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Abstract We analyze the convergence of an iterative method for solving the
nonlinear system resulting from a natural discretization of the Monge-Ampère
equation with smooth approximations. We make the assumption, supported
by numerical experiments for the two dimensional problem, that the discrete
problem has a convex solution. The method we analyze is the discrete ver-
sion of Newton’s method in the vanishing moment methodology. Numerical
experiments are given in the framework of the spline element method.
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1 Introduction

This paper addresses the numerical solution of the Dirichlet problem for the
Monge-Ampère equation

detD2u = f inΩ, u = g on ∂Ω. (1)

Here D2u =

(
(∂2u)/(∂xi∂xj)

)
i,j=1,...,n

is the Hessian of u and f, g are given

functions with f ≥ c0 > 0 for a constant c0. The domain Ω ⊂ Rn, n = 2, 3
is assumed to be bounded and convex with a polygonal boundary and ∂Ω
denotes its boundary.
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Let Vh denote a finite dimensional space of C1 functions which are piecewise
polynomials of degree d at least 2, and let us assume that f ∈ L1(Ω). We
consider the discrete problem: find uh ∈ Vh such that∫

Ω

vh detD2uh dx =

∫
Ω

fvh dx,∀vh ∈ Vh ∩H1
0 (Ω)

uh = ghon ∂Ω,

(2)

where gh is the natural interpolant in Vh of a smooth extension of g. In this
paper, we make the assumption that (2) has a strictly convex solution uh.
We analyze the convergence of the following iterative method. Given an initial
guess u0h ∈ Vh with u0h = gh on ∂Ω, find uk+1

h ∈ Vh such that uk+1
h = gh on ∂Ω

and such that for ε > 0 we have ∀vh ∈ Vh ∩H1
0 (Ω)

ε

∫
Ω

∆uk+1
h ∆vh dx+

∫
Ω

[(cof D2ukh)Duk+1
h ] ·Dvh dx = −

∫
Ω

fvh dx

+ ε3
∫
∂Ω

∂vh
∂n∂Ω

ds+
n− 1

n

∫
Ω

[(cof D2ukh)Dukh] ·Dvh dx.
(3)

We use the notation Dv to denote the gradient vector of the function v and
recall that cof A denotes the matrix of cofactors of the matrix A. The main
difficulties of the numerical resolution of (1) is that when it does not have a
smooth solution, Newton’s method (i.e. (3) with ε = 0) breaks down.

In [5] we show that (2) is well defined and has a strictly convex solution
when (1) has a smooth strictly convex solution. Less restrictive conditions
under which (2) has a strictly convex solution are addressed in [6] in the
framework of the Aleksandrov theory of the Monge-Ampère equation. The
assumption of existence of a strictly convex solution of (2) is supported in this
paper by numerical experiments in two dimension. We prove the convergence
of the iterations (3) to a limit uε,h which solves a discrete variational problem.
With that result, one may prove a quadratic convergence rate for (3) as an
iterative method converging to uε,h, using for example the techniques of [5].
That issue is not addressed in this paper since (3) is not a direct method for
solving (2).

For C1 conforming approximations, we use the spline element method [2,
8,9,13,37,3]. It uses piecewise polynomials of arbitrary degree and Lagrange
multipliers to enforce continuity and smoothness conditions as well as con-
straints. However, unlike other methods which also use Lagrange multipliers,
the constraints here are enforced exactly. More details are given in Section 4.1.
An alternative to the spline element method is the Argyris finite element for
the two dimensional problem or concepts from isogeometric analysis [50]. The
study of C1 conforming approximations provides a natural setting for presen-
ting techniques for proving results on the numerical analysis of Monge-Ampère
equations. These techniques may be extended to the setting of isogeometric
analysis, mixed finite elements, Lagrange elements or the standard finite dif-
ference method.



Methods for Monge-Ampère equation 3

1.1 Relation with other work

The first rigorous treatment of the numerical resolution of the Monge-Ampère
equation was given in [46]. See also the references therein for some heuristic
arguments previously proposed for the balance equation of dynamic meteo-
rology, a Monge-Ampère type equation. The work of Oliker and Prussner in
[46] is based on the notion of weak solution of (1) in the sense of Aleksan-
drov. Dean and Glowinski [23–25,34] suggested that the numerical resolution
of (1), for the notion of weak solution in the viscosity sense, can be approached
through standard discretizations of the finite element or finite difference type.
It is known [35] that the notions of viscosity and Aleksandrov solutions of
(1) are equivalent for f > 0 and continuous on Ω. The analysis of numerical
methods for (1) under the assumption that the solution is smooth was first
initiated in [17,15,18,19]. In particular, Böhmer analyzed the discretization
(2). Böhmer proved the quadratic convergence of Newton’s method for solving
(2), [15, Theorem 9.1] and his method has been implemented only recently
[22]. Oberman in [45] constructed finite difference schemes which satisfy the
conditions of monotonicity, stability and consistency of convergence of nume-
rical schemes to viscosity solutions. His approach through viscosity solutions
was later generalized in [31,33]. Feng and Neilan proposed the notion of vani-
shing moment methodology [27,29,30,41]. The latter has been recently shown
to be valid for strictly convex radial viscosity solutions [26]. The formal limit
of the vanishing moment methodology turns out, in the case of the Monge-
Ampère equation, to be the method recently proposed by Lakkis and Pryer in
[39]. Neilan analyzed the method of Lakkis and Pryer for the two-dimensional
problem under the assumption that the solution is smooth in [42]. Awanou
and Li provided a unified analysis for both dimensions from a different point
of view in [10]. Several other numerical methods for (1) have been proposed,
e.g. by Mohammadi [40] and by Zheligovsky et al [51].

