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Model problem {
−∆u = f in Ω

u = g on ∂Ω

where ∂Ω will denote the boundary of the bounded domain Ω

and ∆ denotes the Laplace operator, ∆ =
∑n

i=1
∂2

∂x2
i
.

Green’s identity

∫
Ω

(− div∇u)v dx =

∫
Ω
∇u · ∇v dx −

∫
∂Ω

∂u
∂ν

v .

Take g = 0. Find u in H1
0 (Ω) such that∫

Ω
∇u · ∇v =

∫
Ω

fv , ∀v ∈ H1
0 (Ω)
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Find u ∈ V such that

a(u, v) = F (v), ∀v ∈ V

Vh ⊂ V conforming finite element (e.g. Vh ⊂ H1(Ω))
Find uh ∈ Vh such that

a(uh, vh) = F (vh),∀vh ∈ Vh

A piecewise polynomial is in H1(Ω) if it is globally continuous.
On simplices : Lagrange elements, Pr element
Space of piecewise continuous polynomials of degree r
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Finite element spaces

K is a closed subset of Rn with a nonempty interior and a
Lipshitz continuous boundary
PK is a finite dimensional space of vector valued or matrix
valued functions defined over the set K
ΘK is a finite set of linearly independent linear functionals,
θi , i = 1, . . . ,N referred to as degrees of freedom of the
finite element, defined over the set PK .

It is assumed that the set ΘK is PK -unisolvent in the sense that

θi(p) = 0, i = 1, . . . ,N =⇒ p ≡ 0
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Mixed finite elements

Main motivation of mixed methods for the Poisson equation
−∆u = f in Ω, u = g on ∂Ω : The quantity σ = −∇u is the one of
primary importance.

σ = −∇u
div σ = f

u = g on ∂Ω

Need for H(div) elements : normal component is continuous
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Abstract Weak Formulation

a(σ, τ) =

∫
Ω
σ · τ b(σ, u) = −

∫
Ω

udiv σ

Find σ ∈ Σ = H(div,Ω), and u ∈ V = L2(Ω,R) such that{
a(σ, τ) + b(τ,u) = 〈g, τ · n〉 ∀τ ∈ Σ
b(σ, v) = (−f , v) ∀v ∈ V

for all τ ∈ Σ and v ∈ V .
Can we use Lagrange elements to approximate both the scalar
variable u and the vector σ ?
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Brezzi’s stability conditions

Σh ⊂ Σ and Vh ⊂ V
Sufficient conditions for optimal error bounds
First Brezzi condition ∃α > 0 independent of h such that

a(τ, τ) ≥ α‖τ‖2Σ

for all τ in Kh where

Kh = {τ ∈ Σh : b(τ, v) = 0,∀v ∈ Vh}

Second Brezzi condition ∃β > 0 independent of h such that

supτ∈Σh

b(τ, v)

‖τ‖Σ
≥ β‖v‖V ∀v ∈ Vh

‖σ−σh‖Σ +‖u−uh‖V ≤ γ{infτ∈Σh‖σ− τ‖Σ + infvh∈Vh‖u−vh‖V}

with γ independent of h.
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Commutative Diagram

Sufficient conditions for stability
div Σh ⊂ Vh.
There exists a linear operator Πh : H1(Ω,Rn)→ Σh,
bounded in L(H1,L2) uniformly with respect to h, and such
that with Ph : L2(Ω,R)→ Vh denoting the L2−projection

H(div,Ω)
div−−→ L2(Ω)yπh

yPh

Σh
div−−→ Vh
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Model electromagnetic problem Let Ω ⊂ Rn be a bounded
Lipschitz domain. Given f ∈ L2(Ω,R3), with div f = 0, and a
positive number ω, the time harmonic Maxwell equation consists
in finding a vector field u such that

curl curl u − ω2u = f in Ω

div u = 0 in Ω

u × n̂ = 0 on Ω,

where n̂ is the unit outward normal to ∂Ω.

