical experiments
are reported in Sect. 8. We give some additional remarks in the appendix. Therein we revisit
convex extensions in terms of infimal convolution.

2 The Discrete Scheme

In this section, we introduce some notation and recall the interpretation of (1) as the second
boundary value problem for Monge–Ampère equations arising in the geometry of convex
hypersurfaces. We then recall discrete versions of the notion of subdifferential and describe
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the numerical scheme. We now assume that R = 0 on R
d \ Ω∗. Recall that R > 0 on Ω∗

and R ∈ L1(Ω∗).

2.1 R-Curvature of Convex Functions

Let v be a convex function on R
d . For y ∈ R

d , the normal image of the point y (with respect
to v) or the subdifferential of v at y is defined as

χv(y) = { q ∈ R
d : v(x) ≥ v(y) + q · (x − y), for all x ∈ R

d }.

For y ∈ Ω , the local normal image of the point y (with respect to v) or the local subdifferential
of v at y is defined as

∂v(y) = { q ∈ R
d : v(x) ≥ v(y) + q · (x − y), for all x ∈ Ω }.

Since we have assumed that Ω is convex and v is convex, the local normal image and the
normal image coincide for y ∈ Ω [23, Exercise 1]. We recall that a domain is a non empty
open and connected set. In particular, Ω∗ is non empty.

For q, y ∈ R
d and μ ∈ R, the set of points { (x, z) ∈ R

d+1, x ∈ R
d , z ∈ R, z =

μ + q · (x − y) } is called a hyperplane. When q ∈ χv(y), v(y) + q · (x − y) is called a
supporting hyperplane. It is known that when v is differentiable at y, χv(y) = { Dv(y) }. For
the function v given by v(x) = |x |, x ∈ R, we have χv(0) = [−1, 1] = χv(R).

For any subset E ⊂ R
d , the normal image of E (with respect to v) is defined as

χv(E) = ∪x∈Eχv(x).

The set ∂v(E) is defined analogously.
The presentation of the R-curvature of convex functions given here is essentially taken

from [8] to which we refer for further details. It can be shown that χv(E) is Lebesgue
measurable when E is also Lebesgue measurable. The R-curvature of the convex function v

is defined as the set function

ω(R, v, E) =
∫

χv(E)

R(p)dp,

which can be shown to be a measure on the set of Borel subsets of R
d . For an integrable

function f ≥ 0 on Ω and extended by 0 to R
d , equation (1) is the equation in measures

ω(R, u, E) =
∫

E
f (x)dx for all Borel sets E ⊂ Ω

χu(Ω) = Ω∗.
(4)

This implies the compatibility condition

∫

Ω

f (x)dx =
∫

Ω∗
R(p)dp. (5)

In (4), the unknown is a convex function u defined onΩ with a convex extension, c.f. Sect. 4.2,
that satisfies χu(R

d) = χu(Ω) = Ω∗.
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2.2 Discretizations of the R-Curvature

We consider a non degenerate polygonal domain Y ⊂ Ω∗ with boundary vertices a∗
j , j =

1, . . . , N∗. We first solve an approximate problem where the solution satisfies χu(Ω) = Y .
In view of the compatibility condition (5), we consider a modified right hand side

f̃ (x) = (1 − ε) f (x), ε =
∫
Ω∗\Y R(p)dp
∫
Ω

f (x)dx
. (6)

The truncation f̃ depends on Y and that dependence will be made explicit in Sect. 6 where
we use the notation f̃Y .

Note that since R > 0 on Ω∗, by (5)
∫
Ω

f (x)dx > 0. Furthermore
∫

Ω∗\Y
R(p)dp =

∫

Ω∗
R(p)dp −

∫

Y
R(p)dp =

∫

Ω

f (x)dx −
∫

Y
R(p)dp <

∫

Ω

f (x)dx,

so that 0 < ε < 1. Moreover, in view of (5), we obtain
∫

Ω

f (x)dx −
∫

Ω∗\Y
R(p)dp =

∫

Ω∗
R(p)dp −

∫

Ω∗\Y
R(p)dp =

∫

Y
R(p)dp.

Therefore
∫

Ω

f̃ (x)dx =
∫

Y
R(p)dp. (7)

We therefore consider, using a slight abuse of notation for u, the problem: find u convex on
R
d such that

ω(R, u, E) =
∫

E
f̃ (x)dx for all Borel sets E ⊂ Ω

χu(Ω) = Y .

(8)

Let h be a small positive parameter and letZd
h = a+{mh,m ∈ Z

d } denote the orthogonal
lattice with mesh length h, with an offset a ∈ R

d . Put Ωh = Ω ∩ Z
d
h and denote by

{ r1, . . . , rd } the canonical basis of R
d . If Ω = (0, 1)d and we take a = (1/2, · · · , 1/2),

then Ω = ∪x∈Ωh x + [−h/2, h/2]d . This partition of Ω implies the mass conservation
condition (12) below.

Definition 1 A stencil V is a set valued mapping from Ωh to the set of finite subsets of
Z
d \ {0}.
We will make the abuse of notation of writing e ∈ V for e ∈ V (x) when considering the

points x ± he.
A subsetW of Z

d is symmetric with respect to the origin if ∀y ∈ W ,−y ∈ W . Recall that
a facet of a polygon Y ⊂ R

d is a (d − 1)-dimensional face of Y , c.f. Sect. 9 for the definition
of faces.

We define Vmin to be a finite subset of Z
d\{0} which is symmetric with respect to the

origin, contains the elements of the canonical basis of R
d , and contains a vector parallel to

a normal to each facet of the domain Y .
The assumption that Vmin contains a normal to each facet of the domain Y may seem

restrictive. However the approximate polygonal domain Y to Ω∗ can be chosen such that
normals to its facets are parallel to vectors in Z

d .
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Next, we consider the domain

Ωext = Ωh ∪ { x + he : x ∈ Ωh, e ∈ Vmin }.
Recall that Ωh = Ω ∩ Z

d
h . The stencil Vmax is defined for x ∈ Ωh as

Vmax (x) = { e ∈ Z
d \ {0}, ∃y ∈ Ωext , y = x + he }. (9)

Assumption The stencil V is required to satisfy

Vmin ⊂ V (x) ⊂ Vmax (x), x ∈ Ωh .

Let

∂Ωh = { x ∈ Ωh such that for some e ∈ {±r1, . . . ,±rd }, x + he /∈ Ωh }.
Note that we have by our definition

∂Ωh ⊂ Ωh,

and if x ∈ Ωh \ ∂Ωh , then for all e ∈ {±r1, . . . ,±rd }, x + he ∈ Ωh .
Recall that { r1, . . . , rd } denotes the canonical basis of R

d . For x ∈ Ωh and e ∈ Z
d let

hex = sup{ rh, r ∈ [0, 1] and x + rhe ∈ Ω }. We define

N 1
h = Ωh ∪ { x ∈ ∂Ω, ∃y ∈ Ωh and e ∈ V (y) ∪ { 0 } such that x = y + heye}.

We also define

N 2
h = { x ∈ Z

d
h , x = y + he, e ∈ Vmax (y) ∪ { 0 } and y ∈ Ωh },

where the stencil Vmax is given by (9), i.e. e ∈ Vmax (x) if and only if x = y − he for
y ∈ Ωext = Ωh ∪ { x + he : x ∈ Ωh, e ∈ Vmin }. Recall that Vmin is symmetric with respect
to the origin, contains (r1, . . . , rd) as well as vectors parallel to normals of the facets of Y .
We have

N 1
h ⊂ Ω ⊂ Conv(N 2

h ).

We claim that N 2
h = Ωext . By definition, Ωh ⊂ N 2

h and for x ∈ Ωh and e ∈ Vmin ,
x + he ∈ N 2

h since Vmin ⊂ Vmax (x). Thus Ωext ⊂ N 2
h . Let z ∈ N 2

h , z = y1 + he, y1 ∈
Ωh, e ∈ Vmax (y1). Let y2 ∈ Ωext such that y1 = y2 − he. Thus z = y2 and N 2

h ⊂ Ωext .
This gives N 2

h ⊂ Ωext . The claim is proved.
The unknown in the discrete scheme is a mesh function (not necessarily the interpolant

of a convex function) on Ωh which is extended to Z
d
h using the discrete extension formula

vh(x) = min
y∈∂Ωh

(
vh(y) + max

1≤ j≤N
(x − y) · a∗

j

)
, (10)

motivated by Theorem 10 below.
We consider the following analogue of the subdifferential of a function. For x ∈ Z

d
h and

a mesh function vh , we define

∂V vh(x) = { p ∈ R
d , p · (he) ≥ vh(x) − vh(x − he)∀e ∈ V (x) },

and consider the following discrete version of the R-Monge–Ampère measure

ωV (R, vh, E) :=
∫

∂V vh(E)

R(p)dp,

where ∂V vh(E) = ∪x∈E∂V vh(x).
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For theDirichlet problem, a discrete version of theR-curvature has been used in [45]where
a generalization of the discretization proposed in [42] for R = 1 was studied. Integration of
the density function R (and hence the need of numerical integration) over power diagrams
appears in the semi-discrete approach to optimal transport [2, 22, 30, 33, 36].

A discretization based on ∂V vh may not be accurate for V = Vmin while for V = Vmax

one may need to use power diagrams and a damped Newton’s method as in semi-discrete
optimal transport. For the case of the stencil Vmax , we define

ωa(R, vh, E) :=
∫

∂Vmax vh(E)

R(p)dp.

The discretization considered in [38] used a symmetrization of the subdifferential. The sub-
script a in the notation ωa(R, vh, E) recalls that we use here an asymmetrical version.

The coordinates of a vector e ∈ Z
d are said to be co-prime if their great common divisor

is equal to 1. For a quadratic polynomial p such that 0 < λ ≤ D2 p ≤ Λ and for x ∈
R
d , p(x) = 1/2 xT Mx for a d × d matrix M with condition number less than κ for κ > 0,

consistency of ∂V p(x) at mesh points x at a distance h
√
dκ from ∂Ω , can be proven as in

[38, 40], provided V (x) contains all vectors e ∈ Vmax (x) with co-prime coordinates such
that |e| ≤ 1/2

√
dκ .

For κ > 0, define Vκ to be a mesh independent stencil such that Vκ consists of all
vectors e ∈ Z

d\{ 0 } with co-prime coordinates such that |e| ≤ 1/2
√
dκ . The factor 1/2

√
d

is motivated by Lemma 22 below. Given x ∈ Ωh such that d(x, ∂Ω) > h
√
dκ , we have

Vκ ⊂ Vmax (x), since for e ∈ Vκ , |he| ≤ h/2
√
dκ < h

√
dκ < d(x, ∂Ω) and hence

y = x + he ∈ Ωh ⊂ Ωext . If necessary, by taking κ large, we may assume that Vmin ⊂ Vκ .
In Sect. 6, we first prove convergence of the discretization for V = Vmax . Then we

allow V = Vκ ∩ Vmax and thus have a two-scale approximation uh,κ . Note that the size of
Vκ ∩ Vmax (x) for x ∈ Ωh , is uniformly bounded in x , with an upper bound independent of
N . For that reason, the complexity of the resulting method is O(N ).

We will show that as h → 0, uh,κ converges uniformly on Ω to a continuous function
vκ which solves R(Dv) det D2v = f in in the sense of viscosity. For f ∈ C(Ω), we then
compare vκ to a class of strictly convex quadratic polynomials parameterized by κ . The limit
as κ → +∞ of vκ is a convex function which solves (8).

We define for a function vh on Z
d
h , e ∈ Z

d and x ∈ Z
d
h

Δhevh(x) = vh(x + he) − 2vh(x) + vh(x − he).

Definition 2 A mesh function vh on Ωh extended to Z
d
h using (10) is discrete convex if

Δhevh(x) ≥ 0 for all x ∈ Ωh and e ∈ Vmax (x) such that x ± he ∈ N 2
h . A mesh function vh

is V -discrete convex if Δhevh(x) ≥ 0 for all x ∈ Ωh and e ∈ V(x) such that x ± he ∈ N 2
h .

A Vmax -discrete convex mesh function is discrete convex. Denote by Ch the set of discrete
convex mesh functions.

Definition 3 A mesh function on Ωh which is extended to Z
d
h using the discrete extension

formula (10), and which is discrete convex is said to have asymptotic cone K associated with
Y .

Below, we will consider only discrete convex mesh functions with asymptotic cone K .
We can now describe our discretization of the second boundary value problem: find uh ∈ Ch
with asymptotic cone K such that

ωV (R, uh, { x }) =
∫

Ex

f̃ (t)dt, x ∈ Ωh, (11)
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where (Ex )x∈Ωh form a partition of Ω , i.e. Ex ∩Ωh = { x },∪x∈Ωh Ex = Ω , and Ex ∩ Ey is
a set of measure 0 for x �= y. In the interior ofΩ one may choose as Ex = x +[−h/2, h/2]d
the cube centered at x with Ex ∩Ωh = { x }. The requirement that the sets Ex form a partition
is essential to assure the mass conservation (7) at the discrete level, i.e.

∑

x∈Ωh

ωV (R, uh, { x }) =
∑

x∈Ωh

∫

Ex

f̃ (t)dt =
∫

Ω

f̃ (t)dt =
∫

Y
R(p)dp. (12)

The unknowns in (11) are the mesh values uh(x), x ∈ Ωh . For z /∈ Ωh , the value uh(z)
needed for the evaluation of ∂V vh(x) is obtained from the discrete extension formula (10).

Let uh be discrete convex with asymptotic cone K . Recall that the values of uh onN 1
h \Ωh

are given by (10).
Let

∂huh(x) = { p ∈ R
d , uh(y) ≥ uh(x) + p · (y − x)∀y ∈ N 1

h },
and recall that

∂V uh(x) = { p ∈ R
d , p · (he) ≥ uh(x) − uh(x − he)∀e ∈ V (x) }.

We consider two kinds of convex envelopes of the mesh function uh

Γ1(uh)(x) = sup
L affine

{ L(x) : L(y) ≤ uh(y) for all y ∈ N 1
h } and

Γ2(uh)(x) = sup
L affine

{ L(x) : L(y) ≤ uh(y) for all y ∈ N 2
h },

which are piecewise linear convex functions, c.f. for example [6, p. 11]. We note that N 1
h

depends on the stencil V . Note also that the definition of the convex envelope Γ1(uh) above
allows an ”infinite slope” at points of R

d not in Conv(N 1
h ). If u is a convex function on Ω ,

we can extend u to R
d , c.f. (25) below, by

u(x) = sup{ u(y) + (x − y) · z, y ∈ Ω, z ∈ ∂u(y) }.
We denote by χu the subdifferential of the extended function to R

d . Thus χΓ1(uh) denotes the
subdifferential of the extension to R

d of Γ1(uh), i.e. for x /∈ Conv(N 1
h )

Γ1(uh)(x) = sup{Γ1(uh)(y) + q · (x − y), y ∈ (Conv(N 1
h ))◦, q ∈ ∂Γ1(uh)(y) }, (13)

where for a set D, D◦ denotes its interior.
In [6], we introduced the notation

Δevh(x) = 2

hex + h−e
x

(
vh(x + hexe) − vh(x)

hex
+ vh(x − h−e

x e) − vh(x)

h−e
x

)

.

A notion of V -discrete convexity was introduced in [6, Definition 3] by requiringΔevh(x) ≥
0 for all e ∈ V (x). Therein the focus was on mesh functions which converge to a convex
function. To require that discrete convexity holds on all directions supported by the mesh, V
was taken as V = Z

d \ { 0 }, which is not correct.
The correct definition of discrete convexity in the sense of [6] is to require thatΔevh(x) ≥ 0

for all e ∈ Z
d for which x + hexe ∈ N 1

h and x − h−e
x e ∈ N 1

h .
The above remark also applies to the work in [7]. In addition, the convergence analysis

therein for the Dirichlet problem, holds for a stencil Vmax which contains { e ∈ Z
d , x+hexe ∈

N 1
h }.
The following theorem follows from [6, Lemmas 6 and 7], [6, Theorem 6] and [6, Theorem

4] where we considered ∂huh in connection with Γ1(uh).
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Theorem 1 If x ∈ Ωh and Γ1(uh)(x) = uh(x), then ∂Γ1(uh)(x) = ∂huh(x). If x ∈ Ωh and
Γ1(uh)(x) �= uh(x), then ∂huh(x) = ∅. If x ∈ Conv(N 1

h ), for any p ∈ χΓ1(uh)(x), ∃y ∈ N 1
h

such that p ∈ χΓ1(uh)(x) ∩ χΓ1(uh)(y) and Γ1(uh)(y) = uh(y).
Moreover, for a subset E ⊂ (Conv(N 1

h ))◦, ∂huh(E) = ∂Γ1(uh)(E) up to a set of measure
0 and thus

ω(R, Γ1(uh), E) =
∫

∂huh(E)

R(p)dp.

Analogous to Theorem 1, we have

Theorem 2 If x ∈ Ωh and Γ2(uh)(x) = uh(x), then ∂Γ2(uh)(x) = ∂Vmax uh(x). If x ∈ Ωh

and Γ2(uh)(x) �= uh(x), then ∂Vmax uh(x) = ∅. If x ∈ Conv(N 2
h ), for any p ∈ χΓ2(uh)(x),

∃y ∈ N 2
h such that p ∈ χΓ2(uh)(x) ∩ χΓ2(uh)(y) and Γ2(uh)(y) = uh(y).

Moreover, for a subset E ⊂ (Conv(N 2
h ))◦, ∂Vmax uh(E) = ∂Γ2(uh)(E) up to a set of

measure 0 and thus

ωa(R, uh, E) = ωa(R, Γ2(uh), E).

Remark 1 We observe that if f > 0 on Ω and V = Vmax , a mesh function vh which solves
(11) is discrete convex, as defined in [6]. This follows from Lemma 19 below which gives
vh = Γ1(vh) on N 1

h . Since Γ1(vh) is piecewise linear convex on N 1
h , Δevh(x) ≥ 0 for all

x ∈ Ωh , i.e. vh is discrete convex as defined in [6].

The next lemma shows that the V -discrete convexity assumption is automatically satisfied
for a discrete solution when f > 0.

Lemma 1 If f > 0 inΩ , a mesh function onΩh extended to Z
d
h using (10), and which solves

(11) is V -discrete convex.

Proof It is a consequence of Lemma 3 below that a discrete convex mesh function vh which
solves (11) using the discrete extension formula (10) satisfies ∂V vh(Ωh) ⊂ Y ⊂ Ω∗. Recall
that R > 0 on Ω∗. If f > 0 in Ω , and x ∈ Ωh , we have ωV (R, uh, { x }) > 0 and hence
∂V vh(x) ⊂ Ω∗ is a set with a non zero Lebesgue measure. In particular, it is non empty.
Assume that e ∈ V (x) and x ± he ∈ N 2

h . For p ∈ ∂V vh(x), we have

vh(x) − vh(x − he) ≤ p · (he) ≤ vh(x + he) − vh(x).

This implies that vh(x) − vh(x − he) ≤ vh(x + he) − vh(x) and hence Δhevh(x) ≥ 0 for all
e ∈ V (x). ��
Remark 2 FromLemma 1, the V -discrete convexity assumption does not need to be explicitly
imposed when f > 0 in Ω . However, unless V = Vmax , uniform limit of V -discrete convex
mesh functions need not be convex.

The support function kY of the closed convex set Y is defined by kY (p) = supz∈Y p · z.
The definition essentially says that for the direction p, Y lies on one side of the hyperplane
p · z = kY (p). For x = (x1, . . . , xd) ∈ Rd , put ||x ||1 = ∑

i=1,...,d |xi |.
We need the following lemma which follows from [11, Proposition 4.3].

Lemma 2 Let vh be a mesh function and e ∈ Vmin such that Δhevh(x) ≥ 0 for x ∈ Ωh,
with vh(x) for x /∈ Ωh given by (10). Then, for integers k and l with k ≥ 0, l ≤ 0 such that
x + khe and x + lhe are in Ωh

−kY (−he) ≤ vh(x + lhe) − vh(x + (l − 1)he)

≤ vh(x + (k + 1)he) − vh(x + khe) ≤ kY (he). (14)
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Moreover

|vh(x) − vh(y)| ≤ C ||x − y||1, (15)

for x, y ∈ Ω ∩ Z
d
h and for a constant C = max{ |kY (−ri )|, |kY (ri )|, i = 1, . . . , d } indepen-

dent of h and vh.