In [5,1,6,4] we started the study of the numerical resolution of (1) from
the point of view of compatible discretizations. Our point of view is that,
after regularization of the data, the discretization of (1) leads to a sequence of
discrete problems, the solution of which are discrete strictly convex functions in
a sense that has to be defined for each type of discretization. For (2), the notion
of convexity used in [5] is the usual notion of convexity while in [1] we required
the approximations to be piecewise strictly convex. For another example, in
[4] for the (non monotone) standard finite discretization, we required a certain
discrete Hessian to be positive definite. Our approach is detailed in [6] and
is based on the notion of Aleksandrov solution of (1), the characterization of
Aleksandrov solution based on approximation by smooth functions [49], and
the technique of considering a smooth uniformly convex exhaustion of the
domain. The conclusion is that for the numerical analysis of robust methods
for (1), one only needs to understand how the methods perform when (1) is
assumed to have a smooth strictly convex solution.

To the best of our knowledge the theoretical convergence, even for smooth
solutions, of the methods proposed by Dean and Glowinski, Mohammadi, and
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Zheligovsky, is not understood. It is also not known whether the vanishing
moment methodology approach is valid for non radial viscosity solutions of
(1). We propose to analyze these methods from the new point of view we
embraced in [5,1,6,4]. The goal is thus to understand how these methods
perform when (1) is assumed to have a strictly convex smooth solution. There
are several motivations for pursuing this line of investigation. For example,
the method of Mohammadi is known to be robust even when the right hand
side f is not positive. The vanishing moment methodology allows to use a
Newton type iterative method for the resolution of (2). Although this feature
is shared with the mixed method approach, a complete understanding of the
vanishing moment methodology could lead to the development of even more
robust algorithms. We recall that the vanishing moment methodology consists
in the singular perturbation problem

−ε∆2uε + det D2uε = f, in Ω, uε = g, ∆uε = ε2 on ∂Ω, ε > 0. (4)

In [27,29,30,41], it was assumed that if f > 0, (4) has a unique strictly convex
solution uε and uε converges uniformly on Ω to the unique convex viscosity
solution of (1). Moreover, it was assumed that

||uε||j = O(ε−
j−1
2 ), j = 2, 3; ||uε||2,∞ = O(ε−1)

|| cof D2uε||∞ = O(ε−1); ||(D2uε)i,j ||0 = O(ε−
1
2 ), i, j = 1, . . . , n.

(5)

In (5), we used standard Sobolev norms notation recalled in section 2. We
recall that the above assumptions were proved for radial solutions in [26]. As
a consequence of these assumptions, the problem: find uε,h ∈ Vh such that
uε,h = gh on ∂Ω and for all vh ∈ Vh ∩H1

0 (Ω),

ε

∫
Ω

∆uε,h∆vh dx−
∫
Ω

(detD2uε,h)vh dx = −
∫
Ω

fvh dx+ ε3
∫
∂Ω

∂vh
∂n∂Ω

ds,

(6)

can be shown to be well posed and error estimates were derived. Feng and
Neilan mentioned the convexity of uε,h as a major open problem, [28, Remark
3.2].

It is not very difficult to see that if one replaces the nonlinear operator
det in (4) by the Laplace operator, one obtains a singular perturbation prob-
lem similar to the one analyzed in [44]. It is therefore reasonable to expect
that the techniques in [44] can be extended to the vanishing moment metho-
dology. Since the ultimate goal of the methodology is to produce numerical
approximations for (1), we analyze in this paper directly the iterative method
(3) which is Newton’s method applied to problem (6). It turns out that at
the discrete level the strategies used in [44, Lemma 5.1] take a simpler form.
We wish to address the proof of the assumptions made in [27,29,30,41] in
the framework of the Aleksandrov theory of the Monge-Ampère equation [6],
taking into account the above remarks, in a separate work.

The contributions of this paper are therefore
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– the validation of the vanishing moment methodology for the numerical
resolution of (1), an issue which has been open for more than 7 years, if
one takes into account the work in [6]. It validates the method for smooth
not necessarily radial solutions if one takes only into account the work in
[5] or alternatively the work of Böhmer [15]

– the convexity of the numerical solution in the vanishing moment methodo-
logy is established

– an increase in the understanding of numerical methods for Monge-Ampère
type equations. In particular this paper links the vanishing moment me-
thodology to the unifying point of view presented in [5,1,6,4].