For ω = 0, we have a prototype of Maxwell’s equation. Moreover,
enforcing the divergence free condition with a Lagrange
multiplier, we obtain the weak formulation : find u ∈ H0(curl; Ω)
and σ ∈ H1

0 (Ω) such that

(curl u, curl v) + (gradσ, v) = (f , v) ∀v ∈ H0(curl; Ω)

(gradσ, τ) = 0, ∀τ ∈ H1
0 (Ω).
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H(curl,Ω) = {E ∈ L2(Ω)3, curl E ∈ L2(Ω)3}

H(curl) elements : tangential component is continuous
The L2 de Rham complex

R ⊂−→ H1(Ω)
grad−−→ H(curl,Ω)

curl−−→ H(div,Ω)
div−−→ L2(Ω) −→0,

has a discrete version on simplices

R ⊂−→ Rh
grad−−→ Nh

curl−−→ Σh
div−−→ Vh −→0.

Rh Lagrange elements Pr (K ,R)
Nh : p + x× v,p ∈ Pr−1(K ,R3),v ∈ Hr−1(K ,R3)
Σh : p + wx,p ∈ Pr−2(K ,R3),w ∈ Hr−2(K ,R)
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Hodge Laplacian
Recall the vector Laplacian : for u = (u1,u2,u3),
(−∆u1,−∆u2,−∆u3) = curl curl u − grad div u.

There is a closed relation between the Maxwell equations and
the vector Laplacian :

curl curl u − grad div u = f in Ω

with boundary conditions

div u = 0,u × n̂ = 0, on ∂Ω.

With σ = div u, the weak formulation of the vector Laplacian with
electric boundary conditions is : find u ∈ H0(curl; Ω) and
σ ∈ H1

0 (Ω) such that

(curl u, curl v) + (gradσ, v) = (f , v) ∀v ∈ H0(curl; Ω)

(σ, τ)−(gradσ, τ) = 0, ∀τ ∈ H1
0 (Ω).



Finite element approximations
Differential forms

Hybridization

Another set of boundary conditions for the vector Laplacian for
which one obtains optimal convergence rates for mixed
approximations is :

u · n̂ = 0, (curl u)× n̂ = 0, on ∂Ω. magnetic b.c.

As for the (Laplace) equation −∆u = f , both Dirichlet and
Neumann boundary conditions can be imposed with optimal
convergence rates for mixed approximations.

It is now known that all these problems have a common structure,
referred to as finite element exterior calculus. The point of view
is to consider unknowns as differential forms with vector proxies.
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Possible disadvantages of mixed finite element methods.
They give rise to indefinite systems[

A BT

B

] [
xh
yh

]
=

[
Fh
Gh

]
.

One may get a positive definite system by elimination of xh. But
the matrix A−1 is typically a full matrix, and not easy to invert.
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For a conforming finite element approximation, one may want to
use hybridization. That is, discretize the equation on each
element and then enforce the continuity and boundary conditions
using Lagrange multipliers on the element boundaries. This
approach has several advantages :

The solution of the hybridized system corresponds to the
restriction of the non hybridized problem on each element
The Lagrange multipliers correspond to weak traces of the
solution and its derivatives on element boundaries
The hybridized system is reduced to one single equation for
the Lagrange multipliers. This process is known as static
condensation and the size of the system to be solved is
significantly smaller than the one for the non hybridized
system
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Using the Lagrange multipliers on element boundaries, one
can recover not only the solution of the non hybridized
discrete problem, but also solve other local problems whose
solution is an improved approximation. This process is
known as postprocessing.

Hybrid methods were known for the Maxwell equations when
one uses discontinuous elements and hence nonconforming
approximations. i.e, in the context of hybridizable Discontinuous
Galerkin methods (HDG).
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Correspondances.
Continuous Galerkin=Mixed formulation for the Poisson
equation with Neumann boundary conditions - Hodge
Laplace problem for 0-forms
Mixed formulation of the vector Laplacian with magnetic
boundary conditions - Hodge Laplace problem for 1-forms
Mixed formulation of the vector Laplacian with electric
boundary conditions - Hodge Laplace problem for 2-forms
Mixed formulation of the Poisson equation with Dirichlet
boundary conditions- Hodge Laplace problem for 3-forms

Hybrid methods for the continuous Galerkin method have been
discovered by Cockburn, Gopalakrishnan, and Wang while
hybrid methods for the mixed formulation of the Poisson
equation with Dirichlet boundary conditions were known much
earlier by Arnold and Brezzi.

