
ERRATUM TO ”STANDARD FINITE ELEMENTS FOR THE
NUMERICAL RESOLUTION OF THE ELLIPTIC MONGE-AMPÈRE

EQUATION: CLASSICAL SOLUTIONS ”

GERARD AWANOU

Abstract. The proof of Lemma 3.6 in the paper referenced in the title is not
correct. Moreover the numerical results were obtained with an iterative method
different from the one analyzed in the paper. The purpose of this erratum is to give
a correct proof of the main results therein for high order C1 elements. For high
order C0 elements we make the assumption that at a given point the eigenvalues
of the exact solution are the same. The convergence rates are suboptimal for C0

elements.

1. Introduction

In [3, Lemma 3.6], we claimed a strict contraction property for a mapping T in the
H1 norm. Unfortunately there was a mistake at the end of step 1 of the proof of
the lemma. It was stated on [3, p. 12] that ”Since β < 1, for h sufficiently small

a = β + Ch
1
2 (1 + ||u||1)n−1 < 1”. However β, as defined therein, also depends on h,

see [3, p. 10]. Moreover 1− β → 0 at a rate higher than h1/2, and thus the argument
as stated is not correct. As a consequence, the strategy which consists in rescaling
the equation does not work for C0 elements and turns out not to be necessary for
C1 elements. We give in section 3 an analysis of the iterative method the numerical
results of which were given in [3].

In this erratum we first give corrections for the results claimed in [3] for high order
C1 elements. We then give the iterative method which yield the numerical results
presented in [3]. It corresponds to a discretization of the Monge-Ampère equation
with interior penalty terms. We prove that the discretization is well-posed and prove
the convergence of the iterative method for high order elements under the assumption
that at any given point the eigenvalues of the exact solution are the same (3.5).

We use the same notation as in [3]. In addition we extend canonically Sobolev norm
and semi norms to matrix fields.

We recall the scale-trace inequality

||v||0,2,∂K ≤ Ch−
1
2 ||v||0,2,K , (1.1)

when v is a polynomial on K.

2. The argument for C1 elements

The convergence of the time marching method [3, (3.3)] was given in [1] for cubic
and high order C1 elements. The analysis given in [3] may be viewed as a different
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approach. The rescaling argument used in [3] turns out not to be necessary. To make
this erratum more readable, we have included the parameter α in the corrections
given here for C1 elements. Here α is a constant independent of h. The reader
may assume that α = 1. In this section, Vh denotes a finite dimensional space of
piecewise polynomial C1 functions with an interpolation operator Ih which satisfies
the approximation property [3, (2.3)].

For the statement of [3, Lemma 3.1], instead of ”each element T”, we meant ”each
element K”.

For the statement of [3, Theorem 3.3] the convergence of the iterative method is in
the H1 semi norm, not the H1 norm.

We now define

Bh(ρ) = {vh ∈ Vh, vh = gh on ∂Ω, |vh − Ihu|1 ≤ ρ}.

In addition, we now require that ρ < δh/Cp where Cp is the constant in the Poincaré’s
inequality, i.e. for vh ∈ H1

0 (Ω), ||vh||1 ≤ Cp|vh|1 and δh = Ch1+n/2 for a constant C.
We recall from [3, Lemma 3.1] and [3, (3.1)] that for ρ < δh/Cp and vh ∈ Bh(ρ), D2vh
is piecewise positive definite.

We strengthen the result of [3, Lemma 3.5] as

|Ihu− T (Ihu)|1 ≤ C1h
d. (2.1)

With wh = Ihu− T (Ihu), we have using [3, (3.8)] and [3, Lemma 2.1]

|wh|21 =
αn

ν

∑
K∈Th

∫
K

(cof rh) : D2(Ihu− u)wh dx,

where rh = tD2Ihu+ (1− t)D2u, t ∈ [0, 1]. Using the divergence free row property of
the cofactor matrix

ν

αn
|wh|21 =

∑
K∈Th

∫
K

div

(
(cof rh)D(Ihu− u)

)
wh dx

= −
∑
K∈Th

∫
K

(
(cof rh)D(Ihu− u)

)
·Dwh dx

+
∑
K∈Th

∫
∂K

((cof rh)D(Ihu− u)
)
· (whn) ds

≡ R1 +R2.