The interested reader may recover, using the strategies of this paper, the results
of [29] from the ones in [42,10]. The analysis for non smooth solutions of the
mixed methods discussed in [39,43,10] will be discussed in [7].

1.2 Organization of the paper

The paper is organized as follows: in the second section, we introduce some
notation and give some preliminary results. In section 3 we prove the conver-
gence of Newton’s method in the vanishing moment methodology. The last
section is devoted to numerical experiments.

2 Notation and Preliminaries

We use the usual notation Lp(Ω), 1 ≤ p ≤ ∞ for the Lebesgue spaces and
W k,p(Ω) for the Sobolev spaces with norms ||.||k,p and semi-norm |.|k,p. In
particular, Hk(Ω) = W k,2(Ω) and in this case, the norm and semi-norms will
be denoted respectively by ||.||k and |.|k. For two n×n matrices A,B, we recall
the Frobenius inner product A : B =

∑n
i,j=1AijBij , where Aij and Bij refer

to the entries of the corresponding matrices. For a matrix field A, we denote
by divA the vector obtained by taking the divergence of each row. We will use
the notation

||A||∞ := max
i,j
|aij |,

for a matrix A = (aij)i,j=1,...,n and denote by n∂Ω the unit outward normal
vector to ∂Ω. We make the usual convention of denoting constants by C. Our
results hold for h sufficiently small. We will thus state them for h ≤ h0 ≤ 1
where h0 is a constant which may change from occurrences.

We require our approximation spaces Vh to satisfy the following property:
there exists an interpolation operator Ih mapping W l+1,p(Ω) into the space
Vh for 1 ≤ p ≤ ∞, 0 ≤ l ≤ d such that

||v − Ihv||k,p ≤ Chl+1−k||v||l+1,p, (7)

for 0 ≤ k ≤ l and the inverse estimates

||v||s,p ≤ Chl−s+min(0,np−
n
q )||v||l,q,∀v ∈ Vh, (8)
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and for 0 ≤ l ≤ s, 1 ≤ p, q ≤ ∞.
The above assumptions are known to be satisfied for standard finite element

spaces [20]. For the spline spaces used in the computations, (7) is known to
hold [38]. One may view (8) as a consequence of Markov inequality, [38, p. 2],
and [16, section 4.2.6] for details.

It follows from (7) that

||Ihv||k,p ≤ C||v||k,p,

for 1 ≤ p ≤ ∞ and 0 ≤ k ≤ d.
We will need the following lemma whose proof can be found in [5].

Lemma 1 We have

detD2v =
1

n
(cof D2v) : D2v =

1

n
div
(
(cof D2v)Dv

)
.

And for F (v) = detD2v we have

F ′(v)(w) = (cof D2v) : D2w = div
(
(cof D2v)Dw

)
,

for v, w sufficiently smooth.

Let us denote by λ1(D2v) and λn(D2v) the smallest and largest eigenvalues re-
spectively of D2v, for v piecewise smooth. We make in this paper the following
assumption

Assumption 1 We assume that (2) has a strictly convex solution uh with 0 <
2C0 ≤ λ1(D2uh) ≤ λn(D2uh) ≤ C00/2 for constants C0 and C00 independent
of h.

We define for ρ > 0

Bρ(uh) = { vh ∈ Vh, ||vh − uh||1 ≤ ρ },

and we have

Lemma 2 Under Assumption 1, there exists a constant Cconv such that for
ρ ≤ Cconvh

1+n/2 and for vh ∈ Bρ(uh), vh is strictly convex with λ1(D2vh) ≥
C0.

Proof By the continuity of the eigenvalues of a (symmetric) matrix as a func-
tion of its entries, [48] Appendix K, or [36], there exists δ > 0 such that for
|vh − uh|2,∞ ≤ δ we have |λ1(D2vh(x))− λ1(D2uh(x))| < C0 for all x ∈ Ω.

By the inverse estimate (8), we have |vh−uh|2,∞ ≤ Cinvh−1−n/2||vh−uh||1.
Thus taking Cconv = δ/(2Cinv) we obtain for ||vh − uh||1 ≤ Cconvh

1+n/2, we
get for all x ∈ Ω, |λ1(D2vh(x)) ≥ λ1(D2uh(x))−C0 ≥ C0. Since vh is piecewise
convex and vh ∈ C1(Ω), vh is convex, [21, section 5]. This completes the proof.

Arguing as in the proof of Lemma 2, one shows that if the exact smooth
solution u of (1) is strictly convex, i.e. for f ≥ c0 > 0, then Ihu is also strictly
convex and the solution uh of (2) is also strictly convex. See [5] for details.
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3 Convergence of the discrete vanishing moment methodology

In this section, we make the assumption that

ρ ≤ Cconvh1+n/2.