This suggests that in the uniform framework of FEEC, it should
be possible to discover hybrid methods for the vector Laplacian.



Finite element approximations
Differential forms

Hybridization

Correspondances.
Continuous Galerkin=Mixed formulation for the Poisson
equation with Neumann boundary conditions - Hodge
Laplace problem for 0-forms
Mixed formulation of the vector Laplacian with magnetic
boundary conditions - Hodge Laplace problem for 1-forms
Mixed formulation of the vector Laplacian with electric
boundary conditions - Hodge Laplace problem for 2-forms
Mixed formulation of the Poisson equation with Dirichlet
boundary conditions- Hodge Laplace problem for 3-forms

Hybrid methods for the continuous Galerkin method have been
discovered by Cockburn, Gopalakrishnan, and Wang while
hybrid methods for the mixed formulation of the Poisson
equation with Dirichlet boundary conditions were known much
earlier by Arnold and Brezzi.

This suggests that in the uniform framework of FEEC, it should
be possible to discover hybrid methods for the vector Laplacian.



Finite element approximations
Differential forms

Hybridization

Correspondances.
Continuous Galerkin=Mixed formulation for the Poisson
equation with Neumann boundary conditions - Hodge
Laplace problem for 0-forms
Mixed formulation of the vector Laplacian with magnetic
boundary conditions - Hodge Laplace problem for 1-forms
Mixed formulation of the vector Laplacian with electric
boundary conditions - Hodge Laplace problem for 2-forms
Mixed formulation of the Poisson equation with Dirichlet
boundary conditions- Hodge Laplace problem for 3-forms

Hybrid methods for the continuous Galerkin method have been
discovered by Cockburn, Gopalakrishnan, and Wang while
hybrid methods for the mixed formulation of the Poisson
equation with Dirichlet boundary conditions were known much
earlier by Arnold and Brezzi.

This suggests that in the uniform framework of FEEC, it should
be possible to discover hybrid methods for the vector Laplacian.



Finite element approximations
Differential forms

Hybridization

The L2 de Rham complex

R −→ L2(Ω;R)
grad−−→ L2(Ω;R3)

curl−−→ L2(Ω;R3)
div−−→ L2(Ω;R)→ 0,

will be referred to as the base complex. For the domain complex,
we may take

R −→ H1(Ω)
grad−−→ H(curl; Ω)

curl−−→ H(div; Ω)
div−−→ L2(Ω) → 0,
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Recall that the main tool for the derivation of finite element
methods is an integration by parts formula, e.g. for
v , φ ∈ H(curl; Ω)∫

Ω
(curl v) · φ =

∫
Ω

v · (curlφ) +

∫
∂Ω

v · (φ× n̂).

In terms of dual operators, this says that the operator d1 = curl
with domain H(curl; Ω) has a dual δ2 which is also equal to curl
with domain H0(curl; Ω).
The dual of the operator d2 = div with domain H(div; Ω) is the
operator − grad with domain H1

0 (Ω).
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The complex

R −→ H1(Ω)
grad−−→ H(curl; Ω)

curl−−→ H(div; Ω)
div−−→ L2(Ω) → 0,

has a dual complex

0←− L2(Ω)
− div←−−− H0(div; Ω)

curl←−− H0(curl; Ω)
− grad←−−−− H1

0 (Ω)←− 0.

The vector Laplacian with magnetic boundary conditions can
then be written : find u ∈ H(curl; Ω) ∩ H0(div; Ω) such that
d1u ∈ H0(curl; Ω), i.e. u · n̂ = 0 and (curl u)× n̂ = 0 on ∂Ω with

d0δ1u + δ2d1u = f in Ω.

Unless the domain Ω is simply connected, the above problem is
in general not well posed. Denote by L = dδ + δd , solutions of
the Laplace equation Lu = 0 are called harmonic forms.
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Set of objects which I will refer to as space of differential forms
Λk (Ω) with a basis dxσ for σ ∈ Σk such that for ω ∈ Λk (Ω) and
x ∈ Ω, we have

ωx =
∑
σ∈Σk

ωσ(x)dxσ.

