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DISCRETE ALEKSANDROV SOLUTIONS OF THE MONGE-AMPÈRE
EQUATION

GERARD AWANOU

ABSTRACT. We make two relaxations of the Oliker-Prussner method for the Dirichlet
problem for the Monge-Ampère equation. First we relax the convexity requirement and
consider mesh functions which are only discrete convex. The second relaxation consists in
using a finite stencil. The discrete nonlinear equations are solved with a damped Newton’s
method. We give two proofs of convergence of the resulting scheme for right hand side
a density, on domains which are convex and not necessarily strictly convex, under the
assumption that the boundary data has a continuous convex extension. The first proof is
based on the notion of Aleksandrov solution while the second uses viscosity solutions.

1. INTRODUCTION

In this paper we prove the convergence of a finite difference scheme to weak solutions,
in the sense of Aleksandrov and in the sense of viscosity, for the Dirichlet problem for the
Monge-Ampère equation

detD2u = f in Ω

u = g on ∂Ω,
(1.1)

where f ∈ L1(Ω)∩C(Ω) is a non negative function and Ω is a convex bounded domain of
Rd with boundary ∂Ω. It is assumed that g ∈ C(∂Ω) can be extended to a convex function
g̃ ∈ C(Ω). The domain is not assumed to be strictly convex.

Problem (1.1) can be solved through polygonal approximations [28], i.e. with the
Oliker-Prussner method [27]. For recent developments on the discretization of (1.1), we
refer for example to [12, 23, 24]. The purpose of this paper is to present a technique which
can be used to prove convergence of a class of approximations to (1.1) when the domain is
convex and not assumed to be strictly convex. As with [22], we consider a method which
is medius between the Oliker-Prussner method and finite difference methods. It is rela-
tively simpler to implement than the Oliker-Prussner method, a possible advantage in three
dimensions. This is achieved by relaxing the convexity requirement on the approximate
solutions. That relaxation leads to a wide stencil scheme, which we further relax by us-
ing a finite stencil. The discrete nonlinear equations are solved with a damped Newton’s
method. Convergence of the method is first given in the setting of Aleksandrov solutions,
using an equicontinuity argument and a recent result [2] stating conditions under which the
uniform limit of discrete solutions satisfies the boundary condition strongly. The scheme
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we analyze, leads to a set function that overestimates the discrete Monge-Ampère measure
defined through a discrete version of the subdifferential. This allows us to use essentially
the same tools as in the Aleksandrov theory of (1.1), c.f. [2].

Under the above assumptions, Aleksandrov solutions are equivalent to viscosity solu-
tions. The hallmark of the Barles-Souganidis approach for convergence to viscosity solu-
tions, is that no equicontinuity is used. Ingredients are stability, consistency and mono-
tonicity of the scheme. As well as a comparison principle for Dirichlet boundary con-
ditions in the sense of viscosity, which is not available for the Monge-Ampère equation
[13, 18, 25, 23, 10]. Here, using the equicontinuity of the discrete solutions, and under the
assumption that our scheme is (pointwise) consistent, we obtain a uniform limit of discrete
solutions which is shown to be a viscosity solution of the equation satisfying the boundary
condition strongly, hence is unique by the comparison principle for boundary conditions
imposed strongly. This argument requires f to be integrable and is applicable to some
other discretizations.

We also give some convergence results in the case where the right hand side is a sum
of Dirac masses instead of a positive density. However, in that case the right hand side
becomes singular unlike in the case of the Oliker-Prussner method, making the use of a
damped Newton’s method for the relaxed scheme not feasible. Nethertheless, these results
could be useful for the analysis of schemes such as the one in [7].

The paper is organized as follows. In the next section we collect some notation used
throughout the paper, present and study the numerical scheme. Convergence results are
given in section 3. We finish with some numerical experiments.

2. PRELIMINARIES

We use the notation ||.|| for the Euclidean norm of Rd. Let h be a small positive param-
eter and let

Zdh = {mh,m ∈ Zd },
denote the orthogonal lattice with mesh length h. Let also (r1, . . . , rd) denote the canonical
basis of Rd. We define

Ωh = Ω ∩ Zdh.
For a function u ∈ C(Ω) its restriction on Ωh is also denoted u by an abuse of notation.
For x ∈ Ωh and e ∈ Zd let

hex = sup{ rh, r ∈ [0, 1] and x+ rhe ∈ Ω }.
Next, let V ⊂ Zd \ { 0 } such that { r1, . . . , rd } ⊂ V and such that for e ∈ V , −e ∈ V .
We define

∂Ωh = {x ∈ ∂Ω,∃y ∈ Ωh and e ∈ V such that x = y + heye }, (2.1)

and denote by Uh the linear space of mesh functions, i.e. real-valued functions defined on

Nh := Ωh ∪ ∂Ωh.

For x ∈ Ωh, e ∈ Zd, e 6= 0 such that x± he ∈ Nh and uh ∈ Uh, let

∆euh(x) =
2

hex + h−ex

(
uh(x+ hexe)− uh(x)

hex
+
uh(x− h−ex e)− uh(x)

h−ex

)
.

Definition 2.1. We say that a mesh function vh is discrete convex if and only if ∆evh(x) ≥
0 for all x ∈ Ωh and e ∈ V ⊂ Zd.

We denote by Ch the cone of discrete convex mesh functions. The restriction of a convex
function to Ωh is a discrete convex mesh function.
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2.1. Aleksandrov solutions. The material in this subsection is taken from [15] to which
we refer for proofs. Let Ω be an open subset of Rd and let us denote by P(Rd) the set of
subsets of Rd.

Definition 2.2. Let u : Ω → R. The normal mapping of u, or subdifferential of u is the
set-valued mapping ∂u : Ω→ P(Rd) defined by

∂u(x0) = { p ∈ Rd : u(x) ≥ u(x0) + p · (x− x0), for allx ∈ Ω }. (2.2)

Let |E| denote the Lebesgue measure of the measurable subset E ⊂ Ω. For E ⊂ Ω, we
define

∂u(E) = ∪x∈E∂u(x).

Theorem 2.3 ([15] Theorem 1.1.13). If u is continuous on Ω, the class

S = {E ⊂ Ω, ∂u(E) is Lebesgue measurable },

is a Borel σ-algebra and the set function M [u] : S → R defined by

M [u](E) = |∂u(E)|,

is a measure, finite on compact subsets, called the Monge-Ampère measure associated with
the function u.

We can now define the notion of Aleksandrov solution of the Monge-Ampère equation.

Definition 2.4. Let Ω ⊂ Rd be open and convex. Given a Borel measure ν on Ω, a convex
function u ∈ C(Ω) is an Aleksandrov solution of

detD2u = ν,

if the associated Monge-Ampère measure M [u] is equal to ν.