Proof Let x ∈ Ωh and e ∈ Vmin . Since by assumption Δhevh(x) ≥ 0, we have

vh(x + he) − vh(x) ≥ vh(x) − vh(x − he).

Therefore for integers k and l with k ≥ 0, l ≤ 0 such that x + khe and x + lhe are in Ωh

vh(x + (k + 1)he) − vh(x + khe) ≥ vh(x + lhe) − vh(x + (l − 1)he).

Let us now assume that k and e are such that x + khe ∈ Ωh but x + (k + 1)he /∈ Ωh . Then
by definition, since x + khe ∈ ∂Ωh

vh(x + (k + 1)he) ≤ max
1≤ j≤N

he · a∗
j + vh(x + khe).

It follows that

vh(x + (k + 1)he) − vh(x + khe) ≤ max
1≤ j≤N

he · a∗
j .

This can be written

vh(x + (k + 1)he) − vh(x + khe) ≤ kY (he).

Assume now that x + (l − 1)he /∈ Ωh but x + lhe ∈ Ωh . Then

vh(x + (l − 1)he) ≤ max
1≤ j≤N

−he · a∗
j + vh(x + lhe).

It follows that

vh(x + lhe) − vh(x + (l − 1)he) ≥ −kY (−he).

In summary, for integers k and l with k ≥ 0, l ≤ 0 such that x + khe and x + lhe are in Ωh

(14) holds.
The proof of (15) is given in [11, Proposition 4.3 (5)]. Note that in (14), x + (k + 1)he

and x + (l − 1)he may not be in Ωh . Let now x and y in Ω ∩Z
d
h and put y = x +∑d

i=1 li hri
where we recall that { r1, . . . , rd } denotes the canonical basis of R

d and its elements are in
V (z) for all z ∈ Ωh by assumption. Rewriting (14) as

−kY (−he) ≤ vh(x + lhe) − vh(x + (l − 1)he) ≤ kY (he)

−kY (−he) ≤ vh(x + (k + 1)he) − vh(x + khe) ≤ kY (he),

we see that if li ≥ 0, we have−li hkY (−ri ) ≤ vh(x + li hri )−vh(x) ≤ li hkY (ri )while when
li ≤ 0, −|li |hkY (−ri ) ≤ vh(x) − vh(x + li hri ) ≤ |li |hkY (ri ). Therefore

|vh(x + li he) − vh(x)| ≤ |li |hmax{ |kY (−ri )|, |kY (ri )| }, (16)

which gives

|vh(y) − vh(x)| ≤ h
d∑

i=1

|li |max{ |kY (−ri )|, |kY (ri )|, i = 1, . . . , d }.

The proof is complete. ��
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The next lemma describes how the discrete extension formula (10) enforces the second
boundary condition.

Lemma 3 Assume that Δhevh(x) ≥ 0 for all x in Ωh and e ∈ Vmin ⊂ V (x), with vh(x) for
x /∈ Ωh given by (10). We have

∂V vh(Ωh) ⊂ Y .

Proof With k = l = 0 in Lemma 2, we obtain for x ∈ Ωh and e ∈ Vmin

− kY (−he) ≤ vh(x) − vh(x − he) ≤ vh(x + he) − vh(x) ≤ kY (he). (17)

Let p ∈ ∂V vh(x). Since for e ∈ Vmin , −e ∈ Vmin , we have p · (−he) ≥ vh(x) − vh(x + he)
for all e ∈ V (x), that is

p · (he) ≤ vh(x + he) − vh(x) ≤ kY (he) = hkY (e).

This proves that p · e ≤ kY (e) for all e ∈ Vmin . Since Vmin contains vectors parallel to the
normals to facets of the polygon Y , we conclude that p ∈ Y and thus ∂V vh(Ωh) ⊂ Y . The
proof is complete. ��

3 Stability, Uniqueness and Existence

Adding a constant to a solution of (11) results in another solution. We will require that
vh(x1h) = α for an arbitrary number α and a mesh point x1h . Recall that vh is defined only at
mesh points. We will assume that x1h → x1 for a point x1 ∈ Ω .

The stability of solutions is an immediate consequence of (15).

Theorem 3 Solutions vh ∈ Ch of (11) with vh(x1h) = α for an arbitrary number α and
x1h ∈ Ωh, are bounded independently of h.

Proof Since for vh ∈ Ch and x ∈ Ωh , Δhevh(x) ≥ 0 for all e ∈ V , vh is bounded indepen-
dently of h by (15). ��
Theorem 4 For f > 0 in Ω , solutions of the discrete problem (11) are unique up to an
additive constant for V = Vmax .

Proof The proof is the same as the proof of uniqueness of a solution to (1) in the class of
convex polyhedra, i.e. when the right hand side is a sum of Dirac masses. See for example
[8, Theorem 17.2] for a sketch of the proof for convex polyhedra. The proof therein requires
non trivial Dirac masses, hence our assumption that f > 0.

We first note that if uh is a solution of (11), then uh + C is also a solution of (11) for a
constant C . Let vh and wh be two solutions of (11). We may assume that vh(x) ≥ wh(x)
for all x ∈ Ωh , if necessary by adding a constant to wh . Furthermore, we may also assume
that there exists x1 ∈ Ωh such that vh(x1) = wh(x1). For convenience, and by an abuse
of notation, we do not mention the dependence of x1 on h. To prove the existence of x1,
let a = min{ vh(x) − wh(x), x ∈ Ωh }. Since Ωh is finite, there is x1 ∈ Ωh such that
a = vh(x1) − wh(x1). With sh(x) = wh(x) + a, we obtain vh(x) ≥ sh(x) for all x ∈ Ωh

with vh(x1) = sh(x1).
It follows from (10) that vh ≥ wh on Z

d
h . We show that vh = wh and hence any two

solutions can only differ by a constant.
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Since vh(x1) = wh(x1) and vh(x) ≥ wh(x) for all x ∈ Z
d
h , we have ∂Vwh(x1) ⊂

∂V vh(x1). Next, we note that as f > 0 in Ω , ∂Vwh(x1) is a non empty polygon with facets
given by hyperplanes orthogonal to directions e in a subset V̂ of V . We consider a subset of
V because some faces may only intersect ∂Vwh(x1) at a vertex.

If there is some ê ∈ V̂ such that vh(x1 + hê) > wh(x1 + hê), then ∂V vh(x1)\∂Vwh(x1)
has non zero measure. Since R > 0 on Ω∗ and by Lemma 3 ∂V vh(x1) ⊂ Ω∗, and by
assumption ωa(R, vh, { x1 }) = ωa(R, wh, { x1 }), this is impossible from properties of the
Lebesgue integral. We have proved that under the assumption that vh(x1) = wh(x1)wemust
have (vh − wh)(x1 ± he) = 0 ∀e ∈ V̂ .

Let P1 denote the convex hull of x1 and the points x1 + he, e ∈ V̂ . By Lemma 19
below we have vh = Γ2(vh) on Ωh . Recall that Γ2(vh) is a piecewise linear convex function.
Alsowh = Γ2(wh) onΩh . ThereforeΓ2(vh) = Γ2(wh) on ∂P1 withωa(R, Γ2(vh), { x1 }) =
ωa(R, Γ2(wh), { x1 }). BecauseΓ2(vh) andΓ2(wh) are piecewise linear convex, by construc-
tion of V̂ , at all other points x of P1, we have ωa(R, Γ2(vh), { x }) = ωa(R, Γ2(wh), { x }) =
0. By unicity of the solution to the Dirichlet problem for the Monge–Ampère equation [48,
Theorem 2.1], we obtain Γ2(vh) = Γ2(wh) on P1. Hence vh = wh on P1 ∩ Ωh .

Next, we choose a point x2 on ∂P1 ∩ Ωh and denote by P2 the corresponding polygon.
Repeating this process with points on ∂Pi−1 ∩ Ωh, i > 2, we obtain a sequence of mesh
points xi and associated polygons Pi of non zero volumes on which vh = wh .

Next, we observe that ∪i Pi = Conv(N 2
h ) as the points xi are projections onto R

d of ver-
tices on the lower part of the convex polygon which is the epigraph of Γ2(wh) on Conv(N 2

h ).
We conclude that vh = wh . ��
Lemma 4 Let x1 ∈ Ωh and vh be discrete convex with asymptotic cone K . Assume that
ωV (R, vh, { x }) > 0 for all x ∈ Ωh. Let wh and qh be defined on Z

d
h by wh(x) = vh(x)

for x �= x1, x ∈ Ωh and wh(x1) = vh(x1) − ε, qh(x) = vh(x) for x �= x1, x ∈ Ωh and
qh(x1) = vh(x1) + ε. The values of wh and qh on Z

d
h \ Ωh are given by (10). There exists

ε0 > 0 such that for 0 < ε ≤ ε0, wh and qh are discrete convex with asymptotic cone K ,
qh ≥ vh ≥ wh on Z

d
h . Moreover, if x1 ∈ Ωh \∂Ωh, ωV (R, wh, { x1 }) > ωV (R, vh, { x1 }) >

ωV (R, qh, { x1 }).
Proof Let ε1 = min{Δhevh(x), x ∈ Ωh, e ∈ V (x), x ± he ∈ N 2

h }. We have ε1 > 0 since
ω(R, vh, { x }) > 0 for all x ∈ Ωh . Otherwise, there would be x0 ∈ Ωh and a direction
e ∈ V (x0) such that Δhevh(x0) = 0. In that case, ∂V vh(x0) is contained in the hyperplane
p ·e = (vh(x0+he)−vh(x0))/h = (vh(x0)−vh(x0−he))/h, and henceωV (R, vh, { x0 }) =
0, a contradiction.

Let ε > 0.We haveΔhewh(x1) = Δhevh(x1)+2ε ≥ ε1+2ε. We claim thatΔhewh(x) ≥
ε1 − 2ε for all x ∈ Ωh, x �= x1. This is because, for x ∈ Ωh and e ∈ V (x), wh(x + he) ≥
vh(x + he) − ε. When x + he ∈ Ωh , this follows from the definition of wh . Assume that
x + he ∈ Z

d
h \ Ωh and put ψ(s) = max j=1,...,N (x + he − s) · a∗

j . Let s0 ∈ ∂Ωh such that

wh(x + he) = wh(s0) + ψ(s0). If s0 = x1 and vh(x + he) = vh(s0) + ψ(s0), we have
wh(x +he) = vh(x +he)− ε. If s0 = x1 and vh(x +he) = vh(s1)+ψ(s1) for s1 �= s0, then
by definition vh(s0) + ψ(s0) ≥ vh(x + he) and thus wh(x + he) = vh(s0) − ε + ψ(s0) ≥
vh(x + he) − ε. When s0 �= x1 we have wh(x + he) = vh(s0) + ψ(s0) ≥ vh(x + he). This
proves the claim when x + he ∈ Z

d
h\Ωh .

With a similar argument, we have Δheqh(x1) = Δhevh(x1) − 2ε ≥ ε1 − 2ε and
Δheqh(x) ≥ ε1 for all x ∈ Ωh, x �= x1.

We have Δhewh(x) ≥ ε1 − 2ε for all x ∈ Ωh . We conclude that for ε ≤ ε1/2, wh is
discrete convex. By construction wh has asymptotic cone K . Similarly, Δheqh(x) ≥ ε1 − 2ε
for all x ∈ Ωh . So, for ε ≤ ε1/2, qh is discrete convex with asymptotic cone K .
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It is immediate that qh ≥ vh ≥ wh on Z
d
h . Let { e1, . . . , em } ⊂ Z

d denote a set of
normals to the facets of ∂V qh(x1) and let { s1, . . . , sn } ⊂ Z

d denote a set of normals to
the facets of ∂Vwh(x1). By construction of ∂V vh(x1), { e1, . . . , em } ⊂ V (x1). Similarly
{ s1, . . . , sn } ⊂ V (x1). When x1 ∈ Ωh\∂Ωh , we get vh(x) = wh(x) = qh(x) for x �= x1.
Thus

∂Vwh(x
1) = { p ∈ R

d , p · (hs j ) ≤ wh(x
1 + hs j ) − wh(x

1), j = 1, . . . , n }
= { p ∈ R

d , p · (hs j ) ≤ vh(x
1 + hs j ) − vh(x

1) + ε, j = 1, . . . , n }
� { p ∈ R

d , p · (hs j ) ≤ vh(x
1 + hs j ) − vh(x

1), j = 1, . . . , n }
⊃ { p ∈ R

d , p · (he) ≤ vh(x
1 + he) − vh(x

1),∀e ∈ V (x1) } = ∂V vh(x
1).

We conclude that |∂Vwh(x1)| > |∂V vh(x1)|. Similarly,

∂V qh(x
1) = { p ∈ R

d , p · (hei ) ≤ qh(x
1 + hei ) − qh(x

1), i = 1, . . . ,m }.
This gives ∂V qh(x1) = { p ∈ R

d , p · (hei ) ≤ vh(x1 + hei ) − vh(x1) − ε, i = 1, . . . ,m } �

{ p ∈ R
d , p · (hei ) ≤ vh(x1 + hei ) − vh(x1), i = 1, . . . ,m } = ∂V vh(x1). This implies

|∂V qh(x1)| < |∂V vh(x1)|. The proof is complete with ε0 = ε1/2. ��
When V �= Vmax , it may be necessary to have additional requirements for uniqueness.

Let uh be a solution of (11) and let us assume that we have N 2
h = N 2

h,a ∪ N 2
h,b with

N 2
h,a ∩ N 2

h,b = ∅. Assume furthermore that for x ∈ Ωh ∩ N 2
h,a , and e ∈ V (x) such that e is

a normal to a facet of ∂V uh(x), we have x + he ∈ N 2
h,a . A similar requirement is made for

x ∈ Ωh ∩ N 2
h,b. Then, adding a constant to uh on N 2

h,b may result in another solution.
In the next theorem, we observe that when V �= Vmax , if uh and vh are solutions and uh

is not equal to vh up to a constant, it is not possible to have uh ≥ vh up to a constant with
equality only at one point.

Theorem 5 Assume that f > 0 in Ω and Vmin ⊂ V ⊂ Vmax . Let uh and vh be two solutions
of the discrete problem (11) such that up to a constant added to uh, we have uh ≥ vh on Ωh.
Then it is not possible to have equality up to a constant only at one point x1 ∈ Ωh\∂Ωh. If
in addition V (x) = Vmax (x) for all x ∈ ∂Ωh, then it is not possible to have equality up to a
constant only at one point x1 ∈ ∂Ωh.

Proof Let uh and vh be two mesh functions which are discrete convex with asymptotic cone
K .

Part 1 Assume that there exists z ∈ Ωh such that uh(x) − vh(x) ≥ uh(z) − vh(z) for all
x ∈ Ωh . We prove that ωV (R, uh, { z }) ≥ ωV (R, vh, { z }).

We claim that for x /∈ Ωh we have uh(x) − vh(x) ≥ uh(z) − vh(z). Let y1 and y2 in
∂Ωh such that uh(x) = uh(y1) + kY (x − y1) and vh(x) = vh(y2) + kY (x − y2). We have by
definition of vh(x), vh(y2) + kY (x − y2) ≤ vh(y1) + kY (x − y1). Moreover

uh(x) − vh(x) = uh(y1) − vh(y2) + kY (x − y1) − kY (x − y2)

≥ uh(y1) − vh(y2) + vh(y2) − vh(y1) = uh(y1) − vh(y1)

≥ uh(z) − vh(z),

since ∂Ωh ⊂ Ωh .
Next, for e ∈ V (z), we have

uh(z + he) − vh(z + he) ≥ uh(z) − vh(z),
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and thus for p ∈ ∂V vh(z)

uh(z + he) ≥ vh(z + he) + uh(z) − vh(z) ≥ vh(z) + p · (he) + uh(z) − vh(z)

= uh(z) + p · (he),

which shows that p ∈ ∂V uh(z). This proves the claim.
Part 2 Let ε > 0. Assume now that uh and vh are two solutions of (11). For all x ∈ Ωh

ωV (R, uh, { x }) = ωV (R, vh, { x }) > 0.

As in the proof of Theorem 4, we may assume that uh(x) ≥ vh(x) for all x ∈ Ωh with
uh(x1) = vh(x1) for some x1 ∈ Ωh . By assumption, for x ∈ Ωh and x �= x1, uh(x) > vh(x).

We consider the case that x1 ∈ Ωh\∂Ωh so that we can use Lemma 4. Let wh denote the
perturbation of vh constructed in Lemma 4 with ε. We have

ωV (R, wh, { x1 }) > ωV (R, vh, { x1 }).
Let qh denote the perturbation of uh constructed in Lemma 4. We have

ωV (R, uh, { x1 }) > ωV (R, qh, { x1 }).
Since ωV (R, uh, { x1 }) = ωV (R, vh, { x1 }), we obtain

ωV (R, wh, { x1 }) > ωV (R, qh, { x1 }). (18)

Recall that for ε sufficiently small, both wh and qh are discrete convex with asymptotic cone
K . Assume that uh �= vh and choose ε sufficiently small such that

2ε < min{ uh(x) − vh(x) : x ∈ Ωh, uh(x) > vh(x) }.
We have qh ≥ uh ≥ vh ≥ wh on Ωh . Moreover, using uh(x1) = vh(x1),

qh(x
1) − wh(x

1) = uh(x
1) + ε − (vh(x

1) − ε) = 2ε.

In addition, for x �= x1, x ∈ Ωh , qh(x)−wh(x) = uh(x)−vh(x) ≥ 2ε = qh(x1)−wh(x1).
Therefore, qh − wh has a minimum at x1 and are both discrete convex with asymptotic cone
K . From Part 1, we conclude that ωV (R, qh, { x1 }) ≥ ωV (R, wh, { x1 }). This contradicts
(18). We conclude that uh = vh at more than one point.

Part 3Next, we consider the case that x1 ∈ ∂Ωh . By the assumption that V (x) = Vmax (x)
for all x ∈ ∂Ωh , f > 0 on Ωh and Theorem 2, we have Γ2(vh)(x1) = vh(x1) = uh(x1) =
Γ1(vh)(x1). As in the proof of Theorem 4, we consider the convex decomposition ∪n

i=1Pi =
Conv(N 2

h ) associated with Γ2(vh) with x1 ∈ P1. Here P1 is the convex hull of x1 and

the points x1 ± he, e ∈ V̂ , where V̂ ⊂ V (x1) denotes the set of normals to the facets of
∂Vmax vh(x

1). As in the proof of Theorem 4 we get (uh − vh)(x1 ± he) = 0 ∀e ∈ V̂ .
By assumption, for x ∈ Ωh and x �= x1,uh(x) > vh(x). Therefore for e ∈ V̂ , x+he /∈ Ωh .

By assuming that h is sufficiently small or the domainΩ is large relative to the size of e ∈ V̂ ,
we conclude that all points x + he for e ∈ V̂ are in the same closed half-space. But the set
of normals to the facets of a polygon cannot all lie in the same half-space, as a consequence
of [31, Proposition 1]. That is, if ae denotes the volume of the facet of ∂Vmax vh(x

1) with
normal e,

∑
e∈V̂ aee = 0. If for a unit vector w, we have w · e ≥ 0 for all e ∈ V̂ , then

∑
e∈V̂ aew · e = 0 and hence w · e = 0 for all e ∈ V̂ . Since the set of normals to the facets

of the non degenerate polygon ∂Vmax vh(x
1) span R

d , we obtain w = 0. Contradiction. We
conclude that uh = vh at more than one point. ��
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The proof of existence of a solution to (11) in the case V = Vmax is identical to the case
of convex polygonal approximations [8, Theorem 17.2].