The set Σk is the collection of subsets of k elements of
{1, . . . ,n }. The space Λ0(Ω) is defined to be the space of
smooth functions on Ω.
There is an operator ∧ such that for ω ∈ Λk (Ω) and µ ∈ Λl(Ω),
ω ∧ µ ∈ Λk+l(Ω).
Let dk : Λk (Ω)→ Λk+1(Ω) be a derivative operator with the
property that dk+1 ◦ dk = 0. One may also require that dk

satisfies a Leibnitz rule and that for f ∈ Λ0(Ω), d0f is the
differential of f . Recall that

d0f =
n∑

i=1

∂f
∂xi

(x)dxi .
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Differential forms

A k -form is a quantity that can be integrated over a
k -dimensional region of Rn. Λk (Ω) space of smooth k -forms
Functions are 0-forms, integrated by evaluation.
f (x) dx 1-form on [a,b], dG = ∂G

∂x dx + ∂G
∂y dy + ∂G

∂z dz
associative exterior product : ω ∈ Λj (Ω), η ∈ Λk (Ω), ω ∧ η = (−1)jkη ∧ ω

ω =
∑

σ(1)<...<σ(n)

ωσ(x) dxσ(1) ∧ . . . ∧ dxσ(k), ω ∈ Λk (Ω)

ω ∈ XΛk (Ω), for ωσ(x) ∈ X
exterior derivative d : Λk (Ω)→ Λk+1(Ω), dω =

∑
σ∈Σ(k,n)

∑n
i=1

∂ωσ
∂xi

dxi ∧ dxσ

Koszul : κ : Λk (Ω)→ Λk−1(Ω),
κω =

∑
σ∈Σ(k,n)

∑k
i=1(−1)i+1fσxσ(i) dxσ(1) ∧ . . . ∧ d̂xσ(i) ∧ . . . ∧ dxσ(k)
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Finite element approximations
Differential forms

Hybridization

Proxy fields
Identify 0-forms with scalar valued functions
Identify 1-form

∑n
i=1 fi dxi with the vector with components

fi , i = 1, . . . ,n
For n = 3, identify a 2-form
f1 dx2 ∧ dx3 − f2 dx1 ∧ dx3 + f3 dx1 ∧ dx2 with the vector
(f1, f2, f3) and 3-forms with scalar valued functions.
d on 0-forms is grad, d on 1-forms is curl, d on 2-forms is div
trace of a 2-form on a 2-dimensional face is then identified with
the normal component
trace of a 1-form on an edge is the tangential component of the
proxy vector and its trace on a 2-dimensional face is identified
with u × n
HΛk (Ω) = {ω ∈ L2Λk (Ω), dω ∈ L2Λk+1(Ω) }
H1(Ω), H(div,Ω), H(curl,Ω)
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Define L2Λk (Ω) to be the space of forms ω for which ωσ ∈ L2(Ω)
for all σ ∈ Σk . We take as the base complex

R −→ L2Λ0(Ω)
d−→ L2Λ1(Ω)

d−→ . . .
d−→ L2Λn−1(Ω)

d−→ L2Λn(Ω)→ 0,

and for the domain complex, one may choose

R −→ HΛ0(Ω)
d−→ HΛ1(Ω)

d−→ . . .
d−→ HΛn−1(Ω)

d−→ HΛn(Ω)→ 0,

where

HΛk (Ω) = {ω ∈ L2Λk (Ω),dw ∈ L2Λk+1(Ω) }.
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Now, identifying the unit outward normal vector field n̂ with a one
form n̂[ =

∑n
i=1 n̂i dx i , we have for v ∈ Λk (Ω), a decomposition

v |∂Ω = v tan + n̂[ ∧ vnor,

where the tangential trace v tan ∈ Λk (∂Ω) and the normal trace
vnor ∈ Λk−1(∂Ω).

k proxy field tangential trace normal trace

0 ϕ ∈ C∞(Ω) ϕ|∂Ω 0

1 v ∈ C∞(Ω,R3) v |∂Ω − (v · n̂)n̂ v · n̂
2 w ∈ C∞(Ω,R3) (w · n̂)n̂ w × n̂

3 ψ ∈ C∞(Ω) 0 ψn̂

TABLE – Tangential and normal traces of differential forms on Ω ⊂ R3,
in terms of scalar and vector proxy fields.
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Let ĤΛk ,tan(∂Ω) = { v tan, v ∈ HΛk (Ω) }.