We recall an existence and uniqueness result for the solution of (1.1).

Proposition 2.5 ([16] Theorem 1.1). Let Ω be a bounded convex domain of Rd. Assume ν
is a finite Borel measure and g ∈ C(∂Ω) can be extended to a function g̃ ∈ C(Ω) which
is convex in Ω. Then the Monge-Ampère equation (1.1) has a unique convex Aleksandrov
solution in C(Ω).

Definition 2.6. A sequence µn of Borel measures converges to a Borel measure µ if and
only if µn(B)→ µ(B) for any Borel set B with µ(∂B) = 0.

We note that there are several equivalent definitions of weak convergence of measures
which can be found for example in [11, Theorem 1, section 1.9].

2.2. Discretizations of the normal mapping. For a mesh function uh ∈ Ch, the discrete
normal mapping of uh at the point x ∈ Ω ∩ Zdh is defined as

∂huh(x) = { p ∈ Rd, uh(x+ hexe) ≥ uh(x) + p · (hexe)∀e ∈ Zd }.

For a subset E ⊂ Ω, we define

∂huh(E) = ∪x∈E∩Zdh∂huh(x),

which is Borel measurable for E Borel measurable. The proof is essentially the same as
the corresponding one at the continuous level [4, p. 117–118]. Put

Mh[uh](E) = |∂huh(E)| for a Borel set E.
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Note that if E ∩ Zdh = {x}, we have Mh[uh](E) = Mh[uh]( {x }). We will make the
abuse of notation

Mh[uh](x) = Mh[uh]( {x }).
A numerical scheme based on Mh[uh] would require a wide scheme. We will use Mh[uh]
in our proof of convergence. We now consider a discrete Monge-Ampère measure based
on the finite stencil V . Put

∂V uh(x) = { p ∈ Rd, uh(x+ hexe) ≥ uh(x) + p · (hexe)∀e ∈ V },

and ∂V uh(E) = ∪x∈E∩Zdh∂V uh(x) with

MV [uh](E) = |∂V uh(E)| for a Borel set E.

We have
MV [uh](x) ≥Mh[uh](x),∀x ∈ Ωh, (2.3)

since ∂huh(x) ⊂ ∂V uh(x).

2.3. Viscosity solutions of the elliptic Monge-Ampère equation. A convex function u ∈
C(Ω) is a viscosity solution of (1.1) if u = g on ∂Ω and for all φ ∈ C2(Ω) the following
holds

- at each local maximum point x0 of u− φ, f(x0) ≤ detD2φ(x0)
- at each local minimum point x0 of u−φ, f(x0) ≥ detD2φ(x0), ifD2φ(x0) ≥ 0,

i.e. D2φ(x0) has positive eigenvalues.
As explained in [17], the requirement D2φ(x0) ≥ 0 in the second condition above

is natural for the two dimensional case we consider. The space of test functions in the
definition above can be restricted to the space of strictly convex quadratic polynomials
[15, Remark 1.3.3].

An upper semi-continuous convex function u is said to be a viscosity sub solution of
detD2u(x) = f(x) if the first condition holds and a lower semi-continuous convex func-
tion is said to be a viscosity super solution when the second holds. A viscosity solution of
(1.1) is a continuous function which satisfies the boundary condition and is both a viscosity
sub solution and a viscosity super solution. Note that the notion of viscosity solution is a
pointwise notion, i.e. conditions will be checked at a point in the domain.

For further reference, we recall the comparison principle of sub and super solutions,
[17, Theorem V. 2].

Theorem 2.7. Let u and v be respectively sub and super solutions of detD2u(x) = f(x)
in Ω. Then if supx∈∂Ω max(u(x)− v(x), 0) = M , then u(x)− v(x) ≤M in Ω.

2.3.1. Equivalence with Aleksandrov solutions. For f > 0, a convex function u ∈ C(Ω)
is an Aleksandrov solution of (1.1) if and only if it is a viscosity solution of (1.1), [15,
Propositions 1.3.4 and 1.7.1]. The equivalence of viscosity and Aleksandrov solutions in
the degenerate case f ≥ 0 is discussed in [3].

2.4. The numerical scheme. We consider the following discretization of (1.1): find uh ∈
Ch such that

MV [uh](x) = hdf(x), x ∈ Ωh

uh(x) = g(x), x ∈ ∂Ωh.
(2.4)

We establish the stability, unicity and existence of solutions to (2.4). We first recall the
Brunn-Minkowski’s inequality [29].
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Lemma 2.8. For two nonempty, compact convex sets K and L, their Minkowski sum is
defined as

K + L = { a+ b, a ∈ K and b ∈ L }.
We have

|K + L| 1d ≥ |K| 1d + |L| 1d . (2.5)

Lemma 2.9. Given x ∈ Ωh the operator vh → (MV [vh](x))1/d is concave on Ch.

Proof. We recall that given a set K and λ ∈ R, λK = {λx, x ∈ K }. We observe that for
λ > 0, p ∈ ∂V vh(x) if and only if λp ∈ ∂V (λvh)(x). Thus by the positive homogeneity
(of degree d) of volume in Rd

(MV [λvh](x))
1
d = λ(MV [vh](x))

1
d .

It is therefore enough to prove that for vh, wh ∈ Ch, we have

(MV [vh + wh](x))
1
d ≥ (MV [vh](x))

1
d + (MV [wh](x))

1
d . (2.6)

Next, we note that
∂V vh(x) + ∂V wh(x) ⊂ ∂V (vh + wh)(x),

and thus |∂V (vh + wh)(x)| ≥ |∂V vh(x) + ∂V wh(x)|. We may assume that ∂V vh(x) and
∂V wh(x) are nonempty. Assuming that ∂V vh(x) is compact and convex, (2.6) follows
from (2.5).

Using the definition and the canonical basis of Rd one shows that ∂V vh(x) is bounded.
Thus ∂V vh(x) is compact since it can be shown to be a closed set. The convexity of
∂V vh(x) is a consequence of its definition. This concludes the proof. �

Lemma 2.10. Let Cy(x) = ||y − x|| denote the cone with vertex y ∈ Ωh. Then

Mh[Cy](y) ≥ ωd > 0,

where ωd is the volume of the closed unit ball.

Proof. We have Cy(y) = 0 and p ∈ ∂V Cy(y) if and only if p · e ≥ −||e||∀e ∈ V . Clearly
∂V Cy(y) contains the closed unit ball with volume ωd. This concludes the proof. �

2.4.1. Stability. Since f ∈ L1(Ω) ∩ C(Ω) and f ≥ 0, we have∑
x∈Ωh

hdf(x) ≤ A, (2.7)

with A a number independent of h, for h sufficiently small.
For x ∈ Ω we denote by d(x, ∂Ω) the distance of x to ∂Ω. For a subset S of Ω, diam(S)
denotes its diameter.