Lemma 5 Let vkh be a sequence of discrete convex mesh functions with asymptotic cone K
such that vkh(x) → vh(x) for all x in Ωh. Then vh is discrete convex with asymptotic cone K
and for all x ∈ Ωh, ωV (R, vkh, { x }) → ωV (R, vh, { x }).
Proof Let x ∈ Z

d
h \ Ωh and assume that vkh(x) = vh(sk) + (x − sk) · a∗

k for some sk ∈ ∂Ωh

and a vertex a∗
k of Y . Here max j=1,...,N (x − sk) · a∗

j = (x − sk) · a∗
k . Since Ωh is finite, up to

a subsequence, we obtain for k sufficiently large, sk = s ∈ ∂Ωh and a∗
k = a∗ for a vertex a∗

of Y . We thus have vh(x) = vh(s)+ (x − s) ·a∗ with max j=1,...,N (x − s) ·a∗
j = (x − s) ·a∗.

Hence vkh(x) → vh(x) for all x ∈ Z
d
h and vh has asymptotic cone K .

By a similar argument, if for x ∈ Ωh and e ∈ V , Δhev
k
h(x) ≥ 0, then Δhevh(x) ≥ 0.

We now prove that for all x ∈ Ωh , ωa(R, vkh, { x }) → ωa(R, vh, { x }). We have for
x ∈ Ωh

∫

∂V vkh(x)
R(p)dp −

∫

∂V vh(x)
R(p)dp

=
∫

∂V vkh(x)\∂V vh(x)
R(p)dp −

∫

∂V vh(x)\∂V vkh(x)
R(p)dp.

If p ∈ ∂V vkh(x) \ ∂V vh(x) there exists e ∈ V such that

vh(x + he) − vh(x) < p · (he) ≤ vkh(x + he) − vkh(x).

Put α = vh(x + he)− vh(x) and β = vkh(x + he)− vkh(x). We have |p · (he)− (α +β)/2| ≤
β − α. As k → ∞, β → α. Therefore, given δ > 0, there exists k0 such that for all
k ≥ k0, |p · (he) − α| ≤ δ, where we used α = (α + β)/2 − (β − α)/2. This also gives
|p · (−he) − (−α)| ≤ δ.

Recall that ∂V vkh(x) ⊂ Y is bounded.We conclude that there is a constantC which depends
on e and h such that |∂V vkh(x)\∂V vh(x)| ≤ Cδ. Since R is integrable, there exists δ > 0 such
that if |S| < Cδ, we have

∫
S R(p)dp < ε/2. It follows that

∣
∣
∫
∂V vkh(x)\∂V vh(x)

R(p)dp
∣
∣ < ε/2

for k ≥ k0.
With a similar argument, we have

∣
∣
∫
∂V vh(x)\∂V vkh(x)

R(p)dp
∣
∣ < ε/2 for k ≥ k1 for an

integer k1. This proves that for k ≥ max{ k0, k1 }, |ωV (R, vkh, { x }) − ωV (R, vh, { x })| < ε

and completes the proof. ��
The last statement of the above lemma can also be proven from the continuity of the

mapping vh �→ ∫
∂V vh(x)

R(p)dp, c.f. for example [30, Proposition 2.3].

Definition 4 [22, Sect. 2.2] Aconvex subdivisionT of a convexpolyhedron P is a subdivision
of P into convex polyhedra K , also called cells, such that

– ∪K∈T K = P
– if K and L are both in T , then so is their intersection
– if K ∈ T and L ⊂ K , then L ∈ T if and only if L is a face of K .

Associated to the piecewise linear convex function u(x) = max{x · pi +hi : i = 1, . . . , M},
where pi ∈ R

d , hi ∈ R for all i , is a convex subdivision of R
d whose top dimensional cells

are given by
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Wi = { x ∈ R
d , x · pi + hi ≥ x · p j + h j , j = 1, . . . , M },

for i = 1, . . . , M .

Remark 3 The proof of existence of a solution in the case V = Vmax , given below, uses
the convex subdivision of a piecewise linear convex function. For V not necessary equal to
Vmax , the proof of convergence of a damped Newton’s method for solving (11) given in [4]
also gives existence of a solution to (11). Therein, a subsequence of the damped Newton’s
iterations is shown to converge to a solution. If the problem is known to have a unique
solution, then the whole sequence converges to the unique solution.

Theorem 6 There exists a solution to (11) for f > 0 on Ω and V = Vmax .

Proof Let Ωh = ∪M
i=1{ xi } and μi = ∫

Exi
f̃ (x)dx, i = 1, . . . , M . Let A denote the set of

discrete convexmesh functions onΩh with asymptotic cone K such that for vh ∈ A, vh(x1) =
α for α ∈ R and 0 ≤ ωa(R, vh, { xi }) ≤ μi , i = 2, . . . , M with ωa(R, vh, { x1 }) =∫
Y R(p)dp − ∑M

i=2 ωa(R, vh, { xi }).
The set A is not empty since vh given by the restriction to Ωh of k(x1,α)(x) := α +

max j=1,...,N a∗
j · (x − x1) is in A. Note that k(x1,α) is a piecewise linear convex function

with only one vertex (x1, α), c.f. Sect. 4.4, and ∂k(x1,α)(x
1) = ∂k(x1,α)(R

d) = Y . We then
observe that Γ2(vh) = k(x1,α) [6, Theorem 3] and by Theorem 2, up to a set of measure
0, ∂Vmax vh(x

1) = ∂k(x1,α)(x
1). Next, we consider the mapping L : R

M → A defined by
L(ζ ) = vh with vh defined by vh(xi ) = ζi , i = 1, . . . , M and ζ = (ζi )i=1,...,M . Themapping
L is a bijection and we put A = L−1A.

We claim that A is a compact subset of R
M . Let ζ k ∈ A, k ≥ 1 such that ζ k → ζ and

put vkh = L(ζ k). By assumption, ζ k
1 = α for all k. Thus ζ1 = α. It follows from Lemma 5

that the set A is closed. By Lemma 2 and (15), for all ζ ∈ A and vh = L(ζ ) we have
|vh(xi )| ≤ C, i = 1, . . . , d and C is independent of i . Thus A is bounded. We conclude that
A is a compact subset of R

d .
Define F : R

M → R by F(ζ ) = ∑M
i=1 ζi . Since A is compact, F has a minimum f0 at

some ζ 0 ∈ A. Put L(ζ 0) = v0h . We show that v0h solves (11).
Assume that v0h does not solve (11). Since ωa(R, v0h, { xi }) ≤ μi , i = 2, . . . , M we must

have for some l ∈ { 2 . . . , M }, ωa(R, v0h, { xl }) < μl . Define v̂h by

v̂h(x
i ) = v0h(x

i ), i �= l and v̂h(x
l) = v0h(x

l) − ε,

for ε > 0. The values of v̂h on Z
d
h\Ωh are given by (10).

We have F(v̂h) = f0 − ε. We show that for ε sufficiently small v̂h ∈ A and hence this
yields a contradiction and concludes the proof. By construction v̂h(x1) = α and by Lemma 4,
v̂h is discrete convex with asymptotic cone K for ε ≤ ε0 and ε0 > 0.

For i �= l and i ≥ 2 we have ωa(R, v̂h, { xi }) ≤ ωa(R, v0h, { xi }) ≤ μi . Arguing as in
Lemma 4 we haveωa(R, v̂h, { xl }) ≥ ωa(R, v0h, { xl }) and using Lemma 5, for ε sufficiently
small we obtain ωa(R, v0h, { xl }) ≤ ωa(R, v̂h, { xl }) < μl .

Finally, by Lemma 3, ∂V v0h(Ωh) ⊂ Y and
∑M

i=1 ωa(R, v0h, { xi }) = ∫
Y R(p)dp by

assumption. Therefore ∂V v0h(Ωh) = Y since ∂V v0h(Ωh) is a union of polygons. Also, by
Lemma 3, ∂V v̂h(Ωh) ⊂ Y . We claim that ∂V v̂h(Ωh) = Y .

Let p ∈ Y and assume that p ∈ ∂V v0h(x), x ∈ Ωh . If x = xl , then p ∈ ∂V v0h(x) ⊂
∂V v̂h(x) ⊂ ∂V v̂h(Ωh). If x �= xl , we have either p ∈ ∂V v̂h(x) ⊂ ∂V v̂h(Ωh) or p /∈ ∂V v̂h(x).
Assume that p /∈ ∂V v̂h(x). We show that p ∈ ∂V v̂h(xl). Since p /∈ ∂V v̂h(x), ∃ ê ∈ V such
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that

v̂h(x + hê) − v̂h(x) < p · (hê).

We must have x + hê = xl . Otherwise, as x �= xl , we would have v̂h(x + hê) = v0h(x + hê)
and v̂h(x) = v0h(x), thus a contradiction with p ∈ ∂V v0h(x). Thus

p · (−hê) < v̂h(x
l − hê) − v̂h(x

l). (19)

Since p ∈ ∂V v0h(x), we have for all e ∈ V , p · (he + hê) ≤ v0h(x + he + hê) − v0h(x) =
v0h(x

l + he) − v0h(x
l − hê). This gives by (19) p · (he) ≤ v̂h(xl + he) − v̂h(xl) where

we also used xl + he �= xl . We conclude that p ∈ ∂V v̂h(xl) and Y ⊂ ∂V v̂h(Ωh). As
a consequence ωa(R, v̂h, { x1 }) = ∫

Y R(p)dp − ∑M
i=2 ωa(R, v̂h, { xi }). Here, we use the

observation that for x ∈ Ωh , ωa(R, v̂h, { x }) = ωa(R, Γ2(v̂h), { x }) and for x, y ∈ Ωh with
x �= y, ∂Γ2(v̂h)(x)∩ ∂Γ2(v̂h)(y) is a set of measure 0. This concludes the proof that v̂h ∈ A.

��

4 Asymptotic Cone of Convex Sets

In this section we first review the geometric notion of asymptotic cone and give an analytical
formula, with a geometric interpretation, for the extension to R

d of a convex function on
a polygon Ω , in such a way that it has a prescribed behavior at infinity, i.e. a prescribed
asymptotic cone. The prescribed asymptotic cone will be constructed from a polygon Y
which approximates the domain Ω∗ appearing in the second boundary condition. We will
use the term polygon to also refer to a polygonal domain. Figure3 taken from [5] illustrates
the results discussed in this section. Using the notion of asymptotic cone we reformulate the
second boundary condition. This allows to prove more results about convex extensions.

4.1 Asymptotic Cones

We will use the notation R
d+1 for a set of points and for a vector space over R endowed

with the operations of scalar multiplication and addition. This makesR
d+1 a Euclidean space

with associated vector space R
d+1. When emphasizing the geometric nature of some of the

notions discussed below, we will use capital letters for points in the Euclidean space R
d+1

and lower case letters for vectors. Thus we have a mapping R
d+1 × R

d+1 → R
d+1 which

maps (P, e) to P + e. We will use the notation O for the origin in R
d+1. If Q = P + e we

write e = −→
PQ.

Let L be a line in R
d+1, A be some point of L , and e ∈ R

d+1 be a direction vector of L .
The sets

L+
A,e = { X ∈ L,

−→
AX = λe, λ ≥ 0 } and L−

A,e = { X ∈ L,
−→
AX = λe, λ ≤ 0 },

are the rays of L with vertex A.
The Minkowski sum of S ⊂ R

d+1 and T ⊂ R
d+1 is defined to be S + T = { s + t, s ∈

S, t ∈ T }.
Let M ⊂ R

d+1 be a set. We denote by KA(M) the set of points in M lying on the rays
starting from the point A ∈ M . If there are no such rays, we set KA(M) = { A }. We say that a
set K1 is a parallel translation of K2 if K2 = e+K1 for some direction e ∈ R

d+1. It is known
that when M is convex, KA(M) is convex and independent (up to a parallel translation) of
the point A ∈ M and is called asymptotic cone of the convex set M [8, Theorem 1.8 and
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Fig. 1 A polyhedral angle in R
3. The dashed polygon is a virtual cut of the unbounded set. To emphasize that

a polyhedral angle has non zero Lebesgue measure, a filled version is shown

Corollary 1]. For a convex bounded set M , we have KA(M) = { A } for all A ∈ M and { A }
is a parallel translation of { B } for all A, B ∈ M .

Definition 5 The asymptotic cone KA(M) of a convex set M is defined for A ∈ M as

{ B : B ∈ L+
A,e for e ∈ R

d and L+
A,e ⊂ M } = { B : B = A + μe, μ ≥ 0, e ∈ R

d+1,

A + λe ∈ M ∀λ ≥ 0 }.
It is unique up to parallel translation, and is in that sense independent of the point A, i.e.

KB(M) = KA(M) + −→
AB.

The reason of the term ”cone” in the name asymptotic cone will be clear from Sect. 9
belowwhere we give a formal definition of cone.Moreover, we will be interested in a specific
example of cone which we will refer to as polyhedral angle (formal definitions are in Sect. 9).
An intuitive notion of cones and polyhedral angles as illustrated in Fig. 1 is enough for this
paper.

We denote by Conv(D) the convex hull of the set D ⊂ R
d , i.e. the smallest convex set

containing D. It is known that Conv(D) is the set of all convex combinations of elements of
D, i.e. the set of elements

∑n
i=1 λi xi , n ∈ N, xi ∈ D, λi ∈ [0, 1] and ∑n

i=1 λi = 1.
Let Y ⊂ R

d be a convex polygon with vertices a∗
1 , a

∗
2 , . . . , a

∗
N∗ ∈ R

d . We have Y =
Conv{ a∗

1 , a
∗
2 , . . . , a

∗
N∗ }. In this paper, we use the mention ∗ for objects related or which will

be related to Ω∗. As we will associate below a cone K to Y , we avoid the ∗ notation for Y
to avoid confusion with the dual of a cone. We assume that Y is non degenerate in the sense
that it has non zero Lebesgue measure. Define for (p, μ) ∈ Ω × R the function on R

d

k(p,μ)(x) = max
1≤i≤N∗(x − p) · a∗

i + μ. (20)

Recall that the epigraph of k(p,μ) is the set

K(p,μ) = { (x, w) ∈ R
d × R, w ≥ k(p,μ)(x) }.

We will refer to sets of the type K(p,μ) as polyhedral angles, and refer to Figs. 1 and 2 for
illustrations. In other words, a polyhedral angle is the epigraph of a function of type k(p,μ)

given in (20). In Sect. 9 we give a more general definition of polyhedral angle. We only need
the class of polyhedral angles introduced above in this paper.
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Fig. 2 Epigraph of k(p,μ) with a
parallel translation as epigraph of
k(q,γ ). The dotted lines at the top
of the figure represent virtual cuts
of the unbounded epigraphs. As
γ < μ in the figure, more of the
unbounded epigraph is shown

p

μ

q

γ

It is crucial for the reader to see the connection between the graph of a function k(p,μ) for
given (p, μ) and the polyhedral angles depicted in Figs. 1 and 2. For another example, the
function defined on R by w = |x |, i.e., w = max{−x, x } is a function of the form k(p,μ).
Its epigraph is a polyhedral angle.

To the polygon Y we associate the polyhedral angle

K ≡ K(0,0),

which depends only on the vertices of Y . In Sect. 6, we will approximate the closure of the
bounded convex domain Ω∗ by polygons Y ⊂ Ω∗. The polyhedral angle K associated with
Y is an example of a more general construction, which we now describe.

For each p ∈ Ω∗ one associates the half-space Q(p) = { (x, z) ∈ R
d × R, z ≥ p · x }.

The convex set KΩ∗ is defined as the intersection of the half-spaces Q(p), p ∈ Ω∗, i.e.

KΩ∗ := ∩p∈Ω∗ Q(p). (21)

Recall that the support function of the closed convex set Ω∗ is defined for x ∈ R
d by

kΩ∗(x) := sup
p∈Ω∗

p · x . (22)

The convex set KΩ∗ is the epigraph of kΩ∗ and the latter is a supremum of affine functions
(x �→ p · x), the gradients of which are in Ω∗. A slight abuse of notation is made in the
notations KΩ∗ and kΩ∗ for convenience, as previously, a point (p, μ)was used as a subscript
for K and k.

In the case Ω∗ = Y is a non degenerate convex polygon with vertices a∗
i , i = 1, . . . , N∗,

although the corresponding convex set KΩ∗ is by definition the intersection of an infinite num-
ber of half-spaces, i.e. ∩p∈Y Q(p), we claim that if Ω∗ = Y , we have KΩ∗ = ∩N∗

i=1 Q(a∗
i ).

Indeed, ∩p∈Y Q(p) ⊂ ∩N∗
i=1 Q(a∗

i ). To prove the reverse inclusion, note that if p ∈ Y ,

p = ∑N∗
i=1 λi a∗

i ,
∑N∗

i=1 λi = 1, 0 ≤ λi ≤ 1. Let (x, z) ∈ ∩N∗
i=1 Q(a∗

i ). We have z ≥ a∗
i · x

for all i and thus z ≥ p · x , i.e. (x, z) ∈ ∩p∈Y Q(p).
Thus KΩ∗ for Ω∗ = Y is the polyhedral angle K introduced above, i.e. KY =

∩N∗
i=1 Q(a∗

i ) = K . In this case, kΩ∗(x) = k(0,0)(x) = maxi=1,...,N∗(x · a∗
i ).

The result given in the following lemma is illustrated in Fig. 2.

Lemma 6 The epigraph of k(p,μ) for (p, μ) ∈ R
d × R is a convex set in R

d+1 equal to its
asymptotic cone. Furthermore, the epigraph of k(p,μ) can be obtained from the one of k(q,γ )

for (q, γ ) ∈ R
d × R by a parallel translation.
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Proof As the maximum of convex functions, k(p,μ) is a convex function and hence K(p,μ) is
a convex set. Next, we show that K(p,μ) = K(q,γ ) − (q − p, γ − μ).

Let (r , η) ∈ R
d × R. We show that (r , η) ∈ K(p,μ) if and only if (r , η) ∈ K(q,γ ) −

(q − p, γ − μ). Using the definitions and a few algebraic calculations, one shows that
η ≥ k(p,μ)(r) if and only if η + (γ − μ) ≥ k(q,γ )(r + (q − p)). Note that η ≥ k(p,μ)(r)
if and only if (r , η) ∈ K(p,μ). Also, η + (γ − μ) ≥ k(q,γ )(r + (q − p)) is equivalent to
(r + q − p, η + γ − μ) = (r , η) + (q − p, γ − μ) ∈ K(q,γ ). Thus, (r , η) ∈ K(p,μ) if and
only if (r , η) + (q − p, γ − μ) ∈ K(q,γ ), i.e. (r , η) ∈ K(q,γ ) − (q − p, γ − μ). This proves
the claim.

By definition of asymptotic cone of a convex set M , we have KA(M) ⊂ M for A ∈ M .
Thus K(p,μ)(K(p,μ)) ⊂ K(p,μ), i.e. the asymptotic cone of K(p,μ) is contained in K(p,μ).

Let now (q ′, γ ′) ∈ K(p,μ). We find a direction e ∈ R
d+1 such that the ray L+

(p,μ),e with
direction e and vertex (p, μ) is contained in K(p,μ) and (q ′, γ ′) is on that ray.

Put e = (q ′ − p, γ ′ − μ). Then (q ′, γ ′) = (p, μ) + e. So (q ′, γ ′) ∈ L+
(p,μ),e. Since

(q ′, γ ′) ∈ K(p,μ) we have

γ ′ ≥ (q ′ − p) · a∗
i + μ, ∀i = 1, . . . , N .

It follows that

μ + λ(γ ′ − μ) ≥ λ(q ′ − p) · a∗
i + μ, ∀i = 1, . . . , N .

From the definition of k(p,μ) we have μ + λ(γ ′ − μ) ≥ k(p,μ)(p + λ(q ′ − p)) which proves
that (p, μ) + λe ∈ K(p,μ) for all λ ≥ 0. ��

Recall that, by Lemma 6, K(p,μ) = K(0,0)+(p, μ) = K +(p, μ). We recall the following
equivalent characterization of the asymptotic cone [3].

Lemma 7 Let M ⊂ R
d+1 be a closed convex set, e ∈ R

d+1 and A ∈ M. The following two
statements are equivalent

1. L+
A,e ⊂ M

2. ∃λk ∈ R, λk > 0, λk → ∞ and ∃Ak ∈ M, k ∈ N such that Ak/λk → e as k → ∞.