Since |rh|0,∞ ≤ C, |R1| ≤ Chd|wh|1. In addition, since Ihu is C1 and u is smooth, we
have ∑

K∈Th

∫
∂K

((cof D2u)D(Ihu− u)
)
· (whn) ds = 0.

Thus

R2 =
∑
K∈Th

∫
∂K

((cof rh − cof D2u)D(Ihu− u)
)
· (whn) ds.
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As in the proof of [6, Lemma 2.6], we have for two matrix fields η and τ

| cof η − cof τ |0,∞ ≤ C|tη + (1− t)τ |n−2
0,∞ |η − τ |0,∞.

Moreover, as |Ihu− u|2,∞ ≤ Chd−1 and |D(Ihu− u)|1,∂K ≤ Chd−1/2|u|d+1,K , we get

|R2| ≤ Chd−1hd−
1
2

∑
K∈Th

∫
∂K

|wh| ds ≤ Ch2d− 3
2

∑
K∈Th

h
n−1
2

K ||wh||0,2,∂K .

By the the trace, Cauchy-Schwarz and Poincaré’s inequalities, we obtain

|R2| ≤ Ch2d− 3
2

( ∑
K∈Th

hn−1
K

) 1
2
( ∑

K∈Th

||wh||21,2,K
) 1

2

.

|R2| ≤ Ch2d−1||wh||1 ≤ Ch2d−1|wh|1 ≤ Chd|wh|1,
where we used wh = 0 on ∂Ω. This completes the proof of (2.1).

For the statement of [3, Lemma 3.6], the strict contraction property of the mapping
T should be in the H1 semi norm, i.e.

|T (αvh)− T (αwh)|1 ≤ a|αvh − αwh|1, 0 < a < 1. (2.2)

For [3, Lemma 3.7] which states that T maps αBh(ρ) into itself, we now take

ρ =
C1

1− a
hd, 2 +

n

2
≤ d, (2.3)

where a is a constant defined below (2.12). This assures that for h sufficiently small
ρ ≤ δh/(2Cp) = δ/(4CinvCp)h

1+n/2. We also note that the constant Cinv appearing in
the inverse estimates is still generic as it depends on the norms used.

The Banach fixed point theorem still applies. Put B̂h(ρ) = Bh(ρ)−Ihu and note that

Ihu = gh on ∂Ω. Thus for wh ∈ B̂h(ρ), wh = 0 on ∂Ω and by Poincaré’s inequality we

can define a norm on B̂h(ρ) by ||wh|| = |wh|1. We define on B̂h(ρ) a mapping T̂ by

T̂ (wh) = T (wh + Ihu)− Ihu. If wh is a fixed point of T̂ , wh + Ihu is a fixed point of

T and conversely if vh is a fixed point of T , vh − Ihu is a fixed point of T̂ . It can be
readily checked that T̂ satisfies the assumptions of the Banach fixed point theorem
on αB̂h(ρ) endowed with the norm ||.||, when T does on αBh(ρ).

Note that by Poincaré’s inequality, for uh ∈ Bh(ρ), ||Ihu−uh||1 ≤ C|Ihu−uh|1 ≤ Cρ,
a property which is used in the proof of [3, Theorem 3.3].

The first displayed equation in the proof of [3, Lemma 3.2] should be

m||z||2 ≤ [(cof D2vh(x))z] · z ≤M ||z||2, z ∈ Rn,

and the correct values of m and M are m = (m′)n/M ′ × 1/(2n−13) and M =
(M ′)n/m′ × 3n/2n−1.

We first give a quantitative estimate of the constant δ introduced in [3, Lemma 3.1].
The outline of the proof of [3, Lemma 3.1] is as follows.

For all ε > 0, there exists δ > 0 such that for v ∈ W 2,∞(Ω), |v − u|2,∞ ≤ δ implies
|λi(D2v(x)) − λi(D

2u(x))| < ε a.e. in Ω, for i = 1 and i = n. Then ε is taken
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successively as m′/2 and M ′/2. It follows from [8, Theorem 1 and Remark 2 p. 39]
that for two symmetric n× n matrices A and B,

|λi(A)− λi(B)| ≤ nmax
r,s
|Ars −Brs|, i = 1, n. (2.4)

Thus we can take δ ≤ m′/(2n). Since m′ ≤ M ′, we have δ ≤ M ′/2. We make the
assumption that

δ ≤ min

(
m′

2n
,

m

2C2
pC2

)
, (2.5)

where C2 is a constant introduced in (2.6) below.