Lemma 2.11. Let vh ∈ Ch. Then

max
x∈Nh

vh(x) ≤ max
x∈∂Ωh

vh(x).

Proof. Suppose there is x0 ∈ Ωh such that maxx∈Nh vh(x) = vh(x0) and vh(x0) >
maxx∈∂Ωh vh(x).

For all e ∈ V , we have vh(x0) ≥ vh(x0 + hex0
e) and vh(x0) ≥ vh(x0 − h−ex0

e). This
implies that ∆evh(x0) ≤ 0 and hence ∆evh(x0) = 0 since vh is discrete convex. We have

vh(x0 + hex0
e)− vh(x0)

hex0

=
vh(x0)− vh(x0 − h−ex0

e)

h−ex0

.
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Since the left hand side of the above equation is non positive and the right hand side non
negative, we conclude that vh(x0) = vh(x0 + hex0

e) = vh(x0 − h−ex0
e), i.e. the maximum

is also reached at x0 + hex0
e and x0 − h−ex0

e. Repeating this argument, we may assume
that the maximum is reached at an interior point x0 such that x0 + hex0

e ∈ ∂Ωh. Since
by assumption vh(x0) > vh(x0 + hex0

e), we obtain ∆evh(x0) < 0, contradicting the
assumption vh ∈ Ch. �

Lemma 2.12 below is an analogue of [15, Lemma 1.4.1], c.f. [26], and is a discrete
version of the Aleksandrov-Bakelman-Pucci’s maximum principle [30, Theorem 8.1], an
analogue of which can be found in [19].

Lemma 2.12. Let uh ∈ Ch such that uh ≥ 0 on ∂Ωh. Then for x ∈ Ωh

uh(x) ≥ −C(d)

[
diam(Ω)d−1d(x, ∂Ω)Mh[uh](Ωh)

] 1
d

,

for a positive constant C(d) which depends only on d.

Theorem 2.13. Solutions uh to (2.4) are uniformly bounded.

Proof. By Lemma 2.11, we have

uh(x) ≤ max
x∈∂Ωh

g(x). (2.8)

By Lemma 2.12

uh(x)− min
x∈∂Ωh

g(x) ≥ −C(d)

[
diam(Ω)d−1d(x, ∂Ω)Mh[uh](Ωh)

] 1
d

.

Since uh solves (2.4), by (2.7) and (2.3)

A ≥
∑
x∈Ωh

hdf(x) =
∑
x∈Ωh

MV [uh](x) ≥
∑
x∈Ωh

Mh[uh](x) ≥Mh[uh](Ωh).

In addition d(x, ∂Ω) ≤ diam(Ω). We conclude that uh(x) ≥ minx∈∂Ωh g(x) − C, for a
constant C. Combined with (2.8), we have shown that solutions uh to (2.4) are uniformly
bounded. �

2.4.2. Unicity.

Theorem 2.14. Under the assumption that f > 0 on Ωh, Problem (2.4) has a unique
solution uh.

Proof. We consider the convex envelope of the mesh function uh

Γ(uh)(x) = sup
L affine

{L(x) : L(y) ≤ uh(y) for all y ∈ Nh },

which is a piecewise linear convex function, c.f. for example [2, p. 11]. We note that
Γ(uh) depends on the stencil V . This notion of convex envelope generalizes the one used
in [2] where we used V = Zd \ { 0 }. The following result is an analogue of [2, Lemmas 6
and 7] and [2, Theorem 4] where we considered ∂huh. The proofs are identical.

If x ∈ Ωh and Γ(uh)(x) 6= uh(x), then ∂V uh(x) = ∅. Moreover, for a subset E ⊂
(Conv(Nh))◦, ∂V uh(E) = ∂Γ(uh)(E) up to a set of measure 0 and thus

MV [uh](E) = M [Γ(uh)](E).

Since g extends to a continuous convex function on Ω, analogous to [2, Lemma 5], Γ(uh) =
uh on ∂Ωh if uh solves (2.4).



EJDE-2018/CONF/26 DISCRETE ALEKSANDROV SOLUTIONS 7

Next, under the assumption that f > 0 on Ωh, ∂V uh(x) 6= ∅ for all x ∈ Ωh, and we
conclude that if uh solves (2.4), Γ(uh) solves the Monge-Ampère equation

M [Γ(uh)](E) =
∑

x∈E∩Ωh

hdf(x),

for each Borel set E ⊂ (Conv(Nh))◦ with Γ(uh) = g on ∂Ωh and hence Γ(uh) is a
prescribed piecewise linear convex function on the boundary of Conv(Nh). By Proposition
2.5, the solution is unique, and since Γ(uh) = uh on ∂Ωh, the solution uh is unique. �

2.4.3. Existence. We show that minimizers of a convex functional over a convex set solve
(2.4). For vh ∈ Uh and i = 1, . . . , d we consider the first order difference like operator
defined by

∂i−vh(x) :=
vh(x)− vh(x− h−rix ri)√

h−rix

, x ∈ Ωh,

and the convex functional

Jh(vh) =
∑
x∈Ωh

||Dhvh(x)||2,

where Dhvh is given by
Dhvh(x) = (∂i−vh(x))i=1,...,d.

We seek a minimizer of Jh over

Sh = { vh ∈ Ch, vh = gh on ∂Ωh, and (MV [vh](x))
1
d ≥ f(x)

1
d , x ∈ Ωh }. (2.9)

The set Sh is a discrete version of

S = { v ∈ C(Ω), v convex , v = g on ∂Ω, and detD2v ≥ f }. (2.10)

It is known, [21], that the solution u of (1.1) is the maximal element of S. This observation
may be used to prove the existence of a discrete solution. The proof below is motivated by
a variational characterization of solutions of (1.1), [21, Section 4], and an observation in
[20, p. 86] on discrete Monge-Ampère equations.

Lemma 2.15. The set Sh is convex and nonempty.

Proof. The convexity of Sh follows from Lemma 2.9. For each y in Ωh, let qy be a cone
such that MV [qy](y) ≥ f(y). For example, we may define qy by

qy(x) =

(
f(y)

ωd

) 1
d

Cy(x).

Put q̂ =
∑
y∈Ωh

qy . Since g is bounded on ∂Ω, we can find a number κ such that q̂−κ ≤ g
on ∂Ω. We define wh ∈ Uh by

wh(x) = q̂(x)− κ, x ∈ Ωh

wh = g on ∂Ωh.