Proof Assume that L+
A,e ⊂ M and let λk → ∞. Then Ak = A + λke ∈ M and Ak/λk → e.

Conversely supposeλk → ∞ and Ak ∈ M is such that Ak/λk → e. Putdk = (Ak−A)/λk .
Then Ak = A + λkdk ∈ M and dk → e. Let λ > 0 and choose k sufficiently large such that
λ ≤ λk . Since M is convex

A + λdk =
(

1 − λ

λk

)

A + λ

λk
Ak,

is in M and hence its limit A + λe is in M as M is closed. ��
Recall the convex set KΩ∗ , c.f. (21).

Lemma 8 Let S be a closed and bounded convex set and let M denote the convex hull of the
union of S and A + KΩ∗ for A ∈ S. Then the closure of M is given by S + KΩ∗ .

Proof Let x ∈ M . There exist points Ai ∈ S, i = 1, . . . ,m and points Ci ∈ KΩ∗ , i =
m + 1, . . . , n for integers m and n with scalars αi , i = 1, . . . , n such that

x =
m∑

i=1

αi Ai +
n∑

i=m+1

αi (A + Ci ), with
n∑

i=1

αi = 1, 0 ≤ αi ≤ 1.
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Since KΩ∗ is convex and the origin O ∈ KΩ∗ ,
( ∑m

i=1 αi
)
O + ∑n

i=m+1 αiCi ∈ KΩ∗ . On
the other hand

∑m
i=1 αi Ai +∑n

i=m+1 αi A ∈ S. Thus M ⊂ S+ KΩ∗ , and so M ⊂ S + KΩ∗ .
Let now x ∈ S + KΩ∗ , i.e. x = s + z with s ∈ S and z ∈ KΩ∗ . Let ε > 0 and note that

z/ε ∈ KΩ∗ . We consider the point

Aε = A + z + (1 − ε)(s − A) = ε(A + z

ε
) + (1 − ε)s.

The point Aε is a convex combination of a point in KΩ∗ + A and a point in S. Thus Aε ∈ M .
As ε → 0, Aε → s + z = x . This proves that x ∈ M .

We have S + KΩ∗ ⊂ M ⊂ S + KΩ∗ . To conclude the proof, we show that S + KΩ∗ is
closed. Since S is a closed and bounded set and KΩ∗ is closed, S + KΩ∗ is closed. To prove
this claim, let xl = sl + al be a sequence in S + KΩ∗ , sl ∈ S and al ∈ KΩ∗ . We assume
that xl converges to x . If necessary, by taking a subsequence, as S is bounded and closed,
we may assume that sl converges to s in S. Then, al = xl − sl converges as the difference of
two convergent sequences to an element a ∈ KΩ∗ as KΩ∗ is closed. We have a = x − s and
hence x = a + s ∈ S + KΩ∗ . We conclude that S + KΩ∗ is closed. The proof is complete.

��

We note that in the above lemma the closure of the convex hull of the union of S and
A + KΩ∗ for A ∈ S is independent of the choice of A.

We illustrate Lemma 8 in Fig. 3. But first, we rewrite the Minkowski sum of two sets as a
union of sets.

Let S and T be two subsets of R
d+1. Then we have S+T = { t + S, t ∈ T } = ∪t∈T t + S.

We say that the sum S + T is obtained by sweeping the set S over T ,

S + T = ∪t∈T t + S. (23)

Clearly, if r ∈ S + T , r = s + t for some s ∈ S and t ∈ T . Thus r ∈ t + S. The reverse
inclusion is also immediate.

We have S + KΩ∗ = ∪s∈S (s + KΩ∗). Note that the sets s + KΩ∗ are parallel translates
of each other. Thus Lemma 8 says that the closure of the convex hull of the union of S and
A + KΩ∗ for A ∈ S is obtained by sweeping KΩ∗ over S.

Recall Definition 5 of asymptotic cone of a convex set.

Theorem 7 Let S be a closed and bounded convex set and let M denote the convex hull of
the union of S and A+ KΩ∗ for A ∈ S. Then KA(M) = A+ KΩ∗ , i.e. the closure of M has
asymptotic cone A + KΩ∗ .

Proof ByLemma 8,M = S+KΩ∗ . Recall the notation KA(W ) for A ∈ W for the asymptotic
cone of the convex set W . We prove that KA(S + KΩ∗) = A + KΩ∗ . We first note that if
S ⊂ T and A ∈ S, then KA(S) ⊂ KA(T ). Indeed if B ∈ KA(S), then there is a direction e
such that B ∈ L+

A,e ⊂ S ⊂ T .
Since A+KΩ∗ ⊂ S+KΩ∗ we have A+KΩ∗ = KA(A+KΩ∗) ⊂ KA(S+KΩ∗). Let now

B ∈ KA(S + KΩ∗) and let e such that B = A + μe for some μ > 0 and L+
A,e ⊂ S + KΩ∗ .

We show that L+
A,e ⊂ A + KΩ∗ .

By Lemma 7 there exists a sequence λk → ∞ and sequences sk ∈ S and bk ∈ KΩ∗
such that (sk + bk)/λk → e. But S is compact and so we may assume that the sequence sk
converges to s ∈ S. This implies that sk/λk → 0 and hence bk/λk → e. By Lemma 7 again,
L+
O,e ⊂ KΩ∗ , where O is the origin of R

d+1. It follows that L+
A,e ⊂ A + KΩ∗ . ��
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4.2 Convex Extensions

Let us consider a convex function u0 ∈ C(Ω) such that ∂u0(Ω) = Ω∗. One can extend u0
to R

d by

ũ(x) = inf{ u0(y) + sup
z∈Ω∗

(x − y) · z, y ∈ Ω }. (24)

The above formula was interpreted as a minimal convex extension in some sense or a special
form of infimal convolution [11, (15)]. Another extension formula used in [17, p. 157] is
given by

u(x) = sup{ u0(y) + (x − y) · z, y ∈ Ω, z ∈ ∂u0(y) }. (25)

We consider below a generalization of (24).
We recall that a point (x, μ) is on the lower part of the boundary of a convex setM ⊂ R

d+1

if (x, μ) ∈ M and (x, μ) − (0, . . . , 0, λ) /∈ M for all λ > 0. Recall also that given a domain
U ⊂ R

d , e.g.U = Ω orU = R
d , and a function v defined onU , the graph of v is the subset

of R
d+1 given by

{ (x, v(x)) : x ∈ U }.
Let u be a piecewise linear convex function on Ω and E ⊂ Ω bounded. The graph

Mu = { (x, u(x)), x ∈ E } of u is the lower part of the boundary of a convex polygonal
domain S = { (x, μ) ∈ R

d+1, x ∈ E, u(x) ≤ μ ≤ μmax }, where μmax = maxx∈E u(x).
We refer to the vertices of S on Mu as the vertices of u.

The projection U ⊂ R
d of a convex set M ⊂ R

d+1 is the set { x : x ∈ R
d , ∃λ ∈

R, (x, λ) ∈ M }. We give an example of projection of a convex set in Fig. 3.

Definition 6 A convex set M ⊂ R
d+1 defines a function v on its projection U ⊂ R

d if the
graph of v on U is equal to the lower part of the boundary of M .

As an example, the polyhedral angle K(p,μ) defines the function k(p,μ) onR
d . We also say

that the polyhedral angle K(p,μ) has boundary given by the graph of k(p,μ). The convex set
KΩ∗ , c.f. (21), defines the convex function kΩ∗ , c.f. (22), onR

d . It is known that χkΩ∗ (Rd) =
Ω∗, [41, p. 22].

Definition 7 We say that a convex function v on R
d has asymptotic cone KΩ∗ if its epigraph

M has asymptotic cone A + KΩ∗ for A ∈ M .

Recall that the asymptotic cone of a convex set M is a particular convex set associated
with M . It contains all half-lines starting at a point A ∈ M and contained in M . When M is
the epigraph of a function v, the lines in the asymptotic cone KA(M) give the behavior of v

at infinity.

Lemma 9 Let v be a convex function on R
d such that χv(R

d) = Ω∗. Then v has asymptotic
cone KΩ∗ .

Proof A point A ∈ R
d+1 is denoted (x, z) for x ∈ R

d and z ∈ R. Let M denote the epigraph
of v and assume that A1 = (a1, u1) ∈ ∂M . Note thatM is unbounded and ∂M is the lower part
of the boundary of M . We first prove that A1 + KΩ∗ ⊂ KA1(M). Let (x, w) ∈ A1 + KΩ∗
and put e = (x, w) − (a1, u1). We show that for all λ > 0, A1 + λe ∈ M . Assume by
contradiction that this does not hold. Let B be the point of intersection with ∂M of the line
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through A1 and with direction e. The half-line L+
B,e is then not contained in M . Choose

C ∈ L+
B,e,C �= B and put

B = (xB , zB) = A1 + μ1e = (a1, u1) + μ1(x − a1, w − u1)

C = (xC , zC ) = A1 + μ2e = (a1, u1) + μ2(x − a1, w − u1),

for μ1 ≥ 0, and μ2 > 0. By construction μ2 − μ1 > 0. Now let p ∈ χv(xB). Since the
plane z = p · (x − xB)+ zB is a supporting hyperplane to M at B, we can choose C /∈ M , in
addition toC ∈ L+

B,e,C �= B, such that zC < p ·(xC −xB)+zB . But zB = u1+μ1(w−u1),
zC = u1 + μ2(w − u1), xB = a1 + μ1(x − a1) and xC = a1 + μ2(x − a1). As zC − zB =
(μ2 − μ1)(w − u1) and xC − xB = (μ2 − μ1)(x − a1), we obtain w − u1 < p · (x − a1).

By assumption χv(R
d) = Ω∗ and hence p ∈ Ω∗. Since (x, w) ∈ A1 + KΩ∗ , (x, w) −

(a1, u1) ∈ KΩ∗ , and by the definition (21) of KΩ∗ , we have w ≥ p · (x − a1) + u1. This
contradicts w − u1 < p · (x − a1).

Next, we prove that KA1(M) ⊂ A1 + KΩ∗ . Let (x, w) ∈ KA1(M). The half-line L+
A1,e

is
contained in M with e = (x, w) − (a1, u1). That is (a1, u1) + λ(x − a1, w − u1) ∈ M for
all λ > 0.

For each p ∈ Ω∗ we can find xp ∈ R
d such that z = p · (x − xp) + v(xp) is a supporting

hyperplane to M at (xp, v(xp)). Thus

u1 + λ(w − u1) ≥ p · (a1 + λ(x − a1) − xp) + v(xp).

This gives w − u1 ≥ p · (x − a1) + (p · (a1 − xp) + v(xp) − u1)/λ. Taking λ → ∞ we
obtain w ≥ p · (x − a1) + u1 for all p ∈ Ω∗. Thus (x, w) ∈ A1 + KΩ∗ and the proof is
complete. ��

Let S be a closed bounded convex set and let S̃ denote its projection onto R
d . Let v denote

the convex function defined by S on S̃. Put

D∗ = ∂v((S̃)◦).

Assume that (S̃)◦ �= ∅ and D∗ ⊂ Ω∗. Recall that KΩ∗ is the epigraph of supp∈Ω∗ p · x ,
c.f. (21). The set KΩ∗ + S = ∪s∈S (s + KΩ∗), which is convex by Lemma 8, also defines
a convex function on R

d which extends u to R
d . This is proven in the next theorem where

the assumption that D∗ ⊂ Ω∗ is used to prove that u = v on S̃. By sweeping KΩ∗ over
S, KΩ∗ + S is the union of parallel translations of KΩ∗ and hence the values of the convex
function u on R

d , i.e. the lower part of the boundary of KΩ∗ + S, can be obtained from the
lower part of the boundaries of some s+KΩ∗ , s ∈ S. Note that the lower part of the boundary
of (y, μ) + KΩ∗ for (y, μ) ∈ R

d × R is the epigraph of μ + supp∈Ω∗ p · (x − y). In the
appendix we give a different proof of the next theorem using results on infimal convolution.

Theorem 8 Let S be a closed bounded convex set which defines a convex function v on the
projection S̃ of S onto R

d . Let D∗ = ∂v((S̃)◦) and assume that (S̃)◦ �= ∅ and D∗ ⊂ Ω∗.
The convex set KΩ∗ + S defines a convex function u on R

d which extends v from S̃ to R
d by

u(x) = inf
y∈S̃

v(y) + sup
p∈Ω∗

p · (x − y), x /∈ S̃. (26)

Proof Elements of S take the form (y, μ), y ∈ S̃ and μ ∈ R. We have by Lemma 8 and (23)

S + KΩ∗ = ∪(y,μ)∈S(y, μ) + KΩ∗ . (27)

We refer to Fig. 3 for an illustration of the above equality in the case KΩ∗ is polygonal,
in which case (26) simplifies to (29) below. Equation (29) is also illustrated in Fig. 3. By
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Definition 6, S + KΩ∗ defines a convex function u on R
d . This means that for x ∈ R

d ,
(x, u(x)) ∈ S + KΩ∗ and if (x, μ) ∈ S + KΩ∗ , then μ ≥ u(x), since by definition of lower
part of S + KΩ∗ , when λ < u(x), (x, λ) /∈ S + KΩ∗ . Recall that v denotes the convex
function on S̃ defined by the convex set S. We first show that u = v on S̃.

Since 0 ∈ KΩ∗ , S ⊂ S + KΩ∗ and recall that for x ∈ S̃, (x, v(x)) ∈ S ⊂ S + KΩ∗ . Thus
u(x) ≤ v(x) for all x ∈ S̃.

Assume that there exists x ∈ S̃ such that u(x) < v(x). As (x, v(x)) is on the lower part of
the boundary of S, (x, u(x)) /∈ S. But (x, u(x)) ∈ S+ KΩ∗ . By (27), we can find (y, μ) ∈ S
such that (x, u(x)) ∈ (y, μ) + KΩ∗ . Since D∗ ⊂ Ω∗, we have KΩ∗ ⊂ KD∗ . Indeed, let
(x, w) ∈ KΩ∗ . We have w ≥ p · x for all p ∈ Ω∗. In particular, w ≥ p · x for all p ∈ D∗
and hence (x, w) ∈ KD∗ . This proves the claim. Therefore, (x, u(x)) ∈ (y, μ) + KD∗ .

Let v denote the convex extension of v to R
d using supporting hyperplanes, i.e. the

procedure described by (25). By [6, Lemma 4] χv(S) = χv(R
d) = D∗. By Lemma 9, v has

asymptotic cone KD∗ . Thus, if M denotes the epigraph of v, for all (y, μ) ∈ M , y ∈ R
d , μ ∈

R, we have (y, μ)+ KD∗ ⊂ M and therefore for x ∈ S̃ and (x, u(x)) ∈ (y, μ)+ KD∗ ⊂ M ,
we have u(x) ≥ v(x) = v(x).

Next, we give an analytical proof of (26). Note that for (y, μ) ∈ S, (y, μ) + KΩ∗ defines
the convex function k(y,μ)(x) = supp∈Ω∗ p · (x − y) + μ. Here, we make a slight abuse
of notation, c.f. (20) where a max over a finite number of points is used for k(y,μ). Since
(y, μ) + KΩ∗ ⊂ S + KΩ∗ for each (y, μ) ∈ S, we have u(x) ≤ k(y,μ)(x) for (y, μ) ∈ S. As
u(y) = v(y) for y ∈ S̃, we have (y, u(y)) ∈ S for y ∈ S̃. We conclude that for x ∈ R

d

u(x) ≤ k(y,u(y))(x) = sup
p∈Ω∗

p · (x − y) + u(y), (28)

for y ∈ S̃. We next show that for x /∈ S̃, we can find y ∈ S̃ such that u(x) = k(y,u(y))(x).
Since (x, u(x)) ∈ S + KΩ∗ , by (27) we can choose (y, μ) ∈ S such that (x, u(x)) ∈

(y, μ)+ KΩ∗ . Using the definition of lower part of the boundary of (y, μ)+ KΩ∗ , μ ≥ v(y)
for (y, μ) ∈ S and u = v on S̃ we get

u(x) ≥ k(y,μ)(x) = sup
p∈Ω∗

p · (x − y) + μ ≥ sup
p∈Ω∗

p · (x − y) + v(y)

= sup
p∈Ω∗

p · (x − y) + u(y).

We conclude from (28) that (26) holds. ��
Let a∗

j , j = 1, . . . , N∗ denote the vertices of a non degenerate convex polygon Y ⊂ R
d .

Thus, the interior of Y is a convex domain in R
d . Recall that K denotes the polyhedral angle

which is the epigraph of max1≤ j≤N∗(x · a∗
j ). Recall also that when Ω∗ = Y , KΩ∗ is the

polyhedral angle K . In this case, (26) becomes

u(x) = inf
y∈S̃

max
1≤ j≤N∗(x − y) · a∗

j + u(y), x /∈ S̃, (29)

where we used u = v on S̃.
Let S be the polygon with vertices (a1, u1), . . . , (am, um) in R

d+1. The projection S̃
of S onto R

d is the convex hull of { a1, . . . , am }. Let us assume that { a1, . . . , ap } for
p ≤ m consist of the vertices which are on the boundary of S̃. It is assumed that (S̃)◦ �=
∅. The purpose of the next theorem is to show that the infimum in (29) can be restricted
to the boundary of S̃. Such a formula is of interest for computational purposes, since the
minimization in the extension formula of the next theorem is over a set much smaller than
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A D

B C

E

Fig. 3 Let S denote the polygon with vertices A(−1.5, 1), B(−1, 0),C(1, 0) and D(1.5, 1). The polygon S
is the convex hull of its vertices. The polyhedral angle K associated to Ω∗ = [−3, 3] is the intersection of the
half-spaces { (x1, x2) ∈ R

2 : x2 ≥ 3x1 } and { (x1, x2) ∈ R
2 : x2 ≥ −3x1 }. Parallel translates E +K , A+K

and D + K are shown. Put M = Conv(S ∪ (E + K )). To visualize M , note that S ⊂ M and E + K ⊂ M .
Then draw line segments connecting A or D to points on the boundary of E + K . Note that M is obtained
by sweeping K over S. The projection of the convex set S on R is [−1.5, 1.5]. The convex set S defines a
piecewise linear convex function u on [−1.5, 1.5], with graph the lower part of the boundary of S. By Lemma 8,
M = S + K is the convex hull of S and A + K . By Theorem 10, the piecewise linear convex function on the
real line defined by M , i.e. the convex function with graph the lower part of the boundary of M , is a convex
extension of u and is obtained by the extension formula. By Theorem 7 M has asymptotic cone A + K . The
ray with vertex A and slope −3 and the ray with vertex D and slope 3 are called extreme rays. The set M is
the convex hull of its vertices A, B,C and D and its extreme rays. Image reproduced from [5]

S̃. This motivates the discrete extension formula (10) where we consider the minimization
over mesh points on ∂Ωh . As explained in the introduction, the discrete extension formula
is needed for the discrete scheme.

The points a∗
j are not related to the points ai , the same way the domain Ω∗ is not related

a priori to the domain Ω .

Theorem 9 Let S̃ denote the projection on R
d of the lower part of the boundary of a polygon

S. Let K denote the polyhedral angle which is the epigraph ofmax1≤ j≤N∗(x · a∗
j ), for given

vectors a∗
j , j = 1, . . . , N∗, which are vertices of a non degenerate convex polygon Y ⊂ R

d .

Assume furthermore that D∗ ⊂ Y where D∗ = ∂u((S̃)◦) and u is the function defined by S
on S̃. Assume also that (S̃)◦ �= ∅. The convex set S + K defines a piecewise linear convex
function u which is given for x /∈ S̃ by

u(x) = inf
s∈∂ S̃

max
1≤ j≤N∗(x − s) · a∗

j + u(s).

Proof The above formula is illustrated in Fig. 3 where the polyhedral angles (using the nota-
tion of the caption of Fig. 3) A + K and D + K have portions of the lower part of their
boundaries coincide with the graph of the extension.

Part 1 We show that u is a piecewise linear convex function and characterize χu(x) for
x /∈ S̃. Recall the representation (29) which follows from Theorem 8 and Y being polygonal.
Since S is the convex hull of a finite number of points, the function u it defines on S̃ is
piecewise linear. Note that the polygon S is an intersection of half-spaces, and the function
defined on R

d by a half-space is a linear function.
As in the proof of Theorem 8, let for y ∈ S̃, k(y,u(y))(x) = max1≤ j≤N∗(x − y) ·a∗

j +u(y).