The mapping T ′K can be shown to be continuous on αBh(ρ) by using the expression
of 〈T ′K(αvh)(αwh), zh〉 given as [3, (3.9)], trace inequalities, inverse estimates and a
mean value theorem for the cofactor matrix [6, Lemma 2.6].

We modify step 1 of the proof of [3, Lemma 3.6] to prove that for vh, wh ∈ Bh(ρ)

|〈T ′K(αvh)(αwh), zh〉| ≤ β|αwh|1,K |zh|1,K + C2δ
αn−1

ν
||αwh||1,K ||zh||1,K , (2.6)

for a constant C2 independent of h.

We note from [3, p. 10-11] that

0 ≤ β ≤ 1− αn−1m

ν
.

Without loss of generality, we can thus take as the value of β an upper bound, i.e.

β = 1− αn−1m

ν
. (2.7)

The displayed equation just above [3, (3.11)] says that∣∣∣∣ ∫
K

[(I − 1

ν
cof D2αvh)Dwh] ·Dzh dx

∣∣∣∣ ≤ β|wh|1,K |zh|1,K . (2.8)

It remains to estimate the term

R ≡
∫
∂K

zh[(cof D2vh)Dwh] · nK ds.

Since u is smooth, zh is continuous on Ω and Dwh is also continuous on Ω by the
assumptions in this section, we have∫

∂K

zh[(cof D2u)Dwh] · nK ds = 0.

We therefore have

R =

∫
∂K

zh[(cof D2vh)Dwh] · nK ds−
∫
∂K

zh[(cof D2u)Dwh] · nK ds

=

∫
∂K

zh[(cof D2vh − cof D2u)Dwh] · nK ds.

We have by the trace and scaled trace inequalities

|R| ≤ C|| cof D2vh − cof D2u||0,∞||zh||0,∂K ||Dwh||0,∂K
≤ Ch−

1
2 || cof D2vh − cof D2u||0,∞||zh||1,K ||wh||1,K .
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As with [6, Lemma 2.6], we have for some t ∈ [0, 1]

|| cof D2vh − cof D2u||0,∞ ≤ C||tD2vh + (1− t)D2u||n−2
0,∞ |vh − u|2,∞.

Since |u − Ihu|2,∞ ≤ Chd−1 and by an inverse estimate and Poincaré’s inequality
|vh − Ihu|2,∞ ≤ Ch−1−n/2||vh − Ihu||1 ≤ Ch−1−n/2|vh − Ihu|1, we conclude using
ρ ≤ Cδhd that |vh − u|2,∞ ≤ Cδhd−1−n/2. Thus for d ≥ 3

|R| ≤ Cδ||zh||1,K ||wh||1,K . (2.9)

Combining (2.8)–(2.9), we obtain (2.6).

As in the first part of Step 3 of [3, Lemma 3.6], we have

|T (αvh)− T (αwh)|21 =
∑
K∈Th

〈TK(αvh)− TK(αwh), ψh〉, (2.10)

where ψh = T (αvh)− T (αwh). By the mean value theorem, as T ′K is continuous, we
have

|〈TK(αvh)− TK(αwh), ψh〉| =
∣∣∣∣〈∫ 1

0

T ′K(αvh + t(αwh − αvh))(αwh − αvh)

dt, ψh〉
∣∣∣∣

=

∣∣∣∣ ∫ 1

0

〈T ′K(αvh + t(αwh − αvh))(αwh − αvh),

ψh〉dt
∣∣∣∣

≤
∫ 1

0

|〈T ′K(αvh + t(αwh − αvh))(αwh − αvh)

, ψh〉| dt,

(2.11)

where we use the following property of the Riemann integral of Banach valued func-
tions. If A ∈ L(V ′K ,R) is continuous, then A

∫ 1

0
F (t)dt =

∫ 1

0
A(F (t))dt, for F (t) ∈ V ′K

[7, Proposition 3.1.3]. For ψh ∈ VK , we then take A(F ) = 〈F, ψh〉 for F ∈ V ′K .

Alternatively, one can establish (2.11) by direct calculation without using a functional
notation.