We claim that wh ∈ Sh.
Let x ∈ Ωh and e ∈ V . Either wh(x + hexe) = q̂(x + hexe) − κ or wh(x + hexe) =

g(x+hexe) ≥ q̂(x+hexe)−κ. Similarly wh(x−h−ex e) ≥ q̂(x−h−ex e)−κ. We conclude
using the convexity of q̂ that

hex + h−ex
2

∆ewh(x) ≥ q̂(x+ hexe)− κ− wh(x)

hex
+
q̂(x− h−ex e)− κ− wh(x)

h−ex
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=
hex + h−ex

2
∆eq̂(x) ≥ 0.

Thus wh ∈ Ch. Next, we prove that ∂V q̂(x) ⊂ ∂V wh(x) for x ∈ Ωh.
Since wh = q̂ up to a constant on Ωh, we only need to check that for p ∈ ∂V q̂(x) we

have p · (hexe) ≤ wh(x+ hexe)−wh(x) when x+ hexe ∈ ∂Ωh. Let thus p ∈ ∂V q̂(x) such
that x+ hexe ∈ ∂Ωh. We have

p · e ≤ q̂(x+ hexe)− q̂(x) = q̂(x+ hexe)− κ− wh(x) ≤ g(x+ hexe)− wh(x)

= wh(x+ hexe)− wh(x).

We conclude thatMV [wh](x) ≥MV [q̂](x). Therefore by the Brunn-Minkowski inequality
(2.5), MV [wh](x)1/d ≥

∑
y∈Ωh

MV [qy](x)1/d ≥ f(x)1/d. This concludes the proof. �

We observe that if p ∈ ∂V uh(x), x ∈ Ωh, we have

uh(x)− uh(x− h−ex e)

h−ex
≤ p · e ≤ uh(x+ hexe)− uh(x)

hex
. (2.11)

Thus

MV [uh](x) ≤
d∏
i=1

hex + h−ex
2

∆riuh(x). (2.12)

We define a discrete norm on Uh by

||vh||20,h = hd
∑
x∈Ωh

vh(x)2,

and a semi norm by

|vh|21,h = hd
∑
x∈Ωh

d∑
i=1

1

h−rix

(
∂i−vh(x)

)2
,

an analogue of a Sobolev semi-norm.

Lemma 2.16. We have an analogue of Poincaré’s inequality,

C||vh||0,h ≤ |vh|1,h, for vh = 0 on ∂Ωh, (2.13)

for a constant C > 0 independent of h.

Proof. Given x ∈ Ωh and 1 ≤ i ≤ d, let mi
x = max{m ∈ N, x −mh−rix ri ∈ Ωh }, and

put yix = x−mi
xhri. Thus yix − h

−ri
yix

ri ∈ ∂Ωh and by assumption vh(yix − h
−ri
yix

ri) = 0.
We have

vh(x) =

mix−1∑
j=0

vh(x− jhri)− vh(x− (j − 1)hri) + vh(yix)

=

mix−1∑
j=0

h
vh(x− jhri)− vh(x− (j + 1)hri)

h
+ h−riyix

vh(yix)− vh(yix − h
−ri
yix

ri)

h−riyix

.

It follows that

vh(x)2 ≤
(mix−1∑

j=0

h2 + (h−riyix
)2

)(mix−1∑
j=0

(vh(x− jhri)− vh(x− (j + 1)hri))
2

h2
+
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(vh(yix)− vh(yix − h
−ri
yix

ri))
2

(h−riyix
)2

)

≤ mi
xh

2

(mix−1∑
j=0

1

h
(∂i−vh(x− jhri))2 +

1

h−riyix

(∂i−vh(yix))2

)
.

Since mi
xh and h are bounded by the diameter of Ω, for some constant C > 0 independent

of h,

∑
x∈Ωh

vh(x)2 ≤ 1

C

∑
x∈Ωh

mix−1∑
j=0

1

h
(∂i−vh(x− jhri))2 +

1

h−riyix

(∂i−vh(yix))2

≤ 1

C

∑
x∈Ωh

d∑
i=1

1

h−rix

(∂i−vh(x))2,

which concludes the proof. �

Lemma 2.17. The functional Jh is coercive on Sh, i.e.

Jh(vh)→∞ when ||vh||0,h →∞, vh ∈ Sh.

Proof. We will assume that h is fixed. We first note that for all x ∈ Ωh and e ∈ V , hex > 0.
Let αh = min{hex, x ∈ Ωh, e ∈ V }. Thus for i = 1, . . . , d, 1/h−rix ≥ αh/(h

−ri
x )2 and

hdJh(vh) ≥ αh|vh|21,h.
Let Φ(p) = ||p||2. Using Φ′ to denote the Fréchet derivative of Φ, we have

(Φ′(p)− Φ′(q))(p− q) = 2||p− q||2.

We argue as in [31, p. 550] and put φ(t) = Φ(tDhvh(x) + (1− t)Dhwh(x)). Then

Φ(Dhvh(x))− Φ(Dhwh(x)) = φ(1)− φ(0) =

∫ 1

0

φ′(t)dt

=

∫ 1

0

Φ′(tDhvh(x) + (1− t)Dhwh(x))(Dhvh(x)−Dhwh(x))dt

=

∫ 1

0

(
Φ′(tDhvh(x) + (1− t)Dhwh(x))− Φ′(Dhwh(x))

)
(Dhvh(x)−Dhwh(x))

+ Φ′(Dhwh(x))(Dhvh(x)−Dhwh(x))dt

≥ ||Dhvh(x)−Dhwh(x)||2 − 2||Dhwh(x)|| ||Dhvh(x)−Dhwh(x)||.

We conclude that

hdJh(vh)− hdJh(wh) = hd
∑
x∈Ωh

Φ(Dhvh(x))− Φ(Dhwh(x))

≥ hd
∑
x∈Ωh

||Dhvh(x)−Dhwh(x)||2−2hd
∑
x∈Ωh

||Dhwh(x)|| ||Dhvh(x)−Dhwh(x)||.

Next

∑
x∈Ωh

||Dhwh(x)|| ||Dhvh(x)−Dhwh(x)|| ≤
( ∑
x∈Ωh

||Dhwh(x)||2
) 1

2
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x∈Ωh

||Dhvh(x)−Dhwh(x)||2
) 1

2

= Jh(wh)
1
2 Jh(vh − wh)

1
2 .