By Lemma 1, we have for wh ∈ Bρ(uh) and vh ∈ Vh ∩H1
0 (Ω),∫

Ω

[(cof D2wh)Dwh] ·Dvh dx = −
∫
Ω

div[(cof D2wh)Dwh]vh dx

= −n
∫
Ω

(detD2wh)vh dx.

(9)

Thus, we can rewrite (3) as

ε

∫
Ω

∆uk+1
h ∆vh dx+

∫
Ω

[(cof D2ukh)Duk+1
h ] ·Dvh dx = ε3

∫
∂Ω

∂vh
∂n∂Ω

ds

+

∫
Ω

pkhvh dx,

(10)

for all vh ∈ Vh ∩H1
0 (Ω) with

pkh = −f − (n− 1) detD2ukh.

Given ukh ∈ Bρ(uh), with ukh = gh on ∂Ω, let ûk+1
h satisfy ûk+1

h = gh on
∂Ω and for all vh ∈ Vh ∩H1

0 (Ω),∫
Ω

[(cof D2ukh)Dûk+1
h ] ·Dvh dx =

∫
Ω

pkhvh dx. (11)

We note that since ukh is strictly convex, the existence of ûk+1
h follows from

the Lax-Milgram lemma. The following theorem identifies ûk+1
h as the result

of one step of Newton’s method applied to (2) starting with ukh.

Theorem 1 Given ukh ∈ Bρ(uh), ρ ≤ Cconvh
1+n/2, the solution ûk+1

h of (11)
solves∫

Ω

[div((cof D2ukh)D(ûk+1
h − ukh)]vh dx = −

∫
Ω

(detD2ukh − f)vh dx

ûk+1
h = ghon ∂Ω,

(12)

∀vh ∈ Vh ∩H1
0 (Ω). Moreover there exists h0 ≤ 1 such that for h ≤ h0

||ûk+1
h − uh||1 ≤ C||ukh − uh||21. (13)
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Proof The result follows from integration by parts and taking into account (9).
Explicitly, using the expression of the Fréchet derivative of the determinant of
Lemma 1, we obtain (12) as one step of Newton’s method applied to (2). We
then obtain by an integration by parts

−
∫
Ω

[(cof D2ukh)Dûk+1
h ] ·Dvh dx+

∫
Ω

[(cof D2ukh)Dukh] ·Dvh dx

= −
∫
Ω

(detD2ukh − f)vh dx.

By (9), we obtain

−
∫
Ω

[(cof D2ukh)Dûk+1
h ] ·Dvh dx− n

∫
Ω

(detD2ukh)vh dx

= −
∫
Ω

(detD2ukh − f)vh dx,

from which (11) follows.
The inequality (13) is nothing but a consequence of a Newton’s step for

C1 conforming approximations of the Monge-Ampère equation. The quadratic
convergence rate of Newton’s method follows for example from [15, Theorem
9.1]. For the two dimensional problem, (13) can also be inferred from [43].

Remark 1 In a more general setting, we analyzed in [5] the pseudo-transient
iterative method, one step of which, starting with ukh, is given by

−ν
∫
Ω

(Dûk+1
h −Dukh) ·Dvh dx

+

∫
Ω

[div((cof D2ukh)D(ûk+1
h − ukh)]vh dx = −

∫
Ω

(detD2ukh − f)vh dx

ûk+1
h = ghon ∂Ω,

for ν ≥ 0. For ν = 0, we recover one step of Newton’s method, the quadratic
convergence rate of which follows from [5, 3.10]. See [5, Remark 3.2]. In both
cases discussed above, the rate of convergence is mesh dependent. In particular,
[5, Remark 3.3], we have

||ûk+1
h − uh||1 ≤ Cnewtonh−1−

n
2 ||ukh − uh||21. (14)

We will use (14) in the remaining part of this paper.

We define

a = min

{
Cconv,

1

2Cnewton

}
.

Corollary 1 There exists a constant C1 < 1 such that given ukh ∈ Bρ(uh), ρ ≤
a h1+n/2, we have for h ≤ h0 for a constant h0 ≤ 1

||ûk+1
h − uh||1 ≤ C1||ukh − uh||1. (15)
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Proof From (14), we obtain

||ûk+1
h − uh||1 ≤ Cnewtonh−1−

n
2 ||ukh − uh||21

≤ Cnewtonh−1−
n
2 ρ ||ukh − uh||1

≤ 1

2
||ukh − uh||1,

and we obtain the result.

Lemma 3 There exists h0 ≤ 1 such that for h ≤ h0, ukh ∈ Bρ(uh) and ρ ≤
a h1+n/2 we have

||uk+1
h − ûk+1

h ||1 ≤ C3h
−1ε3 + C4εh

−2(ρ+ ||uh||1), (16)

for positive constants C3 and C4. Moreover, for ε satisfying

ε ≤ min

{(
(1− C1)hρ

3C3

) 1
3

,
(1− C1)h2

3C4
,

(1− C1)h2ρ

3C4||uh||1

}
, (17)

we have
||ûk+1

h − uk+1
h ||1 ≤ (1− C1)ρ. (18)

Proof We view this step as a correction of a Newton step with the regulariza-
tion. Substituting (11) into (10), we obtain

ε

∫
Ω

(∆uk+1
h −∆ûk+1

h )∆vh dx+

∫
Ω

[(cof D2ukh)D(uk+1
h − ûk+1

h )] ·Dvh dx

= ε3
∫
∂Ω

∂vh
∂n∂Ω

ds− ε
∫
Ω

∆ûk+1
h ∆vh dx.