Since vh + t(wh − vh) ∈ Bh(ρ), t ∈ [0, 1], we get from (2.11) and (2.6)

|〈TK(αvh)− TK(αwh), ψh〉| ≤ β|αwh − αvh|1,K |ψh|1,K

+ C2δ
αn−1

ν
||αwh − αvh||1,K ||ψh||1,K .

By Cauchy-Schwarz inequality, we obtain from (2.10)

|T (αvh)− T (αwh)|21 ≤ β|αwh − αvh|1|ψh|1

+ C2δ
αn−1

ν
||αwh − αvh||1||ψh||1.
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But ψh = 0 on ∂Ω and thus by Poincaré’s inequality,

|T (αvh)− T (αwh)|21 ≤
(
β + C2

pC2δ
αn−1

ν

)
|αwh − αvh|1|ψh|1.

Therefore

|T (αvh)− T (αwh)|1 ≤
(
β + C2

pC2δ
αn−1

ν

)
|αwh − αvh|1.

Using the value of β given by (2.7), the contraction constant in the above equation
is given by

a = 1− αn−1m

ν
+ C2

pC2δ
αn−1

ν
= 1− αn−1

ν

(
m− C2

pC2δ

)
. (2.12)

Note that a ≥ 0 since β ≥ 0. By (2.5), C2
pC2δ ≤ m and thus a < 1. We have proved

(2.2).

The proof that T maps αBh(ρ) into itself is essentially the same as the one given in
[3, Lemma 3.7]. We have

|Ihu− T (vh)|1 ≤ |Ihu− T (Ihu)|1 + |T (Ihu)− T (vh)|1 ≤ C1h
d + a|vh − Ihu|1

≤ (1− a)ρ+ aρ ≤ ρ. (2.13)

For [3, Remark 3.8], the convergence of the iterative method should be with the H1

semi norm.

A few references given in [3], [4, 5, 1, 2] have been updated.

3. Analysis of the discretization corresponding with the numerical
results given in [3]

We use the same notation as in [3] and the previous section. In this section, Vh denotes
a finite dimensional space of piecewise polynomial C1 functions with an interpolation
operator Ih which satisfies the approximation property [3, (2.3)]. The numerical
results given in [3] were actually obtained with the iterative method

ν

∫
Ω

Duk+1
h ·Dvh dx = −ν

∑
K∈Th

∫
K

(∆ukh)vh dx−
∫

Ω

fvh dx

+
∑
K∈Th

∫
K

(detD2ukh)vh dx,

(3.1)

∀vh ∈ Vh ∩H1
0 (Ω), given a sufficiently close initial guess u0

h and with u0
h = uk+1

h = gh
on ∂Ω. By integration by parts, we obtain

ν

∫
Ω

Duk+1
h ·Dvh dx = ν

∫
Ω

Dukh ·Dvh dx− ν
∑
K∈Th

∫
∂K

vh(Dukh) · nds−
∫

Ω

fvh dx

+
∑
K∈Th

∫
K

(detD2ukh)vh dx.
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Formally, the iterative method converges to a solution of the following discretization
of the Monge-Ampère equation: find uh ∈ Vh such that uh = gh on ∂Ω and∑

K∈Th

∫
K

(detD2uh)vh dx− ν
∑
K∈Th

∫
∂K

vh(Duh) · n ds

=

∫
Ω

fvh dx,∀vh ∈ Vh ∩H1
0 (Ω). (3.2)

To prove the existence of a local solution to (3.2) and the convergence of the time
marching method (3.1), we will use a fixed point argument. Error estimates follow as
in the proof of [3, Theorem 3.3].

For a given vh ∈ Vh, vh = gh on ∂Ω, define S(vh) ∈ Vh as the solution of

ν

∫
Ω

DS(vh) ·Dwh dx = ν

∫
Ω

D(vh) ·Dwh dx+
∑
K∈Th

∫
K

(detD2vh)wh dx

− ν
∑
K∈Th

∫
∂K

wh(Dvh) · n ds−
∫

Ω

fwh dx,∀wh ∈ Vh ∩H1
0 (Ω), (3.3)

with vh − S(vh) = 0 on ∂Ω.