Next, if zh = 0 on ∂Ωh, we claim that Jh(zh) ≤ (4d/αh)h−d||zh||20,h. Indeed

Jh(zh) =
∑
x∈Ωh

||Dhzh(x)||2 =
∑
x∈Ωh

d∑
i=1

(∂i−zh(x))2

=
∑
x∈Ωh

d∑
i=1

(zh(x)− zh(x− h−rix ri))
2

h−rix

≤ 2

αh

∑
x∈Ωh

d∑
i=1

zh(x)2 + zh(x− h−rix ri)
2

≤ 2d

αh

∑
x∈Ωh

zh(x)2 +
2

αh

d∑
i=1

∑
x∈Ωh

zh(x− h−rix ri)
2,

which gives using zh = 0 on ∂Ωh

Jh(zh) ≤ 2d

αh

∑
x∈Ωh

zh(x)2 +
2

αh

d∑
i=1

∑
x∈Ωh

zh(x)2 ≤ 4d

αh

∑
x∈Ωh

zh(x)2 =
4d

αh
h−d||zh||20,h.

If vh − wh = 0 on ∂Ωh, we get Jh(vh − wh) ≤ (4d/αh)h−d||vh − wh||20,h. Therefore,
for vh and wh ∈ Sh

hdJh(vh)− hdJh(wh) ≥ αh|vh − wh|21,h − 2

(
4d

αh

) 1
2

Jh(wh)
1
2 ||vh − wh||0,h,

and so using (2.13)

hdJh(vh)− hdJh(wh) ≥ Cαh||vh − wh||20,h − 2

(
4d

αh

) 1
2

Jh(wh)
1
2 ||vh − wh||0,h,

from which the coercivity of Jh on Sh holds. �

Theorem 2.18. The functional Jh has a minimizer uh in Sh and uh solves the finite diffe-
rence equations (2.4).

Proof. Since Jh is convex and coercive on Sh and Sh is nonempty, closed and convex, it
follows that the functional Jh has a minimizer uh on Sh.

We now show that uh solves the finite difference equations (2.4). To this end, it suffices
to show that

MV [uh] = hdf on Ωh.

Let us assume to the contrary that there exists x0 ∈ Ωh such that

MV [uh](x0) > hdf(x0) ≥ 0. (2.14)

By (2.11), if there were a direction e ∈ V such that ∆euh(x0) = 0, we would have
∂V uh(x0) contained in the hyperplane p · e = (uh(x0 +hexe)−uh(x0))/hex = (uh(x0)−
uh(x0 − h−ex e))/h−ex , and hence MV [uh](x0) = 0 contradicting (2.14). We conclude that
for all e ∈ V ∆euh(x0) > 0. Let

ε0 = inf{∆euh(x0), e ∈ V }.
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We recall that MV [uh](x) is the volume of a polygon since it is the volume of a domain
obtained as an intersection of half-spaces p · (hexe) ≤ uh(x + hexe) − uh(x). Moreover
∂V uh(x) is bounded by (2.12). The vertices of the polygon have coordinates linear combi-
nations of the values uh(y), y ∈ Nh. It is known that the volume of a polygon is a polyno-
mial function, hence a continuous function, of the coordinates of its vertices [1]. Thus the
mapping E : R→ R which maps the value of a mesh function vh at x0 to MV [uh](x0) is
finite valued and continuous. By (2.14), with r0 = uh(x0), E(r0) > hdf(x0). Therefore
there exists ε1 > 0 such that for |r − r0| < ε1, we have E(r) > hdf(x0). Finally, put
ε = hex0

h−ex0
min(ε0, ε1). We define wh by

wh(x) = uh(x), x 6= x0, wh(x0) = uh(x0) +
ε

4
.

By construction wh = gh on ∂Ωh. For x 6= x0, we have

∆ewh(x) = ∆euh(x),∆ewh(x) = ∆euh(x) +
ε

4

2

hex + h−ex

1

hex

or ∆ewh(x) = ∆euh(x) +
ε

4

2

hex + h−ex

1

h−ex
.

Moreover ∆ewh(x0) = ∆euh(x0)−ε/(2hex0
h−ex0

) ≥ ε0−ε/(2hex0
h−ex0

) ≥ ε/(2hex0
h−ex0

) >
0 by the definition of ε. We conclude that wh ∈ Ch.

Also by construction, MV [wh](x0) = E(r0 + ε/4) > hdf(x0). We claim that for
x 6= x0 MV [wh](x) ≥ MV [uh](x). Let p ∈ Rd and e ∈ V such that p · (hexe) ≤ uh(x +
hexe)−uh(x). Either uh(x+hexe) = wh(x+hexe) or uh(x+hexe) = wh(x+hexe)− ε/4.
This gives p · (hexe) ≤ wh(x + hexe) − wh(x). This proves the claim. We conclude that
MV [wh](x) ≥ hdf(x) for all x ∈ Ωh.

It remains to show that Jh(wh) < Jh(uh). Let Ωx0
denote the subset of Ωh consisting

in x0 and the points x0 + h
rj
x0rj , j = 1, . . . , d. We have

Jh(wh) =
∑
x/∈Ωx0

||Dhuh(x)||2 + ||Dhwh(x0)||2 +

d∑
j=1

||Dhwh(x0 + hrjx0
rj)||2

=
∑
x/∈Ωx0

||Dhuh(x)||2 +

d∑
i=1

1

h−rix0

(wh(x0)− wh(x0 − h−rix0
ri))

2

+

d∑
j=1

d∑
i=1

1

h−ri
x0+h

rj
x0

(wh(x0 + hrjx0
rj)− wh(x0 + hrjx0

rj − h−rix0
ri))

2.

Next,

Jh(wh) =
∑
x/∈Ωx0

||Dhuh(x)||2 +

d∑
j=1

d∑
i=1
i6=j

1

h−ri
x0+h

rj
x0

(wh(x0 + hrjx0
rj)

− wh(x0 + hrjx0
rj − h−rix0

ri))
2 +

d∑
i=1

1

h−rix0

(wh(x0)− wh(x0 − h−rix0
ri))

2

+
1

h−ri
x0+h

ri
x0

(wh(x0 + hrix0
ri)− wh(x0))2.
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We note that h−ri
x0+h

ri
x0

= hrix0
and we have

1

h−rix0

(wh(x0)− wh(x0 − h−rix0
ri))

2 +
1

hrix0

(wh(x0 + hrix0
ri)− wh(x0))2 =

1

h−rix0

(
uh(x0)− uh(x0 − h−rix0

ri) +
ε

4

)2
+

1

hrix0

(
uh(x0 + hrix0

ri)− uh(x0)− ε

4

)2
=

1

h−rix0

(uh(x0)−uh(x0−h−rix0
ri))

2 +
1

hrix0

(uh(x0 +hrix0
ri)−uh(x0))2 +

ε2

16

(
1

h−rix0

+
1

hrix0

)
+

ε

2h−rix0

(uh(x0)− uh(x0 − h−rix0
ri))−

ε

2hrix0

(uh(x0 + hrix0
ri)− uh(x0)).