Substituting vh = uk+1
h − ûk+1

h in the above equation, and using the strict
convexity of ukh, we obtain using a trace estimate and inverse inequalities

ε||∆(uk+1
h − ûk+1

h )||20 + C2|uk+1
h − ûk+1

h |21 ≤ Cε3
(∫

∂Ω

∣∣∣∣ ∂vh∂n∂Ω

∣∣∣∣2 ds) 1
2

+ ε||∆ûk+1
h ||0||∆vh||0

≤ Cε3||vh||2 + Cε||∆ûk+1
h ||0||∆vh||0

≤ Ch−1ε3||vh||1
+ Cεh−2||ûk+1

h ||1||vh||1.

We conclude that

||uk+1
h − ûk+1

h ||1 ≤ C3h
−1ε3 + C4εh

−2(ρ+ ||uh||1).

We obtain (18) if we choose ε such that (17) is satisfied.

We can now state the main result of this paper.
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Theorem 2 There exists h0 ≤ 1 such that the sequence ukh defined by (3)
converges to the solution uh of (2) as k → ∞ and ε → 0, for h ≤ h0 and an
initial guess u0h ∈ Bρ(uh), ρ ≤ a h1+n/2. Moreover, as k →∞, the sequence ukh
converges to the unique convex solution uε,h of (6) in Bρ(uh) for ε satisfying
condition (17). We also have ||uε,h − uh||1 → 0 as ε→ 0.

Proof By (15) and (18) we have

||uk+1
h − uh||1 ≤ ||ûk+1

h − uk+1
h ||1 + ||ûk+1

h − uh||1 ≤ (ρ− C1ρ) + C1ρ ≤ ρ.

We conclude that given an initial guess u0h in Bρ(uh), we have ukh ∈ Bρ(uh) for
all k. Therefore, there exists a subsequence, which is also denoted ukh, which
converges to an element uε,h of Bρ(uh). By Lemma 2, uε,h ∈ Vh is a convex
function.

We first show that uε,h = gh on ∂Ω and for all vh ∈ Vh ∩H1
0 (Ω), (6) holds,

i.e.

ε

∫
Ω

∆uε,h∆vh dx−
∫
Ω

(detD2uε,h)vh dx = −
∫
Ω

fvh dx+ ε3
∫
∂Ω

∂vh
∂n∂Ω

ds.

We then prove that the above problem has a unique solution in Bρ(uh). There-
fore the whole sequence ukh must converge to uε,h. Finally we prove the con-
vergence of ukh to uh as k → ∞ and ε → 0 and the convergence of uε,h to uh
as ε→ 0.

Step 1: Passage to the limit in (3). By an inverse estimate or the equiva-
lence of norms in a finite dimensional space, the sequence ukh is also bounded
in W 2,n(Ω) and hence converges (up to a subsequence) in W 2,n(Ω) to a limit
uε,h. Passing in the limit in (3), we obtain (6) as follows. For vh ∈ Vh∩H1

0 (Ω),
we have ∣∣∣∣ ∫

Ω

(∆uε,h −∆uk+1
h )∆vh dx

∣∣∣∣ ≤ ||∆uε,h −∆uk+1
h ||0||∆vh||0

≤ C||uε,h − uk+1
h ||2||vh||2

→ 0 as k →∞.

Put

A1 =

∫
Ω

[(cof D2ukh − cof D2uε,h)Duk+1
h ] ·Dvh dx,

and

A2 =

∫
Ω

[(cof D2uε,h)(Duk+1
h −Duε,h)] ·Dvh dx.

We have by Cauchy-Schwarz inequality and the inverse estimate (8)

|A2| ≤ C||uε,h||n−12,∞ ||u
k+1
h − uε,h||1||vh||1

≤ Ch−(n−1)(2+n
2 )||uε,h||2||uk+1

h − uε,h||1||vh||1
→ 0 as k →∞.
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Let us denote by (cof)′ the Fréchet derivative of the mapping A→ cof A. Since
(cof)′(A)(B) is the sum of terms which are products of n − 2 components of
A and is linear in the components of B, we have

||(cof)′(D2v)(D2w)||0,∞ ≤ C||D2v||n−22,∞ ||D2w||2,∞.