Lemma 3.1. We have

|Ihu− S(Ihu)|1 ≤ C2h
d−1. (3.4)

Proof. Note that u is smooth and wh ∈ Vh ∩ H1
0 (Ω) ⊂ C0(Ω). We then have∑

K∈Th

∫
∂K
wh(Du) · n ds = 0. On the other hand f = detD2u. Thus, with wh =

S(Ihu)− Ihu, and vh = Ihu, we have

ν

∫
Ω

D[S(vh)− vh] ·Dwh dx =
∑
K∈Th

∫
K

(detD2Ihu− detD2u)wh dx

− ν
∑
K∈Th

∫
∂K

wh[D(Ihu− u)] · n ds.

By approximation properties, the trace inequality, Cauchy-Schwarz inequality and
Poincaré’s inequality∣∣∣∣ ∑

K∈Th

∫
∂K

wh[D(Ihu− u)] · n ds
∣∣∣∣ ≤ Chd−

1
2

∑
K∈Th

||wh||1,K ||u||k+1,K ≤ Chd−
1
2 |wh|1.

On the other hand, with zh = detD2Ihu− detD2u and arguing as in the proof of [3,
Lemma 3.5], we have

||zh||0,K ≤ Chd−1.

We conclude using Cauchy-Schwarz inequality that

ν|wh|1 ≤ Chd−1.

This concludes the proof. �
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We next make the assumption that the eigenvalues of D2u are the same at a given
point, i.e.

M ′ = m′. (3.5)

We then take
ν =

m

1 + h
. (3.6)

For vh ∈ Bh(ρ), ρ < δh, we define

γ = sup
||y||=1

∣∣∣∣[(I − 1

ν
cof D2vh(x)

)
y

]
· y
∣∣∣∣.

Since
m||y||2 ≤ [(cof D2vh(x))y] · y ≤M ||y||2, y ∈ Rn,

we get

γ ≤ max

{∣∣∣∣1− m

ν

∣∣∣∣, ∣∣∣∣1− M

ν

∣∣∣∣} = h.

Arguing as in the proof of [3, (3.11)] we obtain∣∣∣∣(I − 1

ν
cof D2vh(x)

)
p

]
· q
∣∣∣∣ ≤ γ||p|| ||q||, p, q ∈ Rn. (3.7)

We can now state

Theorem 3.2. For ρ = 2C2h
d−1, d ≥ 3 + n/2, the mapping S is a strict contraction

in Bh(ρ) which maps Bh(ρ) into itself.

Proof. We first prove that for vh and wh in Bh(ρ), |S(vh)− S(wh)|1 ≤ 1/2|vh − wh|1.
Put zh = S(vh)− S(wh). Using (3.3) and an integration by parts, we have

|zh|21 = −
∑
K∈Th

∫
K

(∆vh −∆wh)zh dx+
1

ν

∑
K∈Th

∫
K

(detD2vh − detD2wh)zh dx.

Using [3, Lemma 2.1], there exists t ∈ [0, 1] such that detD2vh−detD2wh = cof(rh) :
D2(vh − wh) with rh = tD2vh + (1 − t)D2wh. Thus, using the divergence row free
property of the cofactor matrix

|zh|21 =
∑
K∈Th

∫
K

(
1

ν
cof rh − I

)
: D2(vh − wh)zh dx

=
∑
K∈Th

∫
K

div

((
1

ν
cof rh − I

)
D(vh − wh)

)
zh dx

=

∫
Ω

[(
I − 1

ν
cof rh

)
D(vh − wh)

]
·Dzh dx

−
∑
K∈Th

∫
∂K

[(
I − 1

ν
cof rh

)
D(vh − wh)

]
· (zhn) ds

≡ U1 + U2.

Since rh ∈ Bh(ρ), as for [3, (3.11)], we have β = γ = h and

|U1| ≤ h|vh − wh|1|zh|1. (3.8)
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On the other hand by the trace and scale trace inequalities, Cauchy-Schwarz and
Poincaré’s inequalities

|U2| ≤ γ
∑
K∈Th

|vh − wh|1,∂K |zh|0,∂K

≤ Ch
∑
K∈Th

h−
1
2 |vh − wh|1,K ||zh||1,K

≤ Ch
1
2 |vh − wh|1|zh|1,

where we used zh = 0 on ∂Ω. We therefore have |zh|21 ≤ (h + Ch
1
2 )|vh − wh|1|zh|1,

from which the contraction property follows.

The proof that S maps Bh(ρ) into itself is similar to (2.13).

�
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