Thus, since for i 6= j, wh(x0 + hrj) − wh(x0 + hrj − hri) = uh(x0 + hrj) − uh(x0 +
hrj − hri), and by our choice of ε,

Jh(wh) = Jh(uh) +
ε2

16

d∑
i=1

(
1

h−rix0

+
1

hrix0

)
− ε

2

d∑
i=1

hrix0
+ h−rix0

2
∆riuh(x0)

≤ Jh(uh) +
εε0
16

d∑
i=1

hrix0
+ h−rix0

− ε

4

d∑
i=1

(hrix0
+ h−rix0

)∆riuh(x0)

= Jh(uh) +
ε

4

d∑
i=1

(hrix0
+ h−rix0

)
(ε0

4
−∆riuh(x0)

)
< Jh(uh),

since ∆euh(x0) ≥ ε0 > ε0/4 for all e ∈ V . This contradicts the assumption that uh is a
minimizer and concludes the proof. �

3. CONVERGENCE ANALYSIS

In this section, we first address the convergence of the solution uh of (2.4) to the Alek-
sandrov solution u of (1.1). We require V ⊂ Zd \ { 0 } to converge to Zd \ { 0 }. We thus
simply assume that V = Zd \ { 0 }. We then give a direct proof of convergence to the
viscosity solution of (1.1). Finally we make remarks about the case the right hand side of
(2.4) approximates a sum of Dirac masses.

Definition 3.1. Let uh ∈ Uh for each h > 0. We say that uh converges to a function u
uniformly on a compact set K ⊂ Ω if and only if for each sequence hk → 0 and for all
ε > 0, there exists h−1 > 0 such that for all hk, 0 < hk < h−1, we have

max
x∈Nhk∩K

|uhk(x)− u(x)| < ε.

3.1. Convergence to the Aleksandrov solution.

Theorem 3.2. Let uh solve (2.4). There is a subsequence uhk which converges uniformly
on compact subsets to a convex function v ∈ C(Ω) such that

detD2v ≤ f(x) in Ω

v = g on ∂Ω,

Proof. The family uh is a uniformly bounded family of discrete convex functions by The-
orem 2.13. Moreover uh = g on ∂Ω and g ∈ C(∂Ω) can be extended to a convex function
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g̃ ∈ C(Ω). In addition, by (2.3) and (2.7)

Mh[uh](Ωh) ≤
∑
x∈Ωh

MV [uh](x) =
∑
x∈Ωh

hdf(x) ≤ A.

It is proven in [2, Theorem 14] that there is a subsequence uhk which converges uniformly
on compact subsets to a convex function v ∈ C(Ω) such that v = g on ∂Ω. It is also proven
in [2, Theorem 8] that Mh[uh] defines a Borel measure (as the Monge-Ampère measure of
the convex envelope of uh), which converges weakly to M [v]. Since by (2.3), we have

Mh[uh](x) ≤ hdf(x), x ∈ Ωh,

as an inequality in measures, we obtain detD2v ≤ f(x). �

To complete the proof we need additional notions. Given u : Ω → R, the local subdif-
ferential of u is given by

∂lu(x0) = { p ∈ Rd : ∃ a neighborhoodUx0
ofx0 such that

u(x) ≥ u(x0) + p · (x− x0), for allx ∈ Ux0
}.

Clearly for all x0 ∈ Ω we have ∂u(x0) ⊂ ∂lu(x0). Moreover

Lemma 3.3 ([14] Exercise 1). If Ω is convex and u is convex on Ω, then ∂u(x) = ∂lu(x)
for all x ∈ Ω.

We recall that for a family of sets Ak

lim sup
k

Ak = ∩n ∪k≥n Ak.

Lemma 3.4. Assume that uh → v uniformly on compact subsets of Ω, with v convex and
continuous. Then for K ⊂ Ω compact and any sequence hk → 0

lim sup
hk→0

∂V uhk(K) ⊂ ∂v(K).

Proof. Let
p ∈ lim sup

hk→0
∂V uhk(K) = ∩n ∪k≥n ∂V uhk(K).

Thus for each n, there exists kn and xkn ∈ K ∩ Zdhkn such that p ∈ ∂V uhkn (xkn). By an
abuse notation, let xj denote a subsequence xknj of xkn converging to x0 ∈ K. We have
xknj ∈ K ∩ Zdhknj and so with our abuse of notation xj ∈ K ∩ Zdhj .

Let Bε(x0) denote the ball of center x0 and radius ε in the maximum norm. We choose
ε > 0 such that Bε(x0) ⊂ Ω. Let z ∈ Bε/4(x0) and zhj ∈ Bε/4(x0) ∩ Zdhj such that
zhj → z.

We have for j sufficiently large ||xj−x0|| ≤ ε/8. With e = zhj−xj , xj+e = zhj while
xj−e = 2xj−zhj ∈ Bε/4(x0) as ||2xj−zhj −x0|| = ||2(xj−x0)+(x0−zhj )|| ≤ ε/2.
That is xj ± e ∈ Ω ∩ Zdhj .

Since p ∈ ∂V uhj (xj) for all j,

uhj (zhj ) ≥ uhj (xj) + p · (zhj − xj). (3.1)

Next, note that

|uhj (xj)− v(x0)| ≤ |uhj (xj)− v(xj)|+ |v(xj)− v(x0)|.
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By the convergence of xj to x0 and the uniform convergence of uh to v on K, we obtain
uhj (xj) → v(x0) as hj → 0. Similarly uhj (z) → v(z) as hj → 0, using uhj (zhj ) −
v(z) = (uhj (zhj )−v(zhj ))+(v(zhj )−v(z)). Taking pointwise limits in (3.1), we obtain

v(z) ≥ v(x0) + p · (z − x0) ∀z ∈ B ε
4
(x0).

We conclude that p ∈ ∂lv(K), the image of K by the local subdifferential of v, and thus
p ∈ ∂v(K) by Lemma 3.3, since v is convex and Ω convex. �

Theorem 3.5. The limit convex function v given by Theorem 3.2 satisfies for K ⊂ Ω
compact

M [v](K) =

∫
K

f(x)dx.

Thus for any Borel set B, M [v](B) =
∫
B
f(x)dx.

Proof. It follows from Lemma 3.4

lim sup
hk→0

MV [uhk ](K) ≤M [v](K). (3.2)

By Theorem 3.2 M [v](K) ≤
∫
K
f(x)dx. But MV [uh](K) =

∑
x∈K h

df(x). We con-
clude from (3.2) that

lim sup
hk→0

MV [uhk ](K) =

∫
K

f(x)dx ≤M [v](K) ≤
∫
K

f(x)dx,

from which the result follows. �

Theorem 3.6. The solution uh of (2.4) converges uniformly on compact subsets to the
Aleksandrov solution u of (1.1).