It follows that

|A1| ≤ C
∑
K∈Th

||ukh − uε,h||2,∞||uk+1
h ||1,K ||vh||1,K

≤ C||ukh − uε,h||2,∞||uk+1
h ||1||vh||1

≤ Ch−(2+n
2 )||ukh − uε,h||2||uk+1

h ||1||vh||1
→ 0 as k →∞,

since the convergent sequence ||uk+1
h ||1 is bounded. Finally∣∣∣∣ ∫

Ω

[(cof D2ukh)Duk+1
h ] ·Dvh dx−

∫
Ω

[(cof D2uε,h)Duε,h] ·Dvh dx
∣∣∣∣ = |A1 +A2|

→ 0 as k →∞.

Passing in the limit in (3), we have

ε

∫
Ω

∆uε,h∆vh dx+

∫
Ω

[(cof D2uε,h)Duε,h] ·Dvh dx = −
∫
Ω

fvh dx

+ ε3
∫
∂Ω

∂vh
∂n∂Ω

ds+
n− 1

n

∫
Ω

[(cof D2uε,h)Duε,h] ·Dvh dx.

By (9) we obtain (6).
Step 2: Pointwise convergence of boundary data. Since uk+1

h = gh on ∂Ω,

it follows that uk+1
h is bounded on ∂Ω. Passing to a subsequence, we conclude

that uε,h = gh on ∂Ω as well.
Step 3: Unicity of the solution of (6) in Bρ(uh). By Assumption 1 and

Lemma 2, for vh ∈ Bρ(uh), ρ ≤ Cconvh
1+n/2, we have λ1(D2vh) ≥ C0. Again,

by the continuity of the eigenvalues of a matrix as a function of its entries, we
have, if necessary by taking h smaller, |λn(D2vh(x))− λn(D2uh(x))| < C00/2
for all x ∈ Ω. It follows that λn(D2vh) ≤ C00. Using the definition of λ1(D2vh)
and λn(D2vh) through the Rayleigh quotient [5], we get for each element K
and w ∈ H1(K)

C0|w|21,K ≤
∫
K

[(cof D2vh(x))Dw(x)] ·Dw(x) dx ≤ C00|w|21,K . (19)

We recall that the constants C0 and C00 are independent of h. Let uε,h and vε,h
be two solutions of (6) in Bρ(uh). For all t ∈ [0, 1], tuε,h+(1− t)vε,h ∈ Bρ(uh).
Thus with wh = uε,h − vε,h, we obtain

ε||∆wh||20 −
∫
Ω

(detD2uε,h − detD2vε,h)wh dx = 0.
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Thus by the mean value theorem, we have for some t ∈ [0, 1]

ε||∆wh||20 −
∫
Ω

[div((cof(tD2uε,h + (1− t)D2vε,h))Dwh(x))] ·Dwh(x) dx = 0

ε||∆wh||20 +

∫
Ω

[cof(tD2uε,h + (1− t)D2vε,h)Dwh(x)] ·Dwh(x) dx = 0.

Using (19), we obtain

0 = ε||∆wh||20 +

∫
Ω

[(cof D2wh(x))Dwh(x)] ·Dwh(x) dx

≥ ε||∆wh||20 + C0|wh|21.

Thus |wh|1 = 0 and since wh = 0 on ∂Ω, we obtain wh = 0, the uniqueness of
the discrete solution and the proof of the claim.

Since (6) has a unique solution in Bρ(uh), we conclude that the whole
sequence defined by (3) converges to the unique local solution of (6).

Step 4: Convergence of ukh to uh as k → ∞ and ε → 0 and of uε,h to uh
as ε→ 0. We have by (15) and (16)

||uk+1
h − uh||1 ≤ ||ûk+1

h − uk+1
h ||1 + ||ûk+1

h − uh||1
≤ C3h

−1ε3 + C4εh
−2(ρ+ ||uh||1) + C1||ukh − uh||1.

(20)

Taking the limit as ε→ 0, we obtain

||uk+1
h − uh||1 ≤ C1||ukh − uh||1,

and we recall that C1 < 1. It follows that ukh converges to uh as k → ∞ and
ε→ 0. Finally, since by definition ||ukh−uε,h||1 → 0 as k →∞, we obtain from
(20)

||uε,h − uh||1 ≤ C3h
−1ε3 + C4εh

−2(ρ+ ||uh||1) + C1||uε,h − uh||1.

It follows that ||uε,h − uh||1 ≤ 1/(1−C1)(C3h
−1ε3 +C4εh

−2(ρ+ ||uh||1)) and
we conclude that ||uε,h − uh||1 → 0 as ε→ 0. This completes the proof.

Remark 2 The convexity of the solution of the discrete variational problem
obtained in the vanishing moment methodology, namely (6), has long been an
open problem, [28, Remark 3.2].

4 Numerical results

The iterative method (3) depends on a parameter ε which has to be carefully
chosen. It takes about 5 iterations to converge. As an alternative to (3), we
present numerical results for a parameter independent iterative method. The
latter is delicate to analyze and one can only expect a linear convergence rate.
The numerical results are presented in order to illustrate some open problems
in the numerical resolution of Monge-Ampère equations.
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4.1 Spline element method

The spline element method has been described in [2,8,9,13,37] under dif-
ferent names and more recently in [3]. It can be described as a conforming
discretization implementation with Lagrange multipliers. We first outline the
main steps of the method, discuss its advantages and possible disadvantages.
We then give more details of this approach but refer to the above references
for explicit formulas.