By [27, Chapter 4, Theorem 3], for any x ∈ R
d , χk(y,u(y)) (x) is the closed convex hull

of a subset of { a∗
1 , . . . , a

∗
N∗ }, i.e. χu(x) is a polygon with vertices in { a∗

1 , . . . , a
∗
N∗ }. For
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1 ≤ j ≤ N∗, a∗
j is a vertex of χu(x) if and only if u(x) = (x − y) · a∗

j + u(y). We now show

that for all x /∈ S̃, there is y ∈ S̃ such that χu(x) = χk(y,u(y)) (x).
Let x0 /∈ S̃ and p ∈ χu(x0).We choose x ∈ R

d and have u(x) ≥ u(x0)+ p ·(x−x0). Since
S̃ is compact, we can find y0 ∈ S̃ such that u(x0) = k(y0,u(y0))(x0). Recall that the graph of
u is the lower part of the boundary of M = S + K and M = S + K has asymptotic cone K
by Theorem 7. This means that (y0, u(y0)) + K ⊂ M . Thus, for x ∈ R

d , (x, k(y0,u(y0))(x))
is in (y0, u(y0)) + K ⊂ M and thus k(y0,u(y0))(x) ≥ u(x) ≥ u(x0) + p · (x − x0) =
k(y0,u(y0))(x0) + p · (x − x0), i.e. p ∈ χk(y0,u(y0))

(x0).
Conversely, if p ∈ χk(y0,u(y0))

(x0), p is in the convex hull of the vectors a∗
j0
for which

u(x0) = (x0 − y) · a∗
j0

+ u(y). It can be readily checked that χu(x0) is convex. We show that
any of the vectors a∗

j0
is in χu(x0) and thus χk(y0,u(y0))

(x0) ⊂ χu(x0).

Let x ∈ R
d .We have by (29) u(x) ≥ max1≤ j≤N∗(x−y)·a∗

j +u(y) ≥ (x−y)·a∗
j0
+u(y) =

(x − x0) · a∗
j0

+ (x0 − y) · a∗
j0

+ u(y) = (x − x0) · a∗
j0

+ u(y). This proves that a∗
j0

∈ χu(x0)
and completes the proof.

We conclude that χu(x) is a polygon with vertices in { a∗
1 , . . . , a

∗
N∗ } for any x /∈ S̃. This

also shows with (29) that u is also piecewise linear on R
d \ S̃.

Part 2 We show that the minimum in (29) is actually on ∂ S̃. Let x0 /∈ S̃. We can then
find an index k0 such that a∗

k0
∈ χu(x0). Define

V0 = { x ∈ R
d , a∗

k0 ∈ χu(x) }.

We first show that the non empty set V0 is convex with V0 ∩ S̃ �= ∅. Then we choose
s1 ∈ V0 ∩ S̃. Next, we denote by s0 the point of intersection with ∂ S̃ of the line through x0
and s1. Finally, we show that s0 is a point where the infimum in (29) is realized when x = x0.

Since x0 ∈ V0, V0 �= ∅. The convexity of V0 follows immediately from the definitions.
Let x1, x2 ∈ V0 and λ ∈ [0, 1]. For y ∈ R

d , we have u(y) ≥ u(x1) + (y − x1) · a∗
k0

and
u(y) ≥ u(x2)+(y−x2)·a∗

k0
. Thus u(y) ≥ λu(x1)+(1−λ)u(x2)+(y−λx1−(1−λ)x2)·a∗

k0
,

which shows by the convexity of u that a∗
k0

∈ χu(λx1 + (1 − λ)x2). We conclude that V0 is
convex.

Next, we show that V0 ∩ S̃ �= ∅. Using (29), since S̃ is compact, we can find s1 ∈ S̃ such
that u(x0) = u(s1) + max1≤ j≤N∗(x0 − s1) · a∗

j . Using a∗
k0

∈ χu(x0), we have for y ∈ R
d ,

u(y) ≥ u(x0) + (y − x0) · a∗
k0
. Thus

u(s1) ≥ u(x0) + (s1 − x0) · a∗
k0 = u(s1) + (s1 − x0) · a∗

k0 + max
1≤ j≤N∗(x0 − s1) · a∗

j .

It follows that max1≤ j≤N∗(x0−s1)·a∗
j ≤ (x0−s1)·a∗

k0
and hencemax1≤ j≤N∗(x0−s1)·a∗

j =
(x0 − s1) · a∗

k0
. We conclude that

u(x0) = u(s1) + (x0 − s1) · a∗
k0 . (30)

Since a∗
k0

∈ χu(x0), we have for y ∈ R
d , u(y) ≥ u(x0)+(y−x0)·a∗

k0
= u(s1)+(y−s1)·a∗

k0
.

This gives a∗
k0

∈ χu(s1) and hence s1 ∈ V0 ∩ S̃.

Let now s0 be the point on ∂ S̃ such that x0, s0 and s1 are colinear. By the convexity
of V0 and since both x0 and s1 are in V0, s0 exists and is in V0. Since u is a piecewise
linear convex function, it must be that on V0, u is a linear function, i.e. for all x ∈ V0,
u(x) = u(s1) + (x − s1) · a∗

k0
. In particular, u(s0) = u(s1) + (s0 − s1) · a∗

k0
and by (30) we
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get u(x0) = u(s0) + (x0 − s0) · a∗
k0
. Using y = s0 in (29), we have

u(x0) = u(s0) + (x0 − s0) · a∗
k0 ≥ u(s0) + max

1≤ j≤N∗(x0 − s0) · a∗
j ≥ u(s0) + (x0 − s0) · a∗

k0

= u(x0)

and thus u(x0) = u(s0)+max1≤ j≤N∗(x0 − s0) · a∗
j for s0 ∈ ∂ S̃. We conclude that for x /∈ S̃

u(x) = inf
s∈∂ S̃

max
1≤ j≤N∗(x − s) · a∗

j + u(s).

The proof is complete. ��
Theorems 7 and 9 provide the formula for the extension of a convex function, defined by

the lower part of the convex hull of a finite set of points, to have a given asymptotic cone.
The notation for the domain of the function in the following theorem was chosen so that its
statement is similar to the one of Theorem 9. Recall the notation kY for the support function
of the convex set Y .

Theorem 10 Let u be a piecewise linear convex function on R
d . Assume that the convex hull

S̃ of the vertices of u is a bounded set. If ∂u(Rd) = Y , then for all x /∈ S̃

u(x) = min
s∈∂ S̃

u(s) + kY (x − s).

Proof The proof is the same as the proof of Theorem 9. ��
We have the following generalization of Theorem 8 where the infimum in (26) is replaced

by an infimum on the boundary of S̃.

Theorem 11 Let S be a closed bounded convex set which defines a convex function v on the
projection S̃ of S onto R

d . Let D∗ = ∂v((S̃)◦) and assume that D∗ ⊂ Ω∗. The convex set
KΩ∗ + S defines a convex function u on R

d which extends v to R
d by

u(x) = inf
y∈∂ S̃

v(y) + sup
p∈Ω∗

p · (x − y), x /∈ S̃. (31)

Proof We first note that (26) also holds for x ∈ S̃ as by (28), for all x ∈ R
d , u(x) ≤

inf y∈S̃ v(y) + supp∈Ω∗ p · (x − y). Next, let x /∈ S̃ and suppose that u(x) = v(y1) +
supp∈Ω∗ p · (x − y1) for y1 ∈ S̃ and furthermore supp∈Ω∗ p · (x − y1) = p1 · (x − y1)where

we used the compactness of S̃ and Ω∗. That is, u(x) = v(y1) + p1 · (x − y1). Define

V0 = { y ∈ R
d , sup

p∈Ω∗
p · (y − y1) = p1 · (y − y1) }.

It can be readily checked that V0 is convex and contains both x and y1. Let y′
1 denote the

point of intersection with ∂ S̃ of the half-line through x starting at y1. Since V0 is convex,
y′
1 ∈ V0 and thus supp∈Ω∗ p · (y′

1 − y1) = p1 · (y′
1 − y1). So, by (26)

u(y′
1) ≤ u(y1) + p1 · (y′

1 − y1). (32)

Similarly, the set

V1 = { y ∈ R
d , p1 · (x − y) ≥ p · (x − y)∀p ∈ Ω∗ },
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is convex and contains both x and y1. Thus supp∈Ω∗ p · (x − y′
1) = p1 · (x − y′

1). Since
v(y1) = u(y1), it thus follows from (26) and (32)

u(x) ≤ u(y′
1) + p1 · (x − y′

1) ≤ u(y1) + p1 · (x − y1) = u(x),

which shows that the minimum is reached at y′
1 ∈ ∂ S̃. ��

The above result can be used to simplify the proof of Theorem 9. However, the proof of
Theorem 9 illustrates the structure of piecewise linear convex functions. The following result
was mentioned in the introduction.

Lemma 10 Let u(x) = maxi=1,...,k x · pi +hi , for pi ∈ R
d distinct and hi ∈ R be a piecewise

linear convex function on R
d . Then ∂u(Rd) = Conv{ p1, . . . , pk }.

Proof For x ∈ R
d , ∂u(x) = Conv{ pi , i ∈ Cx }, where

Cx = { i, 1 ≤ i ≤ k, u(x) = x · pi + hi },
c.f. for example [27, Chapter 4, Theorem 3]. It follows that

∂u(Rd) ⊂ Conv{ p1, . . . , pk }. (33)

Given a functionφ onR
d , recall its Legendre transformdefined onR

d byφ∗(y) = supx∈Rd x ·
y−φ(x). Let y ∈ Conv{ p1, . . . , pk }. We have u∗(y) < ∞, c.f. [22, p. 387] or [26, Theorem
2.2.7 ] for an explicit expression. Given x ∈ ∂u∗(y) we have by [49, Proposition 2.4] y ∈
∂u(x). ThusConv{ p1, . . . , pk } ⊂ ∂u(Rd).We conclude that ∂u(Rd) = Conv{ p1, . . . , pk }.
��

4.3 The Second Boundary Condition in Terms of an Asymptotic Cone

Let ν be a Borel measure on R
d .

Theorem 12 [8] Assume that
∫
Ω∗ R(p)dp = ν(Ω). There exists a convex function v on R

d

with asymptotic cone KΩ∗ such that

ω(R, v, E) = ν(E) for all Borel sets E ⊂ Ω.

Such a function is unique up to an additive constant.

Corollary 1 [41, p. 23] The function v given by Theorem 12 satisfies χv(Ω) = Ω∗.
Extending the function v from Corollary 1 to R

d using any of the procedures (36) or (35)
below results in a function v̂ on R

d which solves χv̂(R
d) = χv̂(Ω) = Ω∗ by Lemma 14

below, and hence v̂ has asymptotic cone KΩ∗ by Lemma 9. Thus v̂ = v and so χv(R
d) =

χv(Ω) = Ω∗.
Theorem 12 and Corollary 1 give existence of a convex solution v on R

d which solves
(4). Its unicity up to a constant follows from Theorem 12 and Lemma 9.

The second boundary value problem is often presented as the problem of finding a convex
function u on Ω such that

ω(R, u, E) =
∫

E
f (x)dx for all Borel sets E ⊂ Ω

∂u(Ω) = Ω∗.
(34)

The extension u based on (25) of a solution u of (34) solves (4), c.f. Lemma 11 below. Since
solutions of (4) are unique up to a constant, a solution of (4) must be the extension of a
solution of (34).
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4.4 Convex Extensions Revisited

Recall that Ω and Ω∗ are assumed to be convex. We prove below that the two extensions ũ
and u given by (24) and (25) are equal. For that we will need the following lemma

Lemma 11 Let u0 ∈ C(Ω) such that ∂u0(Ω) = Ω∗. For the convex extensions ũ and u
given respectively by (24) and (25), the epigraph M of ũ has asymptotic cone A + KΩ∗ for
A ∈ M and χu(Ω) = χu(R

d) = Ω∗.

Proof Putμmax = maxx∈Ω u0(x). ByTheorem8, the epigraph of ũ is equal to S+KΩ∗ where
S is the closed bounded convex set { (x, μ), x ∈ Ω, u0(x) ≤ μ ≤ μmax }. By Theorem 7,
S + KΩ∗ has asymptotic cone A + KΩ∗ for A ∈ M . Note that by construction, ũ = u0 on
Ω and (24) gives the values of ũ outside of Ω .

The claim that u is a convex extension of u with χu(Ω) = Ω∗ follows from [6, Lemma
4]. ��
Lemma 12 Let u0 ∈ C(Ω) such that ∂u0(Ω) = Ω∗. The convex extensions ũ and u given
respectively by (24) and (25) are equal.

Proof For a Borel set E ⊂ Ω we define ω(R, ũ, E) := ω(R, u0, E ∩ Ω) and ω(R, u, E)

:= ω(R, u0, E ∩ Ω), that is, ω(R, ũ, E) = ω(R, u, E) for all Borel sets E ⊂ Ω . By
Lemma 11 the epigraph M of ũ has asymptotic cone A+ KΩ∗ for A ∈ M and χu(Ω) = Ω∗.
Thus ũ has asymptotic cone KΩ∗ and by Lemma 9, u also has asymptotic cone KΩ∗ . We
conclude from Theorem 12 that ũ = u since ũ = u = u0 on Ω . ��

The results we now prove were used in the proof of the equivalence of (4) and (34) in
Sect. 2.1. Let E ⊂ Ω and let u be a convex function on Ω . To extend u|E , one may want to
take into account ∂u(∂E). We thus consider the following variant of (25)

û(x) = sup
{
u(y) + (x − y) · z, y ∈ E, z ∈ ∂u(y)

}
. (35)

First, we note

Lemma 13 Let E ⊂ Ω , E bounded, Ω open and u ∈ C(Ω). Then ∂u(E) is closed.

Proof Let pn ∈ ∂u(E) and assume that pn → p, p ∈ R
d . Let an ∈ E such that pn ∈ ∂u(an).

For all x ∈ Ω u(x) ≥ u(an)+ pn ·(x−an). Since E is bounded, wemay assume that an → a
for a ∈ E . We thus obtain u(x) ≥ u(a)+ p · (x −a) for all x ∈ Ω . It follows that p ∈ ∂u(a)

and ∂u(E) is closed. ��
As with [6, Lemmas 3 and 4] we have

Lemma 14 Let E ⊂ Ω , E bounded and u a bounded convex function on Ω . The extension
û of u|E given by (35) is convex on R

d and if ∂u(E) is bounded, for all x ∈ E we have
χû(x) = ∂u(x). Moreover

∂u(E) = χû(E) ⊂ χû(R
d) ⊂ Conv(∂u(E)).

Proof We only need to prove that for all x ∈ E , χû(x) ⊂ ∂u(x). The other statements are
proved as for [6, Lemmas 3 and 4], using the observation from Lemma 13 that ∂u(E) is
closed.

Let x ∈ E and p ∈ χû(x). Let y ∈ R
d . We have û(y) ≥ û(x) + p · (y − x) =

u(x) + p · (y − x). As E and ∂u(E) are bounded, we can find y0 ∈ E and z0 in ∂u(y0) such
that û(y) = u(y0)+ z0 · (y − y0). If y ∈ Ω , we have u(y) ≥ u(y0)+ z0 · (y − y0) = û(y) ≥
u(x) + p · (y − x) which shows that p ∈ ∂u(x). This completes the proof. ��
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We note that ∂u(E) ⊂ ∂u(E) and ∂u(E) can be larger than ∂u(E). However, if ∂u(E)

is convex, it follows from [6, Lemma 4] that ∂u(E) = χu(E) where we recall that u is the
extension of u based on (25) which does not take into account ∂E .

The extension ũ of u|E given by (24) would take into account only ∂u(E). We therefore
consider the following variant

ǔ(x) = inf

{

u(y) + sup
z∈∂u(E)

(x − y) · z, y ∈ E

}

. (36)

Analogous to Lemma 12, we have

Lemma 15 Let E ⊂ Ω , E bounded, convex and u a bounded convex function on Ω . Assume
also that ∂u(E) is bounded and convex. The extensions û and ǔ of u|E given by (35) and (36)
are equal.

Proof The proof is the same as for Lemma 12. Put D∗ = ∂u(E) = χû(E) and let KD∗
denote the convex set associated with D∗ following (21). Then both û and ǔ have the same
asymptotic cone KD∗ and satisfy the same Monge–Ampère equation on E . ��

We finish this subsection with an observation on the convex extensions of a piecewise
linear convex function u on Ω . The result is used in the proof of Lemma 19 below. Let now
E ⊂ Ω be a bounded convex polygonal domain.

We may write for x ∈ Ω , u(x) = maxi=1,...,k x · pi +hi , for pi ∈ R
d distinct and hi ∈ R.

We assume that this expression also holds on E , or equivalently, all vertices of u on Ω are
vertices in E . The expression maxi=1,...,k x · pi + hi defines a convex extension of u to R

d

which we also denote by u.
It is known that Y = ∂u(Rd) is the convex polygonal domain Conv{ p1, . . . , pk }, c.f.

Lemma 10. Let p ∈ Conv{ p1, . . . , pk } and x ∈ R
d such that p ∈ ∂u(x) = Conv{ pi , i ∈

Cx }. This means that the hyperplanes { (x, z) ∈ R
d+1, z = x · pi + hi , i ∈ Cx } have a

non-empty intersection and since u(x) = maxi=1,...,k x · pi + hi on E as well, there is y ∈ E
such that u(y) = x · pi + hi , i ∈ Cx , i.e. p ∈ ∂u(y). Thus Conv{ p1, . . . , pk } = Y =
∂u(Rd) ⊂ ∂u(E) ⊂ ∂u(Rd) ⊂ Conv{ p1, . . . , pk } where we used (33). We conclude that
Y = ∂u(E) is a convex polygonal domain.

Lemma 16 Let E ⊂ Ω be a bounded convex polygonal domain and let u be a piecewise linear
convex function on Ω . Assume that all the vertices of u in Ω are in E. Then the extensions
ǔ and û of u|E based respectively on asymptotic cones and supporting hyperplanes, i.e. (36)
and (35) are equal to u on Ω .

Proof Note that E is closed and ∂u(E) is bounded and convex. By Lemma 15, ǔ = û on
R
d . We show that û = u on Ω . Let us assume that on Ω , u(x) = maxi=1,...,k x · pi + hi , for

pi ∈ R
d distinct and hi ∈ R. We define

v(x) = sup{ u(y) + pi · (x − y), y ∈ E, pi , i ∈ Cy }.
By definition, for all x ∈ R

d , û(x) ≥ v(x). Let y ∈ E and z ∈ ∂u(y). Put z = ∑
i∈Cy

λi pi ,
0 ≤ λi ≤ 1 and

∑
i∈Cy

λi = 1. Since v(x) ≥ u(y) + pi · (x − y) for all i ∈ Cy , we obtain
v(x) ≥ u(y) + z · (x − y) and thus v(x) ≥ û(x). We conclude that v = û.

Next, recall that by definition ofCy , if pi ∈ ∂u(y) and i ∈ Cy , we have u(y) = y · pi +hi .
It follows that v(x) = sup{ x · pi +hi , i ∈ Cy, y ∈ E } = maxi=1,...,k x · pi +hi .We conclude
that û = v = u on Ω . ��
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5 Weak Convergence of Monge–AmpèreMeasures for Discrete Convex
Functions

Definition 8 We say that uh converges to a function u uniformly on Ω in the sense of [6] if
and only if for each sequence hk → 0 and for all ε > 0, there exists h−1 > 0 such that for
all hk , 0 < hk < h−1, we have

max
x∈N 1

hk

|uhk (x) − u(x)| < ε.

Theorem 13 [6, Theorem 7] Let uh converge to a convex function u uniformly on Ω in
the sense of [6]. Assume also that u is bounded. Then ω(R, Γ1(uh), .) weakly converges to
ω(R, u, .).

Theorem 14 [6, Lemma 6] Let uh be discrete convex. If uh converges uniformly on compact
subsets of Ω to a function u ∈ C(Ω) in the sense of [6], u is convex on Ω .