Proof. It follows from Theorems 3.2 and 3.5, that there is a subsequence which converges
uniformly on compact subsets to a convex function v ∈ C(Ω) which solves (1.1). By
unicity of the solution of the latter, the whole family must converge to u. �

3.2. Convergence to the viscosity solution. Again, we assume that V = Zd \ { 0 }. For
a direct proof of convergence to the viscosity solution of (1.1), we recall the notion of
monotonicity and consistency. We note that consistency was not used for the proof of
convergence to the Aleksandrov solution.

Since we have proven convergence to the Aleksandrov solution, and Aleksandrov solu-
tions are equivalent to viscosity solutions with our assumptions, we get convergence to the
viscosity solution as well. The purpose of this section is to indicate how one may exploit
equicontinuity to give a different proof of convergence to the viscosity solution.

The scheme (2.4) is said to be monotone if for zh and wh in Uh, zh(y) ≥ wh(y), y 6= x
with zh(x) = wh(x), we have Mh[zh](x) ≥Mh[wh](x).

We say that the scheme (2.4) is consistent if for all C2 convex functions φ, a sequence
xh → x ∈ Ω

lim
h→0

1

hd
Mh[φ](xh) = detD2φ(x).

We could only give a proof which is simple of a weaker form of consistency for the
scheme (2.4). Let B(x, r) denote the ball of center x and radius r in the maximum norm
and let x′h denote the unique mesh point in B(x, h/2). We say that the scheme is weakly
consistent if for all strictly convex quadratic polynomials φ, we have

lim
h→0

1

hd
Mh[φ](x′h) = detD2φ(x).
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Lemma 3.7. The scheme (2.4) is monotone.

Proof. For zh andwh in Uh such that zh(y) ≥ wh(y), y 6= xwith zh(x) = wh(x), we have
from the definition of discrete normal mapping ∂hwh(x) ⊂ ∂hzh(x). Thus Mh[zh](x) ≥
Mh[wh](x), i.e. the scheme (2.4) is monotone. �

Lemma 3.8. The scheme (2.4) is weakly consistent.

Proof. Let x ∈ Ω and φ a strictly convex quadratic polynomial. Let µ have density
detD2φ, i.e. for each Borel set B, µ(B) =

∫
B

detD2φ(x)dx. Given a sequence of Borel
measures µn which converges weakly to µ, we are interested in the uniform convergence
of µn(B) to µ(B) for B in a subset B of Borel sets.

Let B consist of balls B(x0, r) of center x0 and radius r ≤ r0 for r0 > 0 fixed. Thus B
consists of convex sets in a bounded set. By the Blaschke selection theorem, any sequence
in B has a convergent subsequence, hence B is sequentially compact in the Hausdorff
metric. By the same argument B∩B is compact for any closed ballB. Since detD2φ > 0,
µ(∂B(x0, r)) = 0, i.e. B is a µ-continuity class using the terminology of [8]. By [8,
Theorem 6 and example 6], B is a µ-uniformity class, i.e. if µn weakly converges to µ,
then µn(B(x0, r))→ µ(B(x0, r)) uniformly in r.

We recall a form of the Moore-Osgood theorem on exchanging limits. Consider the
double sequence an,k with an,k → Bk uniformly in k as n → ∞ and for each n,
limk→∞ an,k = An. Then the double limits exist with

lim
n→∞

lim
k→∞

an,k = lim
k→∞

lim
n→∞

an,k.

We also recall that every continuity point of detD2φ is a Lebesgue point of detD2φ. That
is, as detD2φ ∈ C(Ω) we have for x0 ∈ Ω

lim
r→0

1

|B(x0, r)|

∫
B(x0,r)

detD2φ(x)dx = detD2φ(x0).

Let us denote as well by φ the restriction of φ to Nh. By the weak convergence of Mhk [φ]
to µ, we have for x ∈ Ω and uniformly in r

lim
k→∞

Mhk [φ](B(x, r)) = µ(B(x, r)).

Therefore

lim
r→0

1

|B(x, r)|
lim
k→∞

Mhk [φ](B(x, r)) = lim
r→0

1

|B(x, r)|
µ(B(x, r)) = detD2φ(x).

By the Moore-Osgood theorem, we obtain

lim
k→∞

lim
r→0

1

|B(x, r)|
Mhk [φ](B(x, r)) = detD2φ(x).

We now take r = hk/2 so that |B(x, r)| = hdk. Now, there is a unique mesh point x′hk in
B(x, hk) and x′hk → x as k → ∞. Therefore Mhk [φ](B(x, hk/2)) = Mhk [φ](x′hk) and
we obtain the (weak) consistency of the scheme,

lim
k→∞

1

hdk
Mhk [φ](x′hk) = detD2φ(x).

�
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By the stability of the scheme (2.4), c.f. Theorem 2.13, the half-relaxed limits

u∗(x) = lim sup
y→x,h→0

uh(y) = lim
δ→0

sup{uh(y), y ∈ Ωh, |y − x| ≤ δ, 0 < h ≤ δ }

u∗(x) = lim inf
y→x,h→0

uh(y) = lim
δ→0

inf{uh(y), y ∈ Ωh, |y − x| ≤ δ, 0 < h ≤ δ },

are well defined.
Our numerical experiments indicate that (2.4) is consistent. This is taken as an as-

sumption in the following theorem. Rates of convergence of the Oliker-Prussner method,
hence interior consistency, were given in [27]. Similar arguments could be followed for
the discretization (2.4). But this would make this contribution too long.

Theorem 3.9. Let f > 0 and f ∈ C(Ω). Assume that g can be extended to a convex
function g̃ ∈ C(Ω). Under the assumption that (2.4) is consistent, the upper half-relaxed
limit u∗ is a viscosity sub solution of detD2u(x) = f(x) and the lower half-relaxed limit
u∗ is a viscosity super solution of detD2u(x) = f(x) at every point x of Ω. Moreover, so-
lutions uh of (2.4) converge uniformly on compact subsets to the unique viscosity solution
of (1.1).

Proof. The result follows from the results of [5] and the stability, consistency and mono-
tonicity of the scheme, combined with equicontinuity of the approximations. The part of
the proof below which uses the consistency and monotonicity of the scheme follows [9].

The family uh is a family of discrete convex functions which is uniformly bounded and
by (2.7) have Monge-Ampère masses uniformly bounded (using the terminology of [2]).
Moreover uh = g on ∂Ωh for a convex function g ∈ C(Ω). By [2, Theorem 14], there
is a subsequence uhk which converges uniformly on compact subsets to a convex function
v ∈ C(Ω) which solves v = g on ∂Ω. It follows from the definitions that v = u∗ = u∗ on
Ω. At this point, it is not known yet that the limit convex function v is a viscosity solution
of (1.1).