It turns out that there is a duality pairing between ĤΛk ,tan(∂Ω)
and

Ĥ∗Λk ,nor(∂Ω) = { vnor, v ∈ HΛk (Ω) }.
Both are subspaces of H1/2Λk (∂Ω). The following integration by
parts formula holds : For τ ∈ Λk−1(Ω) and v ∈ Λk (Ω)

(dτ, v)Ω = (τ, δv)Ω + 〈τ tan, vnor〉∂Ω,

where δ : Λk−1(Ω)→ Λk (Ω) is the coderivative operator.

Let H∗Λk (Ω) = { v ∈ L2Λk (Ω), δv ∈ L2Λk−1(Ω) }.
Observe that δ is the adjoint of d with domain HΛk−1(Ω).

H∗0Λk (Ω) := { v ∈ H∗Λk (Ω), 〈τ tan, vnor〉∂Ω = 0,∀τ ∈ HΛk−1(Ω) }
= { v ∈ H∗Λk (Ω), vnor = 0 }.
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We define, analogously to the definition of H∗0Λk (Ω)

H0Λk (Ω) := { v ∈ HΛk (Ω), v tan = 0 }.

In summary, for τ ∈ HΛk−1(Ω) and v ∈ H∗Λk (Ω)

(dτ, v)Ω = (τ, δv)Ω + 〈τ tan, vnor〉∂Ω,

The domain complex

R −→ HΛ0(Ω)
d−→ HΛ1(Ω)

d−→ . . .
d−→ HΛn−1(Ω)

d−→ HΛn(Ω)→ 0,

then has a dual complex

0←− H∗0Λ0(Ω)
δ←− H∗0Λ1(Ω)

δ←− . . . δ←− H∗0Λn−1(Ω)
δ←− H∗0Λn(Ω)←− 0,

Let L = dδ + δd . The Hodge Laplace problem consists in finding
u ∈ HΛk (Ω) ∩ H∗0Λk (Ω) such that du ∈ H∗0Λk (Ω), δu ∈ HΛk−1(Ω)
and Lu = f for f ∈ L2Λk (Ω).
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Hybridization

k -forms solutions of Lu = 0 are called harmonic forms and the
space of harmonic forms is denoted Hk . The following problem is
well-posed : find u in the domain of L such that
dδu + δdu = f − PHf and u ⊥ Hk .

In the mixed formulation with p = PHf , σ = δu, the conditions
unor = 0 and (du)nor = 0 are imposed naturally. Find
(σ, u,p) ∈ HΛk−1(Ω)× HΛk (Ω)× Hk such that

(σ, τ)Ω − (u, dτ)Ω = 0, ∀τ ∈ HΛk−1(Ω),
(1a)

(dσ, v)Ω + (du, dv)Ω + (p, v)Ω = (f , v)Ω, ∀v ∈ HΛk (Ω), (1b)

(u,q)Ω = 0, ∀q ∈ Hk . (1c)
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The analogue of finite element spaces are piecewise
polynomials spaces of differential forms V k

h ⊂ HΛk (Ω) which are
required to satisfy an approximation property, a subcomplex
property i.e. dV k

h ⊂ V k+1
h and the existence of bounded

projections πk
h : HΛk (Ω)→ V k

h with some commutativity
property.
One can then define the space of discrete harmonic forms to be

Hk
h = { v ∈ V k

h ,dv = 0, v ⊥ dw ,w ∈ V k+1
h }.