Theorem 15 [6, Theorem 12] Let uh be a family of discrete convex functions in the sense
of [6] such that |uh | ≤ C for a constant C independent of h and χΓ1(uh)(N 1

h ) is uniformly
bounded. Assume furthermore that uh is uniformly Lipschitz on Ω and uh = Γ1(uh) on
∂ Conv(N 1

h ). Then there is a subsequence hk such that uhk converges uniformly in the sense
of [6] to a convex function v on Ω .

The above theorem gives not only the convergence of a subsequence of Γ1(uh) but also
the convergence of a subsequence of uh . For the latter, we used a piecewise linear interpolant
which is defined on a domain containing Ω , and is equal to Γ1(uh) outside of Conv(N 1

h ).
The assumption uh = Γ1(uh) on ∂ Conv(N 1

h ) is needed to make the interpolant globally
Lipschitz. The latter assumption holds for the Dirichlet problem [6, Lemma 5].

Recall that for V = Vmax , ωV := ωa . The results in [6] are essentially for mesh functions
and their convex envelopes. Theorems 13–15 hold for Γ2(uh), ∂Vmax uh with the following
definition of uniform convergence on Ω which uses N 2

h whereas Definition 8 uses N 1
h .

Discrete convexity was defined in Sect. 2.2, Definition 2.

Definition 9 We say that uh converges to a function u uniformly on Ω if and only if for each
sequence hk → 0 and for all ε > 0, there exists h−1 > 0 such that for all hk , 0 < hk < h−1,
we have

max
x∈N 2

hk

|uhk (x) − u(x)| < ε.

Theorem 16 Let uh be a family of discrete convex functions such that uh converges to a
convex function u uniformly on Ω . Assume also that u is bounded. Then ωa(R, uh, .) weakly
converges to ω(R, u, .).

Theorem 17 Let uh be discrete convex. If uh converges uniformly on compact subsets of Ω
to a function u ∈ C(Ω), u is convex on Ω .

For the analogue of Theorem 15, note that N 1
h ⊂ Ω and the convex extension to R

d

of Γ1(uh) is used in [6] to have an interpolant defined on Ω . Lemma 2 gives the Lipschitz
continuity onΩ∩Z

d
h of a discrete convex functionwith asymptotic cone K . However ∂Ω∩Z

d
h

may be empty. But we can use the Lipschitz continuity of uh on Ωh . An interpolant of uh
equal to Γ2(uh) outside of Conv(Ωh) can be constructed.
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Theorem 18 Let uh be a family of discrete convex functions such that |uh | ≤ C for a constant
C independent of h and χΓ2(uh)(N 2

h ) is uniformly bounded. Assume furthermore that uh is
uniformly Lipschitz on Ω and uh = Γ2(uh) on ∂ Conv(Ωh). Then there is a subsequence hk
such that uhk converges uniformly to a convex function v on Ω .

If Ω is a rectangle, and uh is discrete convex with asymptotic cone K , by Lemma 2, uh
is Lipschitz on Ω ∩ Z

d
h and a piecewise linear interpolant I (uh) of uh on Conv(Ω ∩ Z

d
h) is

uniformly Lipschitz on Ω and uniformly bounded. By the Arzela-Ascoli theorem, there is a
subsequence hk such that uhk converges uniformly to a function v on Ω which is convex by
Theorem 17. We therefore have the following theorem.

Theorem 19 Assume that Ω is a rectangle and uh is discrete convex with asymptotic cone
K . There is a subsequence hk such that uhk converges uniformly to a convex function v on
Ω .

Wewill use the above theorem in Sect. 6.2 for stencils V = Vκ ∩Vmax with size uniformly
bounded and allow κ → ∞.

Lemma 17 If a mesh function uh solves (11) for f > 0 on Ω , then ∂V uh(Ωh) = Y for
V = Vmax .

Proof By assumption, a solution of (11) has asymptotic cone K . Since f > 0 on Ω ,
∂V uh(x) �= ∅ for x ∈ Ωh anduh is discrete convex byLemma1.ByTheorem2 ∂Γ2(uh)(x) =
∂V uh(x). But for x �= y, ∂Γ2(uh)(x) ∩ ∂Γ2(uh)(y) is a set of measure 0 by [24, Lemma
1.1.8]. We conclude that

∫
∪x∈Ωh ∂V uh(x)

R(p)dp = ∑
x∈Ωh

ωa(R, uh, { x }) = ∫
Y R(p)dp

where we used (12). Since by Lemma 3 we have ∂V uh(Ωh) ⊂ Y we get ∪x∈Ωh∂V uh(x) = Y
up to a set of measure 0. Since Y is a polygon and for each x ∈ Ωh , ∂V uh(x) is also a
polygon, we obtain ∂V uh(Ωh) = Y . ��

Theorem 19 is enough to extract a converging subsequence for solutions of (11). In addi-
tion, by [6, Lemma10], the uniformconvergence of uh implies the uniformconvergence of the
convex envelopes Γ2(uh). The following lemma gives conditions under which χΓ2(uh)(N 2

h )

is uniformly bounded. It can be used to extract a convergent subsequence from Γ2(uh) when
V = Vmax .

Lemma 18 Assume that uh is discrete convex with asymptotic cone K . Then χΓ2(uh)(

Conv(Ωh)) ⊂ Y and χΓ2(uh)(N 2
h ) = χΓ2(uh)(R

d) is uniformly bounded.

Proof Part 1 We first prove that if z ∈ Ωh and Γ2(uh)(z) = uh(z), then χΓ2(uh)(z) ⊂
∂V uh(z) ⊂ Y .

Let then p ∈ χΓ2(uh)(z). We have for all s ∈ R
d , Γ2(uh)(s) ≥ Γ2(uh)(z) + p · (s − z). If

s ∈ N 2
h , we getuh(s) ≥ Γ2(uh)(s) ≥ uh(z)+p·(s−z). In particular, for e ∈ V (z) ⊂ Vmax (z)

and s = z+heweobtainuh(z+he) ≥ uh(z)+p·(he). This proves thatχΓ2(uh)(z) ⊂ ∂V uh(z).
By Lemma 3, ∂V uh(z) ⊂ Y .

Part 2 We prove that χΓ2(uh)(Conv(Ωh)) ⊂ Y . We use notions of faces of polyhedra
reviewed in Sect. 9. Recall from Definition 4 the convex subdivision Th associated with the
piecewise linear convex function Γ2(uh) on Conv(N 2

h ). If σ ∈ Th , σ is a convex polyhedron
in R

d , Conv(N 2
h ) = ∪σ∈Thσ , if σ, τ ∈ Th , then σ ∩ τ ∈ Th , and if σ ∈ Th and τ ⊂ σ ,

τ ∈ Th if and only if τ is a face of σ . On each d-dimensional cell σ ∈ Th , Γ2(uh) is a linear
function.
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Recall that for a vertex x of Th , we have Γ2(uh)(x) = uh(x), c.f. for example [6]. For x in
the interior of Conv(N 2

h ), let ω(x) denote the collection of the d-dimensional cells σ ∈ Th
such that x ∈ σ . It is known, using for example [6, Theorem 5] that ∂Γ2(uh)(x) is the convex
hull of the constant gradients of Γ2(uh) on elements σ ∈ ω(x).

Let z ∈ Conv(Ωh) and let τ denote a d-dimensional cell in Th such that z ∈ τ . If all
vertices of τ are in R

d\Conv(Ωh), then z /∈ Conv(Ωh). Thus, at least one vertex x of τ is in
Ωh .

If z ∈ τ ◦, then ∂Γ2(uh)(z) = { p } where p is the gradient of Γ2(uh) at z. Thus
∂Γ2(uh)(z) ⊂ ∂Γ2(uh)(x), and since Γ2(uh)(x) = uh(x) we get ∂Γ2(uh)(z) ⊂ Y .

If z ∈ ∂τ and z is a vertex of τ , we must have z ∈ Ωh since z ∈ N 2
h and z ∈ Conv(Ωh).

Also, Γ2(uh)(z) = uh(z). We then have ∂Γ2(uh)(z) ⊂ Y .
Suppose z ∈ ∂τ and z is not a vertex of τ . Let γ be a lowest dimensional cell such that

z ∈ γ . At least one vertex x of γ must be in Ωh . For σ ∈ ω(z), σ ∩ γ is a cell of Th which
must be a face of γ and contains z. By the assumption on γ , we have σ ∩ γ = γ and hence
x ∈ σ , i.e. σ ∈ ω(x). We conclude that ω(z) ⊂ ω(x) and hence ∂Γ2(uh)(z) ⊂ ∂Γ2(uh)(x).
As above, we obtain ∂Γ2(uh)(z) ⊂ Y .

Part 3 Put D∗ = ∂Γ2(uh)(Conv(Ωh)
◦). Let S be a closed convex set the projection of

which on R
d is equal to Conv(Ωh). We have D∗ ⊂ Y . By Theorem 9, the convex set S + K

defines a convex function v on R
d which extends Γ2(uh)|Conv(Ωh) and such that v(z) for

z ∈ R
d\Conv(Ωh) is given by Theorem 9, i.e.

v(z) = inf
y∈∂ Conv(Ωh)

Γ2(uh)(y) + kY (z − y). (37)

By Lemma 11, χv(R
d) = Y . Thus, there exists a constant C independent of h such that for

all,

|v(x) − v(y)| ≤ C |x − y|,∀x, y ∈ N 2
h , (38)

where |x |2 = x · x .
Moreover, for x ∈ N 2

h \Ωh , uh(x) = inf y∈∂Ωh uh(y) + kY (x − y). Therefore, by (37),
v(x) ≤ uh(x) for all x ∈ N 2

h \Ωh . Since by construction v = Γ2(uh) on Conv(Ωh), we
obtain v(x) ≤ uh(x) for all x ∈ N 2

h . As Γ2(uh) is the largest convex function majorized by
uh on N 2

h , we obtain

v(x) ≤ Γ2(uh)(x) for all x ∈ N 2
h , (39)

which can also be seen by taking a supporting hyperplane to the graph of v and the definition
of Γ2(uh).

Let now x ∈ N 2
h \Conv(Ωh) and q ∈ χΓ2(uh)(x). We have q · (z − x) ≤ Γ2(uh)(z) −

Γ2(uh)(x) for all z ∈ R
d . Let ei , i = 1, . . . , d be a set of independent vectors such that

zi = x + ci ei is in Ωh for ci > 0. Using zi ∈ Ωh , (39) and (38), we obtain

q · (ci ei ) ≤ v(zi ) − v(x) ≤ C |zi − x | = ciC |ei |.
We conclude that q · ei/|ei | ≤ C, i = 1, . . . , d .

Next, let li > ci > 0 such that si = x − li ei , i = 1, . . . , d is not in Conv(N 2
h ). We have

using Theorem 8, Γ2(uh)(si ) ≤ Γ2(uh)(zi ) + kY (si − zi ). Thus

li q · (−ei ) = q · (si − x) ≤ Γ2(uh)(si ) − Γ2(uh)(x) ≤ Γ2(uh)(si ) − v(x)

≤ Γ2(uh)(zi ) + kY (si − zi ) − v(x) = v(zi ) − v(x) + kY (si − zi )

≤ ciC |ei | + 2ci kY (−ei ).
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We conclude that q · (−ei )/|ei | ≤ C + 2kY (−ei/|ei |). Since Y is bounded, it follows that
q · (±ei )/|ei | ≤ C for a constant C independent of h. This proves that χΓ2(uh)(N 2

h ) is
uniformly bounded. By Lemma 11 χΓ2(uh)(N 2

h ) = χΓ2(uh)(R
d).. ��

For f > 0 on Ω , by Theorem 2 and Lemma 17, as we will see, convergence of the
discretization (11) for V = Vmax reduces to proving convergence results for the convex
envelope Γ2(uh). Analogous to Lemma 18, we have

Lemma 19 Assume that uh is discrete convex with asymptotic cone K . Then χΓ1(uh)(

Conv(Ωh)) ⊂ Y and χΓ1(uh)(N 1
h ) = χΓ1(uh)(R

d) is uniformly bounded.

6 Convergence of the Discretization

Recall the truncation f̃ of f defined by (6). Set

f̃ (t) = 0 outside Ω.

Given a Borel set E ⊂ Ω we define

νh(E) =
∑

x∈B∩Ωh

∫

Ex

f̃ (t)dt .

We recall that a sequenceμn of Borel measures converges to a Borel measureμ if and only
if μn(B) → μ(B) for any Borel set B with μ(∂B) = 0. Let hk be a sequence converging to
0. Then νhk weakly converges to the measure ν defined by ν(B) = ∫

B f̃ (t)dt .
In this section, we first give the convergence of the discretization for V = Vmax . We then

consider the case V not necessarily equal to Vmax and f ∈ C(Ω). We finish with a result
about convergence of approximations when Ω∗ is approximated by polygons.

6.1 Convergence when@Vuh(Äh) = Y

When V = Vmax , by Lemma17 ∂V uh(Ωh) = Y for a solution of (11). Recall fromTheorem3
that solutions uh of (11) with uh(x1h) = α for an arbitrary number α and x1h ∈ Ωh , are
uniformly bounded in h.

Theorem 20 For f > 0 on Ω and V = Vmax , solutions uh of (11) with uh(x1h) = α for x1h
in Ωh and x1h → x1 ∈ Ω , converge uniformly on Ω to the unique solution u of (4) with
u(x1) = α.

Proof Part 1 Existence of a converging subsequence with converging measures.
By Remark 1 of Sect. 5, a discrete convex function is discrete convex as defined in [6].

Since V = Vmax , uh = Γ1(uh) on Ωh . By Lemma 19 χΓ1(uh)(N 1
h ) ⊂ χΓ1(uh)(R

d) is
uniformly bounded. Thus, by [6, Lemma 15] we have

|uh(x) − uh(y)| ≤ C ||x − y||1,∀x, y ∈ N 1
h ,

i.e. the discrete convex mesh functions uh are uniformly Lipschitz on Ω . As uh(x1h) = α

we have |uh | ≤ C with C independent of h. Therefore, by Theorem 15, there exists a
subsequence hk such that uhk converges uniformly on Ω , as defined in Definition 8, to a
convex function v onΩ , which is necessarily bounded. By Lemma 19, Theorems 2, 1 and 13,
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ωa(R, uhk , .) = ω(R, Γ2(uhk ), .) = ω(R, Γ1(uhk ), .) weakly converges to ω(R, v, .). We
conclude that

ω(R, v, E) =
∫

E
f̃ (t)dt = ω(R, u, E),

since from (11), ωa(R, uh, E) = νh(E) for all Borel sets E ⊂ Ω .
Part 2 The limit function has asymptotic cone K .
We claim that uhk converges pointwise, up to a subsequence, to v on R

d\Ω with v given
for x /∈ Ω by

v(x) = inf
s∈∂Ω

v(s) + max
j=1,...,N∗(x − s) · a∗

j . (40)

Let xh → x as h → 0. We may assume that xh /∈ Ωh . Therefore uh(xh) = uh(yh) +
max j=1,...,N∗(xh − yh) ·a∗

j for yh ∈ ∂Ωh . Let yhk be a subsequence such that yhk → y ∈ Ω .

Since yh ∈ ∂Ωh , we have y ∈ ∂Ω . If necessary, by taking a further subsequence, we use
the uniform convergence of uhk to v on Ω to conclude that uhk (yhk ) → v(y). We may write
max j=1,...,N∗(xhk −yhk )·a∗

j = (xhk −yhk )·a∗
jk
, and again up to a subsequence, this converges

to (x − y) · a∗
l for some l ∈ { 1, . . . , N∗ }. Since (xhk − yhk ) · a∗

jk
≥ (xhk − yhk ) · a∗

j for all
j , we get (x − y) · a∗

l = max j=1,...,N∗(x − y) · a∗
j . We conclude that uhk (xhk ) converges to

v(y) + max
j=1,...,N∗(x − y) · a∗

j , for y ∈ ∂Ω.

Next, if z ∈ ∂Ω and zh → z, zh ∈ ∂Ωh ,wehaveuh(xh) ≤ uh(zh)+max j=1,...,N∗(xh−zh)·a∗
j

and repeating the same argument, we obtain for all z ∈ ∂Ω

v(y) + max
j=1,...,N∗(x − y) · a∗

j ≤ v(z) + max
j=1,...,N∗(x − z) · a∗

j .

This proves (40). As a consequence, by Theorem 11, the limit function v coincides with
a function on R

d with asymptotic cone K , i.e. v has asymptotic cone K . We conclude by
Corollary 1 that

χv(Ω) = Y .

As a consequence

ω(R, v,Ω) =
∫

Y
R(p)dp = ω(R, u,Ω). (41)

Part 3 The limit function solves (4).
Since uhk converges uniformly to v onΩ , by [6, Lemma 10] Γ1(uhk ) converges uniformly

on compact subsets ofΩ to v. By [24, Lemma 1.2.2], for each compact set K ⊂ U ⊂ U ⊂ Ω

for an open set U , ∂v(K ) ⊂ lim infhk→0 ∂Γ1(uhk )(U ) = lim infhk→0 ∂V uhk (U ) up to a set
of measure 0. Here, we also used Lemma 19.We recall from Lemma 3 that ∂V uhk (Ωhk ) ⊂ Y .
Thus χv(Ω) ⊂ Y .

Next, we recall that the set of points which are in the normal image of more than one point
is contained in a set of measure 0, [24, Lemma 1.1.12]. As χv(Ω) = Y and χv(Ω) ⊂ Y , we
have χv(∂Ω) ⊂ ∂Y up to a set of measure 0. In other words, |χv(∂Ω)| = 0. We conclude
that

ω(R, v, E) = ω(R, v, E ∩ Ω) + ω(R, v, E ∩ ∂Ω) = ω(R, v, E ∩ Ω)

= ω(R, u, E ∩ Ω) ≤ ω(R, u, E),
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for all Borel sets E ⊂ Ω . Thus, it is not possible to have ω(R, v, E) < ω(R, u, E) for a
Borel set E since that would give

ω(R, v, Ω)=ω(R, v, E)+ω(R, v,Ω \ E)<ω(R, u, E)+ω(R, u, Ω \ E)=ω(R, u,Ω),

contradicting (41). We conclude that ω(R, v, E) = ω(R, u, E) for all Borel sets E ⊂ Ω .
As uhk converges uniformly to v onΩ and x1h → x1, uhk (x

1
hk

) → v(x1). Thus v(x1) = α.

Since (4) has a unique solution with u(x1) = α and v(x1) = α, we have u = v and hence
uh converges uniformly on Ω to u. ��

6.2 ConvergenceWhen @Vuh(Äh) is Not Necessarily Equal to Y

In this section we consider the case Vmin ⊂ V ⊂ Vmax . For a solution of (11), we have
∂V uh(Ωh) ⊂ Y , but we may have ∂V uh(Ωh) �= Y . Thus arguments for convex functions no
longer apply. We will use arguments for convergence to viscosity solutions. But we will also
use the Lipschitz continuity of mesh functions to extract subsequences, c.f. Theorem 19. Our
convergence results are thus for Ω a rectangle. There is no loss of generality as Problem 1
has an equivalent formulation on a larger rectangular domain Ω̃ by setting f = 0 on Ω̃ \ Ω .
Recall that for a solution u of (1), we have χu(Ω) = χu(R

d) = Ω∗. The existence of
solution to (11) in the degenerate case f ≥ 0 is discussed in Sect. 7. If V (x) = Vmax (x)
for all x ∈ ∂Ωh , then convergence on a bounded convex domain can be proven based on
Theorem 18.

We denote by |.| the matrix norm induced by the Euclidean norm |.| on R
d . Let M be

a symmetric positive definite d × d matrix and p(x) = 1/2 xT Mx be a strictly convex
quadratic polynomial. Recall that the condition number of M is given by

√|M | |M−1|. Let λ
and Λ denote the smallest and largest eigenvalues of M . It is known that |M | = Λ and thus
similarly |M−1| = 1/λ. So the condition number of M is

√
Λ/λ.

If p(x) = 1/2 xT Mx andM has condition number less than κ , we say that p is a quadratic
polynomial with condition number less than κ .