First, start with a representation of a piecewise discontinuous polynomial
as a vector in RN , for some integer N > 0. Then express boundary condi-
tions and constraints including global continuity or smoothness conditions as
linear relations. In our work, we use the Bernstein basis representation, [2,3]
which is very convenient to express smoothness conditions and very popular in
computer aided geometric design. Hence the term “spline” in the name of the
method. Splines are piecewise polynomials with smoothness properties. One
then writes a discrete version of the equation along with a discrete version of
the spaces of trial and test functions. The boundary conditions and constraints
are enforced using Lagrange multipliers. We are lead to saddle point problems
which are solved by an augmented Lagrangian algorithm (sequences of linear
equations with size N × N). The approach here should be contrasted with
other approaches where Lagrange multipliers are introduced before discretiza-
tion, i.e. the approach in [12] or the discontinuous Galerkin methods.

The spline element method, stands out as a robust, flexible, efficient and
accurate method. It can be applied to a wide range of PDEs in science and
engineering in both two and three dimensions; constraints and smoothness are
enforced exactly and there is no need to implement basis functions with the
required properties; it is particularly suitable for fourth order PDEs; no inf-sup
condition is needed for the approximation of Lagrange multipliers which arise
due to the constraints, e.g. the pressure term in the Navier-Stokes equations;
one gets in a single implementation approximations of variable order. Other
advantages of the method include the flexibility of using polynomials of differ-
ent degrees on different elements [37], the facility of implementing boundary
conditions and the simplicity of a posteriori error estimates since the method
is conforming for many problems. A possible disadvantage of this approach
is the high number of degrees of freedom and the need to solve saddle point
problems.

For illustration, we consider a general variational problem: Find u ∈ W
such that

a(u, v) = 〈l, v〉 for all v ∈ V,

where W and V are respectively the space of trial and test functions. We will
assume that the form l is bounded and linear and a is a continuous mapping
in some sense on W × V which is linear in the argument v.

Let Wh and Vh be conforming subspaces of W and V respectively. We can
write

Wh = {c ∈ RN , Rc = G}, Vh = {c ∈ RN , Rc = 0},
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for a suitable vector G and a suitable matrix R which encodes the constraints
on the solution, e.g. smoothness and boundary conditions.

The condition a(u, v) = 〈l, v〉 for all v ∈ V translates to

K(c)d = LT d ∀d ∈ Vh, that is for all d with Rd = 0,

for a suitable matrix K(c) which depends on c and L is a vector of coefficients
associated to the linear form l. If for example 〈l, v〉 =

∫
Ω
fv, then LT d =

dTMF where M is a mass matrix and F a vector of coefficients associated to
the spline interpolant of f . In the linear case K(c) can be written cTK.

Introducing a Lagrange multiplier λ, the functional

K(c)d− LT d+ λTRd,

vanishes identically on Vh. The stronger condition

K(c) + λTR = LT ,

along with the side condition Rc = G form the discrete equations to be solved.

By a slight abuse of notation, after linearization by Newton’s method, the
above nonlinear equation leads to solving systems of type

cTK + λTR = LT .

The approximation c of u ∈ W is thus a limit of a sequence of solutions of
systems of type [

KT RT

R 0

] [
c
λ

]
=

[
L
G

]
.

It is therefore enough to consider the linear case. If we assume for simplicity
that V = W and that the form a is bilinear, symmetric, continuous and V -
elliptic, existence of a discrete solution follows from Lax-Milgram lemma. On
the other hand, the ellipticity assures uniqueness of the component c which can
be retrieved by a least squares solution of the above system [2]. The Lagrange
multiplier λ may not be unique. To avoid systems of large size, a variant of the
augmented Lagrangian algorithm is used. For this, we consider the sequence
of problems (

KT RT

R −µM

)[
c(l+1)

λ(l+1)

]
=

[
L

G− µMλ(l)

]
,

where λ(0) is a suitable initial guess for example λ(0) = 0, M is a suitable
matrix and µ > 0 is a small parameter taken in practice in the order of 10−5.
It is possible to solve for c(l+1) in terms of c(l). A uniform convergence rate in
µ for this algorithm was shown in [11].
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4.2 Subharmonicity preserving iterations

We also give numerical results for the following iterative method. Given an
initial guess u0h ∈ Vh with u0h = gh on ∂Ω, find uk+1

h ∈ Vh such that uk+1
h = gh

on ∂Ω and ∀vh ∈ Vh ∩H1
0 (Ω)∫

Ω

Duk+1
h ·Dvh dx = −

∫
Ω

((∆ukh)n + nn(f − detD2ukh))
1
n vh dx. (21)

The iterative method (21) is the discrete analogue of the iterative method

∆uk+1 = ((∆uk)n + nn(f − detD2uk))
1
n inΩ, uk+1 = g on ∂Ω. (22)