An analogous definition holds at the continuous level as well.
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The mixed formulation is then : find σh ∈ V k−1
h , uh ∈ V k

h , ph ∈ Hk
h

such that

(σh, τh)Ω − (uh, dτh)Ω = 0, ∀τh ∈ V k−1
h ,

(dσh, vh)Ω + (duh, dvh)Ω + (ph, vh)Ω = (f , vh)Ω, ∀vh ∈ V k
h ,

(uh,qh)Ω = 0, ∀qh ∈ Hk
h.

To express the continuity property for V k
h ⊂ HΛk (Ω), we define

the broken spaces

HΛk (Th) :=
∏

K∈Th

HΛk (K ) and H∗Λk (Th) :=
∏

K∈Th

H∗Λk (K ),

with 〈·, ·〉∂Th :=
∑

K∈Th
〈·, ·〉∂K .

We have

HΛk (Ω) =
{

v ∈ HΛk (Th) : 〈v tan, ηnor〉∂Th = 0, ∀η ∈ H∗0Λk+1(Ω)
}
,

H0Λk (Ω) =
{

v ∈ HΛk (Th) : 〈v tan, ηnor〉∂Th = 0, ∀η ∈ H∗Λk+1(Ω)
}
.
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Finite element approximations
Differential forms

Hybridization

The process of hybridization consists in solving local problems in
terms of data which solve a global problem obtained from a
transmission condition on the interfaces ∂Th :=

⊔
K∈Th

∂K .
On each element K ∈ Th, we aim to solve a mixed formulation of
the local problem

dδu + δdu = f − p,u ⊥ Hk (K ).

Put σ = δu and ρ = du. Integration by parts on each element
gives

(σ, τ)K = (δu, τ)K = (u,dτ)K − 〈τ tan, ûnor〉∂K

(ρ, η)K = (du, η)K = (u, δη)K + 〈ûtan, ηnor〉∂K .

From dσ + δρ = f − p, we obtain the weak formulation

(dσ+δρ, v)K = (σ, δv)+(ρ,dv)+〈σ̂tan, vnor〉∂K−〈v tan, ρ̂nor〉∂K = (f−p, v)K
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Given global variables σ̂tan
h and ûtan

h which are traces of forms in
HΛk (Ω), i.e. ûtan

h ∈ V̂ k ,tan
h := {v tan

h : vh ∈ V k
h } and ph ∈ Hk

h, we
seek σh ∈W k−1

h (K ),uh ∈W k
h (K ), ρh ∈W k+1

h (K ) and
approximate traces ûnor

h ∈ Ĥ∗Λk ,nor(∂K ) and
ρ̂nor

h ∈ Ĥ∗Λk+1,nor(∂K ) such that

(σh, τh)K − (uh, dτh)K + 〈τ tan
h , ûnor

h 〉∂K = 0, ∀τh ∈ W k−1
h (K ),

(ρh, ηh)K − (uh, δηh)K − 〈ûtan
h , ηnor

h 〉∂K = 0, ∀ηh ∈ W k+1
h (K ),

(σh, δvh)K + (ρh, dvh)K + 〈σ̂tan
h , vnor

h 〉∂K

− 〈v tan
h , ρ̂nor

h 〉∂K = (f − ph, vh)K , ∀vh ∈ W k
h (K ),

〈σ̂tan
h − σ

tan
h , v̂nor

h 〉∂K = 0, ∀v̂nor
h ∈ Ĥ∗Λk,nor(∂K ),

〈ûtan
h − utan

h , η̂nor
h 〉∂K = 0, ∀η̂nor

h ∈ Ĥ∗Λk,nor(∂K ).

(2nd ) and (5th) give ρh = duh. This, with (4th) can be used in (3rd )
to obtain (dσh, vh)K + (duh, dvh)K − 〈v tan

h , ρ̂nor
h 〉∂K = (f − ph, vh)K .
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However, the problem

(σh, τh)K − (uh, dτh)K + 〈τ tan
h , ûnor

h 〉∂K = 0, ∀τh ∈W k−1
h (K ),

(dσh, vh)K + (duh, dvh)K − 〈v tan
h , ρ̂nor

h 〉∂K = (f − ph, vh)K , ∀vh ∈W k
h (K )

〈σ̂tan
h − σ

tan
h , v̂nor

h 〉∂K = 0, ∀v̂nor
h ∈ Ĥ∗Λk ,nor(∂K ),

〈ûtan
h − utan

h , η̂nor
h 〉∂K = 0, ∀η̂nor

h ∈ Ĥ∗Λk ,nor(∂K ),

is not well-posed. The null space is contained in

{ vh ∈W k
h (K ), v tan

h = 0, (vh,dwh) = 0,∀wh ∈ H0Λk−1(K ) }.