Definition 10 A convex function u ∈ C(Ω) is a viscosity solution of

R(Du(x)) det D2u(x) = f (x), (42)

in Ω if for all φ ∈ C2(Ω) the following holds

– at each local maximum point x0 of u − φ, f (x0) ≤ R(Dφ(x0)) det D2φ(x0)
– at each localminimumpoint x0 ofu−φ, f (x0) ≥ R(Dφ(x0)) det D2φ(x0), if D2φ(x0) ≥

0, i.e. D2φ(x0) has positive eigenvalues.

As explained in [28], the requirement D2φ(x0) ≥ 0 in the second condition above is
natural for the two dimensional case. The space of test functions in the definition above can
be restricted to the space of strictly convex quadratic polynomials [24, Remark 1.3.3]. We
will refer to the conditions above as the conditions in the definition of viscosity solution for
the test function φ.

Definition 11 A convex function u ∈ C(Ω) is a κ-viscosity solution of (42) if the conditions
in the definition of viscosity solution hold for all strictly convex quadratic polynomials with
condition number less than κ .

A viscosity solution of (42) is a κ-viscosity solution for all κ > 0.
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6.2.1 Equivalence with Aleksandrov Solutions

We recall that an Aleksandrov solution of (42) is a convex function u ∈ C(Ω) such that
ω(R, u, E) = ∫

E f (x)dx for all Borel sets E ⊂ Ω .
For f > 0 and f ∈ C(Ω), one proves as with [24, Propositions 1.3.4 and 1.7.1] that a

convex function u ∈ C(Ω) is an Aleksandrov solution of (42) if and only if it is a viscosity
solution of (42).

6.2.2 Convergence to the Viscosity Solution

The scheme (11) is said to be monotone if for zh and wh in Ch , zh(y) ≥ wh(y), y �= x with
zh(x) = wh(x), we have ω(R, zh, { x }) ≥ ω(R, wh, { x }). One proves as with [7, Lemma
3.7] that the scheme (11) is monotone.

We say that the scheme (11) is consistent if for all C2 convex functions φ, a sequence
xh → x ∈ Ω

lim
h→0

1

hd
ω(R, φ, { xh }) = det D2φ(x).

We will also use the terminology of consistent with a class of smooth functions.
Analogous to [7, Theorem3.9] and similarly to the end of Part 3 of the proof ofTheorem20,

we have

Theorem 21 Assume that V = Vmax and the scheme (11) is consistent. If the solution uh
of (11), with uh(x1h) = α for x1h in Ωh and x1h → x1 ∈ Ω , converges uniformly on Ω to a
convex function v, then v is a viscosity solution of (42) with v(x1) = α.

Recall the definition of the stencil Vκ from Sect. 2.2, i.e. Vκ consists of all vectors e ∈
Z
d \{ 0 }with co-prime coordinates such that |e| ≤ 1/2

√
dκ . Analogous to the above theorem

we have

Theorem 22 Assume that V = Vκ ∩ Vmax and the scheme (11) is consistent for strictly
convex quadratic polynomials with condition number less than κ . If the solution uh,κ of (11),
with uh,κ (x1h) = α for x1h in Ωh and x1h → x1 ∈ Ω , converges uniformly on Ω to a convex
function vκ , then vκ is a κ-viscosity solution of (42) with vκ(x1) = α.

We establish below the consistency of (11) for V = Vκ ∩ Vmax , for strictly convex
quadratic polynomials, at interior points at a distance Ch of ∂Ω . To check the conditions in
the definition of viscosity solution at a point x ∈ Ω , one first take h sufficiently small and
check the conditions at mesh points xh close to x . See the proof of Theorem 22 in Sect. 6.2.5
below.

Theorem 23 Let Ω be a rectangle. Assume that uh,κ is discrete convex and solves (11) for
V = Vκ ∩Vmax with uh,κ (x1h) = α for x1h inΩh and x1h → x1 ∈ Ω . There is a subsequence hk
such that uhk ,κ converges uniformly onΩ to a continuous convex function vκ with vκ(x1) = α.

Proof By Theorem 19, there is a subsequence hk such that uhk ,κ converges uniformly on Ω

to a continuous function vκ . The latter is convex by Lemma 17. ��
As the family vκ consists of convex functions with uniformly bounded gradient, we can

extract a subsequence which converges uniformly on Ω to a convex function v as κ → +∞.
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Theorem 24 Let κ = n and assume that vn is a κ-viscosity solution of (42) which converges
uniformly on Ω to a convex function v as n → +∞. Then v is a viscosity solution of (42).

Proof The proof is the same as the proof of stability of viscosity solutions under uniform
convergence. Let φ be a strictly convex quadratic polynomial. We may assume that φ(x) =
1/2 xT Mx for a symmetric positive definite matrix M , since for a linear function L(x),
det D2 L(x) = 0. Assume that M has condition number n0.

Let x0 ∈ Ω and assume that v − φ has a maximum in the closed ball B(x0, δ). Using
φ(x) + |x − x0|2, we may assume that v − φ has a strict local maximum in B(x0, δ). By
[9, Lemma 2.4], since vn − φ converges uniformly on Ω to v − φ, there exists a sequence
xn ∈ Ω such that xn → x0 and vn(xn) − φ(xn) ≥ vn(x) − φ(x) for all x in B(x0, δ).

We get R(Dφ(xn)) det D2φ(xn) ≥ f (xn) for n ≥ n0 and thus R(Dφ(x0)) det D2φ(x0) ≥
f (x0).
The other condition in the definition of viscosity solution is proved similarly. ��

We now summarize Theorems 22–24.

Theorem 25 Let Ω be a rectangle. Assume that V = Vκ ∩ Vmax and the scheme (11) is
consistent for strictly convex quadratic polynomials with condition number less than κ . There
is a subsequence hk such that the solution uhk ,κ of (11), with uhk (x

1
hk

) = α for x1hk inΩhk and

x1hk → x1 ∈ Ω , converges uniformly on Ω to a convex function vκ . Moreover, as κ → +∞,

vκ converges uniformly on Ω to the unique convex solution u of (4) with u(x1) = α.

Proof By Theorem 23, there is a subsequence hk such that uhk ,κ converges uniformly on Ω

to a continuous convex function vκ with vκ(x1) = α. By Theorem 22, vκ is a κ-viscosity
solution of (42) with vκ(x1) = α. By Theorem 24, as κ → +∞, vκ converges uniformly on
Ω to a convex function v which is a viscosity solution of (42) with v(x1) = α. Arguing as in
Part 2 of the proof of Theorem 20, the convex function v has asymptotic cone K . Recall the
equivalence of viscosity and Aleksandrov solutions from Sect. 6.2.1. The convex function v

is then equal to the unique solution of (4). All subsequences thus converge to the latter. This
completes the proof. ��

Remark 4 The requirement for convergence that solutions of (11) are discrete convex can be
removed when f > 0 on Ω by using the viscosity solution reformulation of convexity.

We finish this section by addressing consistency for quadratic polynomials.We first review
a topic which is curiously called geometry of numbers.

6.2.3 Geometry of Numbers

The material for this section is adapted from [18] to which the reader is referred to for
additional details.

Recall that { r1, . . . , rd } denotes the canonical basis of R
d . Here ri ∈ Z

d for all i . We
view Z

d as a lattice, i.e.

Z
d = { ζ1r1 + . . . + ζdrd , ζi ∈ Z for all i }.

The determinant d(Zd) of the matrix with column vectors ri , i = 1, . . . , d is independent of
the choice of the basis and called determinant of the lattice. We have d(Zd) = 1.
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Let M be a symmetric positive definite matrix and consider the distance on R
d given by

dM (e, e′) = ||e − e′||M where ||v||M := √
vT Mv. For e0 ∈ Z

d , we define the Voronoi cell

Vor(e0) = { p ∈ R
d , ||p − e0||M ≤ ||p − e||M ,∀e ∈ Z

d }.
We denote by int Vor(e0) the interior of Vor(e0). It can be shown [18, p. 343] that (recall that
Z
d is infinite)

R
d = ∪e∈Zd Vor(e)

int Vor(e) ∩ int Vor(e′) = ∅, for e, e′ ∈ Z
d , e �= e′.

(43)

We also note that for e0 ∈ Z
d

Vor(e0) = Vor(0) + e0,

i.e. Vor(e0) is a Z
d -translate of Vor(0). In the terminology of [18, p. 337], (43) says that the

Z
d -translates of Vor(0) form a tiling of R

d . By [18, Proposition 11 Chapter VIII],

|Vor(0)| = d(Zd) = 1. (44)

We consider the open half-space

Ge = { p ∈ R
d ||p||M < ||p − e||M },

and the hyperplane

He = { p ∈ R
d ||p||M = ||p − e||M }.

We have Ge = Ge ∪ He and [18, p. 342–343]

Vor(0) = ∩e∈Zd\{ 0 }Ge.

In fact, there are a finite number of points ei ∈ Z
d , i = 1, . . . , l such that

Vor(0) = ∩l
i=1Gei ,

with the above representation irredundant, in the sense that it no longer holds if one omits
one of the half-spaces Gei .

Note that Vor(0) is convex, and recall that a subset A of Vor(0) is a face of Vor(0) if A
is convex and if y, y′ ∈ Vor(0) and the open line segment (y, y′) intersects Vor(0), then
y, y′ ∈ Vor(0). The (d − 1)-dimensional faces of Vor(0) are called facets. The distinct
facets of Vor(0) are given by the intersections Vor(0) ∩ Hei , i = 1, . . . , l and the vectors
ei , i = 1, . . . , l are the facets vectors of the lattice Z

d .
The notions introduced above are dependent on the distance dM induced by the symmetric

positive definite matrix M . In [38, 39], the facets of the Voronoi cell are called Voronoi facets
and the facets vectors are called strict M-Voronoi vectors. M-Voronoi vectors are the vectors
e ∈ Z

d for which Vor(0) ∩ He �= ∅. Equivalently
Vor(0) = { p ∈ R

d , 2(Mp) · e ≤ eT Me,∀e ∈ Z
d }.

6.2.4 Interior Consistency for Strictly Convex Quadratic Polynomials

For a set S, hS = { h x, x ∈ S } and MS = { Mx, x ∈ S }. We note that the definition of
∂V q(x) uses the values of the quadratic function q only when x ∈ Ωh . For x /∈ Ωh , the
discrete extension formula (10) is used.
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In this section, we take V = Vκ ∩ Vmax . The results of this section are needed at mesh
points at a distance Ch of ∂Ω , c.f. the proof of Theorem 22 below. For those mesh points
Vκ ∩Vmax = Vκ . We therefore assume that the stencil V is mesh independent in the statement
of the results below.

Lemma 20 Let M be a symmetric positive definite d × d matrix and q(x) = 1/2 xT Mx a
quadratic polynomial. We have for all x ∈ Ωh such that x + he ∈ Ωh for all e ∈ V

|∂V q(x)| = hd det(M)|Vor(M, V )|,
where Vor(M, V ) is the Voronoi cell of M associated with the stencil V , i.e.

Vor(M, V ) = { p ∈ R
d , 2(Mp) · e ≤ eT Me,∀e ∈ V }.

Proof We have

q(x + he) = 1

2
(x + he)T M(x + he) = q(x) + h xT Mx + h2

2
eT Me.

Thus ∂V q(x) is equal to

{ p ∈ R
d , p · e ≤ xT Me + h

2
eT Me,∀e ∈ V } = { p ∈ R

d , (p − Mx) · e ≤ h

2
eT Me,

∀e ∈ V } = { hq ∈ R
d , 2(q − 1

h
Mx) · e ≤ eT Me,∀e ∈ V } = h{ q ∈ R

d ,

2(q− 1

h
Mx) · e ≤ eT Me,∀e ∈ V }=hM{ r ∈ R

d , 2(Mr− 1

h
Mx)·e≤eT Me,∀e ∈ V }.

But the set { r ∈ R
d , 2(Mr − 1/h Mx) · e ≤ eT Me,∀e ∈ V } is a translate of Vor(M, V ) by

1/h Mx , and thus they have the same volume. The result then follows. ��
We next give sufficient conditions on V so that |Vor(M, V )| = 1 so that consistency

holds for strictly convex quadratic polynomials.

Lemma 21 Let M be a symmetric positive definite d × d matrix. If the stencil V contains
all strict M-Voronoi vectors, then |Vor(M, V )| = 1. Therefore, for q(x) = 1/2 xT Mx and
x ∈ Ωh such that x + he ∈ Ωh for all e ∈ V we have

|∂V q(x)| = hd det M .

Proof We show that under the conditions of the lemma we have Vor(M, V ) = Vor(0). The
result then follows from Lemma 20 and (44).

We have from the definitions Vor(0) ⊂ Vor(M, V ). Let S be the set of strict M-Voronoi
vectors. We have

Vor(0) = { p ∈ R
d , 2(Mp) · e ≤ eT Me,∀e ∈ S }.

If S ⊂ V , we get Vor(M, V ) ⊂ Vor(0). The result then follows. ��
The following characterization of the set of all strict M-Voronoi vectors was given in [38,

39].

Lemma 22 Let M be a symmetric positive definite d × d matrix and let κ = √|M | |M−1|.
Then all strict M-Voronoi vectors are contained in the set

S =
{

e ∈ Z
d , |e| ≤ 1

2

√
dκ, e has co-prime coordinates

}

. (45)
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6.2.5 Proof of Theorem 22

Recall the half-relaxed limits defined for x ∈ Ω by

v∗(x) = lim sup
y→x,h→0

uh,κ (y) = lim
δ→0

sup{ uh,κ (y), y ∈ Ωh, |y − x | ≤ δ, 0 < h ≤ δ }

v∗(x) = lim inf
y→x,h→0

uh,κ (y) = lim
δ→0

inf{ uh,κ (y), y ∈ Ωh, |y − x | ≤ δ, 0 < h ≤ δ }.

By construction vκ is the uniform limit of continuous functions which interpolate uh,κ and
hence vκ ∈ C(Ω). Since uh,κ converges uniformly on Ω to vκ , we have vκ = u∗ = u∗ on
Ω . At this point, it is not known yet that the limit convex function vκ is a viscosity solution
of (42).

We show that vκ = u∗ is a κ-viscosity super solution of R(Du(x)) det D2u(x) = f (x) at
every point x ofΩ . Let x0 ∈ Ω andφ be a strictly convex quadratic polynomialwith condition
number less than κ such that v∗−φ has a local minimum at x0 with (v∗−φ)(x0) = 0.Without
loss of generality, we may assume that x0 is a strict local minimum.

Let B0 denote a closed ball contained inΩ and containing x0 in its interior. We let xhl be a
subsequence in B0 such that xhl → x0 with uhl (xhl ) → v∗(x0). As hl → 0, we may assume
that for all x ∈ B0, d(x, ∂Ω) > hl

√
dκ . If e ∈ Vκ , |e| ≤ 1/2

√
dκ by definition and thus

|hle| < hl
√
dκ . We conclude that for x ∈ B0, we have x + he ∈ Ω and hence x + he ∈ Ωh

for all e ∈ Vκ . Therefore Vκ ∩ Vmax (x) = Vκ for all x ∈ B0.
Let x ′

l ∈ B0 ∩ Ωhl be defined by

cl :=(uhl − φ)(x ′
l ) = min

B0
uhl − φ.

Since the sequence x ′
l is bounded, it converges to some x1 after possibly passing to a subse-

quence. Since (uhl − φ)(x ′
l ) ≤ (uhl − φ)(xhl ) we have

(v∗ − φ)(x0) = lim
l→∞(uhl − φ)(xhl ) ≥ lim inf

l→∞ (uhl − φ)(x ′
l ) ≥ (v∗ − φ)(x1).

Since x0 is a strict minimizer of the difference v∗ −φ, we conclude that x0 = x1 and cl → 0
as l → ∞. By definition

uhl (x) ≥ φ(x) + cl ,∀x ∈ B0 ∩ Ωhl ,

with equality at x = x ′
l , and thus, by the monotonicity of the scheme

0 = 1

hdl
ω(R, uhl , { x ′

l }) − f (x ′
l ) ≥ 1

hdl
ω(R, φ + cl , { x ′

l }) − f (x ′
l )

= 1

hdl
ω(R, φ, { x ′

l }) − f (x ′
l ),

which gives by the consistency of the scheme R(Dφ(x0)) det D2φ(x0) − f (x0) ≤ 0.
Similarly one shows that if φ is a strictly convex quadratic polynomial with condition

number less than κ such that v∗ − φ has a local maximum at x0 with (v∗ − φ)(x0) = 0,
we have R(Dφ(x0)) det D2φ(x0) − f (x0) ≥ 0. It follows that vκ = u∗ = u∗ on Ω is a
κ-viscosity solution of R(Du) det D2u = f .
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6.3 Polygonal Approximations ofÄ∗

We now address the convergence of solutions of (8) to the solution of (4) as Y → Ω∗.
Recall that f̃ as defined by (6) depends on Y . Here we make the dependence explicit. Put
fY (t) = f̃ (t).
The distance of the point x to the set K is denoted d(x, K ). The Hausdorff distance

d(K , H) between two nonempty subsets K and H of R
d is defined as

max{ sup[d(x, K ), x ∈ H ], sup[d(x, H), x ∈ K ] }.
We say that a sequence of domains Ωm is increasing to Ω , if Ωm ⊂ Ωm+1 ⊂ Ω and

d(∂Ωm, ∂Ω) → 0 as m → ∞.

Theorem 26 Let Ym be bounded non degenerate convex polygonal domains increasing to
Ω∗. Then the convex solution um of

ω(R, u, E) =
∫

E
fYm (x)dx for all Borel sets E ⊂ Ω

χu(Ω) = Ym

u(x0) = α,

(46)

for x0 ∈ Ω and α ∈ R converges uniformly on Ω to the solution u of (4) with u(x0) = α.

Proof Recall that fYm (x) = f (x) − ε∗
m f (x) where ε∗

m = ∫
Ω∗\Ym R(p)dp

/
∫
Ω

f (x)dx .

As Ym → Ω∗, ε∗
m → 0. Thus

∫
E fYm (x)dx → ∫

E f (x)dx for all Borel sets E ⊂ Ω with
|∂E | = 0. For the purpose of using results on Monge–Ampère equations stated for bounded
domains in [24], we may assume that the Borel sets E ⊂ Ω are contained in a larger bounded
domain Ω̂ such that Ω ⊂ U ⊂ Ω̂ for an open set U , and set fYm (x) = 0 and f (x) = 0
outside Ω .

Recall thatΩ∗ is bounded. LetC such that |p| ≤ C,∀p ∈ Ω∗.We claim that the functions
um are Lipschitz continuous with the same Lipschitz constant. The proof is analogous to
the one for [24, Lemma 1.1.6]. Essentially because χum (Ω) ⊂ Ω∗ for all m. Thus for all
x, y ∈ Ω , we have for a constant C independent of m

|um(x) − um(y)| ≤ C ||x − y||1.
Moreover since um(x0) = α and Ω̂ is bounded, we conclude that the sequence um is
uniformly bounded and equicontinuous on Ω . By the Arzela-Ascoli theorem, there is a
subsequence also denoted um which converges uniformly on the compact set Ω to a func-
tion v on Ω . It is known that such a function v is convex. By the weak convergence of
R-curvatures [8, Theorem 9.1], ω(R, um, .) weakly converges to ω(R, v, .) We conclude
that ω(R, v, E) = ∫

E f (x)dx for all Borel sets E ⊂ Ω .
Next we show that χv(Ω) = Ω∗. Let p ∈ Ω∗. There exists a sequence pm ∈ Ym such

that pm → p in R
d , see for example [46, Theorem 1.8.8-a]. Therefore there exists xm ∈ Ω

such that pm ∈ χum (xm), i.e.

um(y) ≥ um(xm) + pm · (y − xm)∀y ∈ R
d .

The bounded sequence xm converges up to a subsequence to a point x ∈ Ω . We conclude
that v(y) ≥ v(x) + p · (y − x) for all y ∈ Ω̃ . Thus p ∈ χv(Ω) and Ω∗ ⊂ χv(Ω). A similar
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argument shows that χv(Ω) is closed. Therefore Ω∗ ⊂ χv(Ω). Using (5)
∫

χv(Ω)

R(p)dp = ω(R, v,Ω) =
∫

Ω

f (x)dx =
∫

Ω

f (x)dx =
∫

Ω∗
R(p)dp

=
∫

Ω∗
R(p)dp.