We show that v = u∗ is a viscosity super solution of detD2u(x) = f(x) at every point
x of Ω. Recall that v ∈ C(Ω). Let x0 ∈ Ω and φ be a strictly convex quadratic polynomial
such that u∗ − φ has a local minimum at x0 with (u∗ − φ)(x0) = 0. Without loss of
generality, we may assume that x0 is a strict local minimum.

Let B0 denote a closed ball contained in Ω and containing x0 in its interior. We let xhl
be a subsequence in B0 such that xhl → x0 with uhl(xl)→ u∗(x0). Let x′l be defined by

cl := (uhl − φ)(x′l) = min
B0

uhl − φ.

Since the sequence x′l is bounded, it converges to some x1 after possibly passing to a
subsequence. Since (uhl − φ)(x′l) ≤ (uhl − φ)(xhl) we have

(u∗ − φ)(x0) = lim
l→∞

(uhl − φ)(xhl) ≥ lim inf
l→∞

(uhl − φ)(x′l) ≥ (u∗ − φ)(x1).

Since x0 is a strict minimizer of the difference u∗ − φ, we conclude that x0 = x1 and
cl → 0 as l→∞.

By definition
uhl(x) ≥ φ(x) + cl,∀x ∈ B0 ∩ Ωhl ,

with equality at x = x′l, and thus, by the monotonicity of the scheme

0 =
1

hdl
Mhl [uhl ](x

′
l)− f(x′l) ≥

1

hdl
Mhl [φ+ cl](x

′
l)− f(x′l) =

1

hdl
Mhl [φ](x′l)− f(x′l),

which gives by the consistency of the scheme detD2φ(x0)− f(x0) ≤ 0.



EJDE-2018/CONF/26 DISCRETE ALEKSANDROV SOLUTIONS 17

Similarly one shows that if φ is a strictly convex quadratic polynomial such that u∗ − φ
has a local maximum at x0 with (u∗ − φ)(x0) = 0, we have detD2φ(x0)− f(x0) ≥ 0.

It follows that v = u∗ = u∗ on Ω is a viscosity solution of detD2u = f . By the
comparison principle Theorem 2.7, v is equal to the unique viscosity solution of (1.1).
Thus all subsequences uhk converge uniformly on compact subsets to the same limit. This
concludes the proof. �

Several discrete Monge-Ampère equations, e.g. [6, 22], can be written as

Mh[uh](x) = hdf(x), x ∈ Ωh,

for some operatorMh which satisfies

Mh[uh] ≤ CMh[uh].

For f ∈ C(Ω),
∑
x∈Ωh

hdf(x)→
∫

Ω
f(x)dx and thus∑

x∈Ωh

Mh[uh](x) ≤ C
∑
x∈Ωh

Mh[uh](x) = C
∑
x∈Ωh

hdf(x) ≤ A,

for a constant A independent of h. Thus (2.7) holds for schemes such as the ones in
[6, 22] and convergence to the viscosity solution on convex domains not necessarily strictly
convex can be proven as for Theorem 3.9.

3.3. Remarks on the case of a sum of Dirac masses for the right hand side. Consider
the problem

detD2u =

N∑
l=1

clδdl in Ω

u = g on ∂Ω,

(3.3)

where dl is a mesh point, cl a real number, δdl the Dirac mass at dl and N is the number of
Dirac masses. Here, we assume that the parameter h is chosen so that dl is a mesh point.
For example, we may restrict h to take the form 1/2j for a positive integer j when Ω is a
cube. The corresponding discrete problem is given by

MV [uh](x) = fh(x), x ∈ Ωh

uh(x) = g(x), x ∈ ∂Ωh,
(3.4)

where fh is a mesh function which equals 0 at all mesh points, except dl where it takes
values cl for l = 1, . . . , N . Discrete solutions have Monge-Ampère masses uniformly
bounded as

∑
x∈Ωh

fh(x) is uniformly bounded. Our convergence analysis to the Alek-
sandrov solution holds in this case as well. This does not appear to be an effective method
in the case of Dirac masses.

The method we discussed is a variant of the Oliker-Prussner method [28]. For the latter
(3.3) requires the masses cl to be non zero. But with our approximations fh, fh(x) = 0
in parts of the computational domain Ωh. A method which is solely based on the interpre-
tation of f(x) as a continuous function should handle better the case where fh(x) = 0 in
parts of the computational domain. The numerical method discussed in [7] can be inter-
preted as a variant of (3.4) with numerical integration for the computation of the discrete
subdifferential at points dl and the use of a different scheme elsewhere.
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h
1/24 1/25 1/26 1/27 1/28 1/29

Error 3.51 10−4 8.81 10−5 2.20 10−5 5.51 10−6 1.38 10−6 3.45 10−7

Rate 1.99 1.99 1.99 1.99 2
Time 7.97 10−2 2.01 10−1 1.01 10−0 4.27 10−0 2.02 10+1 9.75 10+1

TABLE 1. Smooth solution u(x, y) = e(x2+y2)/2 with g(x, y) =

e(x2+y2)/2 and f(x, y) = (1 + x2 + y2)ex
2+y2 .

h
1/24 1/25 1/26 1/27 1/28 1/29

Error 6.89 10−4 2.36 10−4 8.21 10−5 2.88 10−5 1.01 10−5 3.58 10−6

Rate 1.55 1.52 1.51 1.50 1.50
Time 7.07 10−2 1.94 10−1 2.17 10−0 1.94 10+1 1.84 10+1 1.91 10+3

TABLE 2. Non smooth solution u(x, y) = −
√

2− x2 − y2 with
g(x, y) = −

√
2− x2 − y2 and f(x, y) = 2/(2− x2 − y2)2.

4. NUMERICAL EXPERIMENTS

The computational domain is the unit square [0, 1]2. The initial guess for the iterations
was taken as a shifted quadratic x2 + y2 − 2. The discrete nonlinear system was solved
with a damped Newton’s method [22]. Let δ, ρ ∈ (0, 1). Given an initial guess u0

h to
the nonlinear equations G(uh) = 0, set k = 0. If G(ukh) = 0, stop. Put pk(τ) =
ukh − τG′(ukh)−1G(ukh) and let ik be the smallest non-negative integer i such that

||G(pk(ρi))|| ≤ (1− δρi)||G(vkh)||.

We set uk+1
h = pk(ρik). In the experiments, we take δ = ρ = 1. Errors are given in

the maximal norm. We used a 1.4 GHz Quad-Core Intel Core i5 MacBook Pro and the
implementation was in Matlab.

For the smooth solution, the number of Newton iterations was about 40, while for the
non smooth solution it took hundreds of iterations for fine resolutions.
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