This space is denoted H̊k (K ) in FEEC literature. As it is the
space of harmonic forms for the de Rham complex with
boundary conditions.
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We enforce the condition uh ⊥ H̊k (K ) using a Lagrange
multiplier ph. And introduce a new global unknown uh on each
element K which approximates the projection u of u onto H̊k (K ).
The local problems then read :
Given σ̂tan

h ∈ V̂ k−1,tan
h , ûtan

h ∈ V̂ k ,tan
h , ph ∈ Hk

h and uh ∈ H̊k (K ), find
σh ∈W k−1

h (K ),uh ∈W k
h (K ), ρh ∈W k+1

h (K ), ph ∈ H̊k (K ) and
approximate traces ûnor

h ∈ Ĥ∗Λk ,nor(∂K ) and
ρ̂nor

h ∈ Ĥ∗Λk+1,nor(∂K ) such that

(σh, τh)K − (uh, dτh)K + 〈τ tan
h , ûnor

h 〉∂K = 0, ∀τh ∈ W k−1
h (K ),

(dσh, vh)K + (duh, dvh)K − 〈v tan
h , ρ̂nor

h 〉∂K + (ph, vh) = (f − ph, vh)K , ∀vh ∈ W k
h (K )

〈σ̂tan
h − σ

tan
h , v̂nor

h 〉∂K = 0, ∀v̂nor
h ∈ Ĥ∗Λk,nor(∂K ),

〈ûtan
h − utan

h , η̂nor
h 〉∂K = 0, ∀η̂nor

h ∈ Ĥ∗Λk,nor(∂K ),

(uh, qh)K = (uh, qh) ∀qh ∈ H̊k (K ).
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The local problems are connected by ”transmission conditions”
which are the global equations needed to solve for the global
variables. We require that the normal traces are single-valued.
Define Ŵ k ,nor

h := (Ŵ k ,tan
h )∗. We require ûnor

h ∈ Ŵ k−1,nor
h and

ρ̂nor
h ∈ Ŵ k ,nor

h satisfy

〈ûnor
h , τ̂ tan

h 〉∂Th = 0, ∀τ̂ tan
h ∈ V̂ k−1,tan

h ,

〈ρ̂nor
h , v̂ tan

h 〉∂Th = 0, ∀v̂ tan
h ∈ V̂ k ,tan

h .
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Static condensation

Encode the local variables into xh and the global variables into
yh. [

A BT

B

] [
xh
yh

]
=

[
Fh
Gh

]
.

Then
−BA−1BT yh = Gh − BA−1Fh,

and
xh = A−1Fh − A−1BT yh.
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Hybrid method for the vector Poisson equation

On a contractible domain.

(σh, τh)Th − (uh, grad τh)Th + 〈ûnor
h , τh〉∂Th = 0, ∀τh ∈ W 0

h ,

(gradσh, vh)Th + (curl uh, curl vh)Th − 〈ρ̂
nor
h , vh〉∂Th = (f , vh)Th , ∀vh ∈ W 1

h ,

〈σ̂tan
h − σh, v̂nor

h 〉∂Th = 0, ∀v̂nor
h ∈ Ŵ 0,nor

h ,

〈ûtan
h − uh, η̂

nor
h 〉∂Th = 0, ∀η̂nor

h ∈ Ŵ 1,nor
h ,

〈ûnor
h , τ̂ tan

h 〉∂Th = 0, ∀τ̂ tan
h ∈ V̂ 0,tan

h ,

〈ρ̂nor
h , v̂ tan

h 〉∂Th = 0, ∀v̂ tan
h ∈ V̂ 1,tan

h .
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