Therefore |χv(Ω) \ Ω∗| = 0. We conclude that Ω∗ is dense in χv(Ω). But Ω∗ is closed.
Thus χv(Ω) = Ω∗.

Moreover, if K is compact and U is open such that K ⊂ U ⊂ U ⊂ Ω , we have up
to a set of measure 0, χv(K ) ⊂ lim infm→∞ χum (U ), by [24, Lemma 1.2.2]. This implies
χv(Ω) ⊂ Ω∗. As in the proof of Part 3 of Theorem 20, using [24, Lemma 1.1.12] which says
that the set of points which are in the normal image of more than one point is contained in a
set of measure 0, we obtain |χv(∂Ω)| = 0. So we actually have ω(R, v, E) = ∫

E f (x)dx
for all Borel sets E ⊂ Ω .

Clearly v(x0) = α and so v is the unique solution of (4) which satisfies v(x0) = α. It
follows that the whole sequence um converges uniformly to u on Ω . ��

7 The Degenerate Case f ≥ 0

For the uniqueness of a solution, we needed the assumption f > 0. In the case f ≥ 0, from
an implementation point of view, and for the existence of a solution, we may consider the
approximate problem analogous to (11)

ωa(R, uε
h, { x }) =

∫

Ex

f̃ (t)dt + ε|Ex |, x ∈ Ωh, (47)

where ε > 0 is taken close to machine precision and for a polygon Y we choose Yε such that
Y ⊂ Yε and the compatibility condition

∑

x∈Ωh

ωa(R, uε
h, { x }) =

∫

Yε

R(p)dp.

holds. Here uε
h is required to have asymptotic cone Kε associated with Yε . As ε → 0 uε

h
converges to a solution uh of (11) and Yε → Y . This proves existence of a solution to (11)
in the degenerate case f ≥ 0.

For the convergence of the discretization in the case V = Vmax , i.e. the analogue of The-
orem 20, note that because of Lemmas 2 and 3, the approximations are uniformly Lipschitz
on Ω . It then remains to verify that χΓ1(uε

h)
(N 1

h ) is uniformly bounded. But this is also an
immediate consequence of Lemma 18.

We have for all p ∈ χΓ1(uε
h)

(N 1
h )

||p|| ≤ CCYεCΩ.

Since Yε → Y as ε → 0, the result follows. For a subsequence hk , uε
hk

converges uniformly

on Ω to a convex function vε . The latter can be shown to converge to a solution of (4) using
the arguments of Sect. 6.3.

We note that the convergence argument to a viscosity solution of Sect. 6.2 do not require
f > 0.
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8 Numerical Experiments

For the implementation of the numerical method (11), note that the set ∂V vh(x), for a mesh
point x , is a polygon defined by a finite number of inequalities. There are programs available
on MATLAB Central which allow to compute the vertices of a polygon from the defining
inequalities. In our MATLAB implementation, we found the vertices of ∂V vh(x) by param-
eterizing its edges using the linear inequalities. Numerical integration over a triangulation
of the polygon can then be used to compute ωV (R, vh, { x }) for x ∈ Ωh . Formulas for the
Jacobian matrix are given in [4]. To deal with a possible singular Jacobian, as in [12], we
added a small constant to the diagonal elements. The parameters δ and ρ in the damped
Newton’s method [4] were taken as ρ = 1 and δ = 1/2.

We give numerical experiments for d = 2 and Ω = (0, 1)2. Here Ωh = Ω ∩ (a + Z
2
h)

where a = (1/2, 1/2). For integration over edges, for the entries of the Jacobian matrix,
we used a Gaussian quadrature rule with degree of precision 7. For the right hand side, a
three point quadrature rule with degree of precision 2 was used. The stencil V was taken
as V = −V1 ∪ V1 where V1 consists of the vectors (1, 0), (0, 1), (1, 1), (1,−1), (2, 1),
(−1, 2), (1, 2) and (−2, 1). For the imposition of the constraint vh(x1) = 0, we approximate
the solution of the equation R(Du) det D2u = f + u(x1). The compatibility condition (5)
implies that u(x1) = 0. In our experiment we used x1 = a + (h, h).

The discrete convexity assumption was not enforced. Starting with an initial guess which
is discrete convex, we require that subsequent iterates are V -discrete convex by choosing the
step size in the damped Newton’s method.

Note however that since we are using in (11) the approximation
∫
Ex

f (t)dt ≈ h2 f (x)
and numerical integration for the evaluation of ωV (R, uh, { x }) for x ∈ Ωh , the discrete
mass conservation (12) will not hold, i.e.

∑
x∈Ωh

ωV (R, uh, { x }) �= ∑
x∈Ωh

h2 f (x). A
discrete solution with some value of uh(x1) is computed and we add a constant c to have
uh(x1)+c = 0. Alternatively, to assure a discretemass conservation, one could also consider,
for a constant c to be adjusted, ωV (R, uh, { x }) = h2 f (x) + c

∑
x∈Ωh

uh(x). This approach
naturally requires adding a small constant to the diagonal elements of the Jacobian matrix.

First we consider the exact solution u(x, y) = x2/2 + xy + y2. In this case Ω∗ is the
polygon of area 1 with vertices (0, 0), (1, 1), (1, 2) and (2, 3). We take R(x, y) = x + y with
corresponding right hand side f (x, y). As in [44] we take as initial guess a function u0 such
that χu0(Ω) is a rectangle contained in Ω∗.

Table 1 shows an asymptotic quadratic convergence rate for u while the convergence rate
for Du is linear. Figures 3 and 4 show the deformations of a grid by the gradient mapping.
Here, the initial guess was taken as αu0 where u0 is a function such that χu0(Ω) is a rectangle
contained in Ω∗ and α = ∫

Ω∗ R(p)dp. For this case, unlike the results in [11], there is no
collapse of grid points near the boundary of the circle (Fig. 5).

9 A Review of Polyhedral Set Theory

The purpose of this section is to relate the notions introduced in Sect. 4 to the standard
polyhedral set theory. It may be skipped in a first reading.

Any convex set which does not contain a line and consisting of the union of rays with the
same common vertex is called a convex cone. The common vertex of all these rays is called
the vertex of this convex cone. Formally
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Table 1 Maximum errors for a smooth solution

h

1/25 1/26 1/27 1/28 1/29

Error for u 2.72 10−4 8.01 10−5 2.31 10−5 6.52 10−6 1.82 10−6

Rate 1.76 1.79 1.82 1.84

Error for Du 6.27 10−3 3.30 10−3 1.56 10−3 8.23 10−4 3.92 10−4

Rate 0.93 1.07 0.93 1.07

Fig. 4 Constant density on a square mapped to constant density on the unit disc h = 1/27

Fig. 5 Constant density on a square mapped to the Gaussian e−0.5(x2+y2) on the unit disc h = 1/28

Definition 12 A convex set D ⊂ R
d+1 which does not contain a line is a convex cone with

vertex A if there is a subset S of R
d+1 such that D = ∪e∈S L+

A,e.

See Figs. 1 and 3 for examples of convex cones.

Lemma 23 A convex set D ⊂ R
d+1 which does not contain a line is a convex cone with

vertex A, if and only if for X ∈ D, we have A + λ
−→
AX ∈ D for all λ > 0.

Proof Assume that D is a convex cone. Let X ∈ D and e ∈ R
d+1 such that X ∈ L+

A,e. Let

μ ≥ 0 such that
−→
AX = μe, i.e. X = A + μe. Then B := A + λ

−→
AX = A + λμe which

means that B ∈ L+
A,e ⊂ D.

Conversely, with S = { e : e = −→
AX , X ∈ D }, we have D = ∪e∈S L+

A,e. ��
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Let M be a convex set which does not contain a line and let A ∈ M . The asymptotic cone
KA(M) of M is a convex cone. For another example, the epigraph of the function k(p,μ)

in (20) is a convex cone in R
d+1 with vertex (p, μ) (it is equal to its asymptotic cone by

Lemma 6).

Lemma 24 A convex cone has only one vertex.

Proof Assume that D is a convex cone such that D = ∪e∈S L+
A,e and D = ∪e′∈S′L+

B,e′
for subsets S and S′ of R

d+1 and vertices A and B. Let e′ ∈ S′ and μ ≥ 0 such that
A = B + μe′. Let also e ∈ S and λ ≥ 0 such that B = A + λe. We have λe + μe′ = 0.
If μ = 0 or λ = 0, A = B. Otherwise e′ = −λ/μ e and by assumption L+

B,e′ ⊂ D. But

L+
B,e′ = L+

B,μ/λ e′ = L+
B,−e′ . Thus D contains the line with direction e′. Recall that by

Definition 12 a convex cone does not contain a lime. Contradiction. ��
Let D be a convex cone with vertex A and put D = A+K where K is a convex cone with

vertex at the origin. The condition K ∩−K = { O } is equivalent to requiring that K does not
contain a line. A convex cone as defined above is also refereed to as pointed convex cone [1,
p. 2]. In other words, the convex cone A + K is pointed in the sense that K ∩ −K = { O }.
We restrict to this class of convex cones because of the applications considered. We are
interested in convex functions on R

d whose graphs form the boundary of the Minkowski
sum of a convex cone and the convex hull of a set of points. Note that the epigraph of such a
convex function do not contain a line. See Fig. 3 for the graph of a piecewise linear convex
function which is the boundary of the Minkowski sum of a convex cone and the convex hull
of a set of points.

Following [8], the points X0, X1, . . . , Xk are in general position if the vectors−−−→
X0X1, . . . ,

−−−→
X0Xk are linearly independent. The points X0, X1, . . . , Xk are thus necessar-

ily distinct. If k > d they cannot be in general position.
We shall say that a set S ⊂ R

d+1 is k-dimensional 0 ≤ k ≤ d + 1 if it contains
k + 1 points in general position but does not contain k + 2 points in general position. A
hyperplane in R

d+1 is a d-dimensional set of the form { x : x ∈ R
d+1, a∗ · x = b∗

< } for
a∗ ∈ R

d+1, a∗ �= 0 and b∗
< ∈ R. By a closed half-space in R

d+1, we mean a set of the form
{ x : x ∈ R

d+1, a∗ · x ≥ b∗
< } for a∗ ∈ R

d+1, a∗ �= 0 and b∗
< ∈ R.

A k-convex polyhedron P is a k-dimensional set which is the intersection of a finite
number of closed half-spaces,

P = { x : x ∈ R
d+1, A∗x ≥ b∗ },

where A∗ is a m × (d + 1) matrix and b∗ ∈ R
d+1.

The hyperplane F = { x : x ∈ R
d+1, a∗ · x = b∗

< } is a supporting hyperplane to the
convex polyhedron P if P ⊂ { x : x ∈ R

d+1, a∗ · x ≥ b∗
< }, i.e. P is contained in (one of)

the closed half-space with boundary F , and F contains one or more points of P .
A face of a convex polyhedron P is a non-empty intersection of P with one or more

supporting hyperplanes. If a face of P has dimension k, i.e. it is a k-dimensional set, it is
called a k-face. The 0-faces and 1-faces of P are called vertices and edges of P if they exist.

A polyhedral angle, also called pointed polyhedral cone using the terminology of [3], is
a convex cone which is a convex polyhedron. Recall that by our convention a convex cone
does not contain a line and hence has only one vertex by Lemma 24. A polyhedral angle can
be written as A + K where A ∈ R

d+1 and

K = { x : x ∈ R
d+1, A∗x ≥ 0 },
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for a m × (d + 1) matrix A∗ of rank d + 1. If we let a∗
i , i = 1, . . . ,m denote the rows

of A∗, the rank condition ensures that the origin is the only point in the intersection of the
half-spaces { x : x ∈ R

d+1, a∗
i ·x ≥ 0, i = 1, . . . ,m }. This implies that the polyhedral angle

has only one vertex A. See also [43, Proposition 4.29].
We now state some results of basic polyhedral theory c.f. for example [43]. The particular

results used in this paper (Lemma 8 and Theorem 7 ) were proved above.
The asymptotic cone of an unbounded convex polyhedron which does not contain a line

is a polyhedral angle, i.e. if P is unbounded of the form P = { x : x ∈ R
d+1, A∗x ≥ b∗ }

with A∗ of rank d + 1, then P has asymptotic cone A + K where A ∈ P and K = { x : x ∈
R
d+1, A∗x ≥ 0 }. The set K is also known as recession cone or characteristic cone of P [43,

Proposition 2.15]. In fact P = S + K where S is the convex hull of a finite number of points
[43, Theorem 2.8 and Proposition 2.15].

An extreme ray of a polyhedron P is a ray which is a face of P . Klee, [32] or [47,
Theorem 3.6.14], proved that a polyhedron which does not contain a line is the convex hull
of its vertices and its extreme rays. See also [46, Theorem 1.4.3]. The above decomposition
P = S+K of a line free polyhedron also follows [46, Corollary 1.4.4], using the observation
that a point on an extreme ray is the sum of a vertex of P and and an element of its recession
cone K . A similar result is the following theorem by Bakelman who gave a simple geometric
proof.

Theorem 27 [8, Theorem 4.2] Every unbounded convex polyhedron which does not contain
a line is the convex hull of its vertices and its asymptotic convex polyhedral angle, which is
placed at one of its vertices.

In this paper we are interested in a particular kind of polyhedral angle. Let us illustrate
how Lemma 6 follows from polyhedral theory.

Let Y ⊂ R
d be a d-convex polygon with vertices a∗

1 , a
∗
2 , . . . , a

∗
N∗ . This implies that

{ a∗
1 , a

∗
2 , . . . , a

∗
N∗ } is d-dimensional, i.e. it contains d + 1 vectors in general position. Thus

the matrix with columns a∗
i − a∗

1 , i = 2, . . . , N∗ has rank d . It follows that the N∗ × (d + 1)
matrix A∗ with rows

(
(a∗

i )
T −1

)
has rank d + 1. For the purpose of matrix multiplication,

elements of R
d are column vectors. For simplicity below, if no matrix multiplication is

involved, an element of R
d is a d-tuple.

The graph of the linear function x �→ a∗
i · x on R

d , { (x, xd+1) : (x, xd+1) ∈
R
d × R, xd+1 = a∗

i · x } is a hyperplane of the form { (x, xd+1) : (x, xd+1) ∈ R
d ×

R, (x, xd+1) · (a∗
i ,−1) = 0 }. The closed half-space { (x, xd+1) : (x, xd+1) ∈ R

d ×
R, (x, xd+1) · (a∗

i ,−1) ≥ 0 } is the epigraph of the linear function xd+1 = a∗
i · x .

The convex cone K = K(0,0) introduced above and associated with the polygon Y is the

convex cone { y = (
(x)T xd+1

)T : y ∈ R
d × R, A∗y ≥ 0 }. It is equal to its recession cone.

Thus the epigraph of k(0,0) is a convex cone equal to its asymptotic cone.
Lemma 8 is just a special case of Bakelman’s theorem, Theorem 27. To see this, recall

that S is the convex hull of a finite number of points. One first establishes that P := S + K
is a polyhedron and hence has recession cone K , i.e. asymptotic cone A + K for a vertex A
of P . By Theorem 27, P is the convex hull of its vertices (the vertices of S) and A + K .

A convex cone D ⊂ R
d+1 is said to be finitely generated if there is a (d + 1) ×m matrix

B such that D = { Bλ, λ ∈ R
m, λ ≥ 0 }. By Minkowski’s theorem [43, Theorem 1.13], the

polyhedral cone K = { x : x ∈ R
d+1, A∗x ≥ 0 } is finitely generated. Thus S + K is a

polyhedron since K is finitely generated, c.f. for example [43, Theorem 2.8]. It follows that
P := S + K has recession cone K and hence asymptotic cone A + K for any element A of
S.
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For Theorem 7, by Lemma 8, the closure of the set M is given by S + K and hence has
recession cone K .
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Appendix

We gave a geometric proof for Theorem 8 based on Lemma 8. Here we give an analytical
proof based on infimal convolution. The epigraph of the infimal convolution illustrates with
an analytical argument Lemma 8.

Let v be a continuous convex function on a closed convex set S̃ with non empty interior.
Let S denote the epigraph of v. Here S is unbounded unlike in Lemma 3. Let us consider
another extension of v to R

d as an extended value function

v∞(x) =
{

v(x) if x ∈ S̃
+∞ otherwise .

Recall the function kΩ∗ from (22). The infimal convolution of v∞ and kΩ∗ is a function
v∞�kΩ∗ : R

d → R
d ∪ {+∞ } defined as

v∞�kΩ∗(x) = inf
y∈Rd

v∞(y) + kΩ∗(x − y).

Since v∞(y) = +∞ for y /∈ S̃, we have

v∞�kΩ∗(x) = inf
y∈S̃

v(y) + kΩ∗(x − y).

Let epi u denotes the epigraph of a function u. Note that epi v = epi v∞ as +∞ /∈ R. For
given functions φ1 and φ2 from R

d to R
d ∪ {+∞ } we have epiφ1 + epiφ2 ⊂ epiφ1�φ2.

The infimal convolution is said to be exact at x ∈ R
d if there exists y ∈ R

d such that
φ1�φ2(x) = φ1(y)+φ2(x − y). If φ1�φ2 is exact at all x ∈ R

d , epiφ1 + epiφ2 = epiφ1�φ2,
[20, Lemma 2.8].

Given x ∈ R
d , the function y �→ v(y) + kΩ∗(x − y) is continuous on S̃ and hence has a

minimum on S̃. Thus v∞�kΩ∗ is exact at all points x ∈ R
d and we conclude that

epi v∞�kΩ∗ = epi v + epi kΩ∗ ,

i.e. M = S + KΩ∗ where M = epi v∞�kΩ∗ . This is essentially the content of Lemma 8.
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Theorem 28 A necessary and sufficient condition for v∞�kΩ∗ to be a convex extension of v
is that ∂v((S̃)◦) ⊂ Ω∗.

Proof Recall that a function φ defined on R
d is proper if there exists x0 ∈ R

d such that
φ(x0) < +∞ and φ(x) > −∞ for all x ∈ R

d . As v∞ and kΩ∗ are proper convex functions,
v∞�kΩ∗ is a convex function by [19, Proposition 2.56].

Recall that ∂kΩ∗(Rd) = Ω∗. Let us first assume that v∞�kΩ∗ = v on S̃. Then for all
x ∈ (S̃)◦, ∂v(x) = ∂v∞�kΩ∗(x). This follows from the locality of the subdifferential c.f.
[23, Exercise 1].

By [10, Proposition 16.48 (i) ], we have for x ∈ (S̃)◦, ∂v(x) = ∂v∞�kΩ∗(x) = ∂v∞(y)∩
∂kΩ∗(x − y), where y ∈ S̃ with v∞�kΩ∗(x) = v∞(y) + kΩ∗(x − y). Here y = x and
∂kΩ∗(0) = Ω∗. We conclude that ∂v((S̃)◦) ⊂ Ω∗.

Let us now assume that ∂v((S̃)◦) ⊂ Ω∗. We show that v∞�kΩ∗ is a convex extension of
v. Let x ∈ (S̃)◦. We have v∞�kΩ∗(x) ≤ v(x). Assume by contradiction that v∞�kΩ∗(x) <

v(x). This means that we can find y ∈ S̃ such that

v(y) + kΩ∗(x − y) < v(x). (48)

Let now p ∈ ∂v(x). We have p ∈ Ω∗. By definition, v(y) ≥ v(x)+ p(y − x). Thus, by (48)

v(y) > v(y) + kΩ∗(x − y) + p · (y − x).

It follows that p · (x − y) > kΩ∗(x − y) = supp∈Ω∗ p · (x − y) This contradicts p ∈ Ω∗.
We conclude that v = v∞�kΩ∗ on (S̃)◦. Recall that v is continuous on S̃. Also, v∞�kΩ∗ is
a proper convex function which is bounded above on S̃, and hence continuous on S̃, c.f. [6,
Lemma 2]. It follows that v∞�kΩ∗ = v on S̃. ��
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