Since

detD2uk ≤ 1

nn
(∆uk)n, (23)

it follows from (22) that ∆uk+1 ≥ 0. Hence, starting with an initial guess u0

with ∆u0 ≥ 0, (22) preserves subharmonicity. At the formal limit, detD2u =
f ≥ 0. Thus convexity is enforced for the two dimensional problem (at the
continuous level). The iterative method (22) generalizes the method

∆uk+1 = ((∆uk)2 + 2(f − detD2uk))
1
2 inΩ, uk+1 = g on ∂Ω. (24)

proposed in [14]. In [31,32], the following generalization was proposed

∆uk+1 = ((∆uk)n + n!(f − detD2uk))
1
2 inΩ, uk+1 = g on ∂Ω. (25)

It is clear that (22) and (25) are different. Moreover, (22) is better since (25)
may not converge for a class of smooth functions as we now show. For n > 2,
the method (25) can only converge for solutions of (1) which also satisfies
(∆u)2 = (∆u)n. Thus even for smooth solutions, the generalization we propose
is better.

Let a be such that 0 < a ≤ nn. Then by (23), we have

adetD2v ≤ (∆v)n,

and we can equally consider the iterative method

∆uk+1 = ((∆uk)n + a(f − detD2uk))
1
n ,

For n = 2 and a = 2 we get the one used in [14]. It will be referred to as the
BFO iterative method.

In three dimension, we can also consider

∆uk+1 = ((∆uk)3 + 9(f − detD2uk))
1
3 , (26)

corresponding to a = 9.
However, the formulation (22), which shall henceforth be referred to as na-

tural iterative method, appears to be better and this is supported numerically
by a 2D example.



16 Gerard Awanou

h nit L2 norm rate H1 norm rate
1/21 35 1.3558 10−5 1.1212 10−4

1/22 36 9.2704 10−7 3.87 5.5654 10−6 4.33
1/23 35 5.8359 10−8 3.99 3.0329 10−7 4.20
1/24 35 3.6861 10−9 3.98 1.8180 10−8 4.06

Table 1 BFO iterative method (24) for Test 1, Lagrange elements d = 5

h nit L2 norm rate H1 norm rate
1/21 14 3.4383 10−6 8.8363 10−5

1/22 17 1.1022 10−7 4.96 3.1305 10−6 4.82
1/23 18 7.5096 10−9 3.87 1.0762 10−7 4.86
1/24 18 4.9561 10−10 3.92 4.1682 10−9 4.69

Table 2 Natural iterative method (22) for Test 1, Lagrange elements d = 5

4.3 Initial guess for the iterative methods

The initial guess for the subharmonicity preserving iterations is taken as the
spline approximation of the solution of the Poisson equation∆u = nnf1/n, n =
2, 3 inΩ, u = g on ∂Ω. The initial guess for the discrete vanishing moment me-
thodology is taken as the spline approximation of the biharmonic regulariza-
tion of a Poisson equation, −ε∆2u + ∆u = nf1/n n = 2, 3 inΩ, u = g,∆u =
ε2 on ∂Ω.

4.4 Two dimensional computational results

The computational domain is the unit square [0, 1]2 which is first divided into
squares of side length h. Then each square is divided into two triangles by the
diagonal with negative slope. We recall that d refers to the local degree of the
piecewise polynomial used.

For g = 0, equation (1) admits both a concave solution and a convex
solution. Approximating concave solutions can be done by either changing the
initial guess or the structure of the approximations.

1. Newton’s method: initial guess ±u0,
2. Iterative method (24): uk+1 = ±

√
(∆uk)2 + 2(f − detD2uk).

We consider the following test cases:
Test 1: A smooth solution u(x, y) = e(x

2+y2)/2 so that f(x, y) = (1 + x2 +

y2)e(x
2+y2) and g(x, y) = e(x

2+y2)/2 on ∂Ω.
The subharmonicity preserving iterations can be used with C0 approxi-

mations. We compare the performance of (22) and (24) with Lagrange finite
elements in Tables 1 and 2.

Test 2: A solution not inH2(Ω), u(x, y) = −
√

2− x2 − y2 so that f(x, y) =

2/(2− x2 − y2)2 and g(x, y) = −
√

2− x2 − y2 on ∂Ω.
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h L2 norm H1 norm
1/21 7.6680 10−3 7.4491 10−2

1/22 1.4536 10−3 3.9244 10−2

1/23 9.8727 10−3 2.5112 10−1

1/24 5.6819 10−3 2.4927 10−1

1/25 1.9830 10+4 1.1812 10+6

h L2 norm H1 norm
1/21 7.8254 10−3 9.3184 10−2

1/22 1.0646 10−2 9.5201 10−2

1/23 1.1306 10−2 9.6154 10−2

1/24 1.1500 10−2 9.1336 10−2

1/25 1.1625 10−2 8.7785 10−2

1/26 1.1681 10−2 8.5632 10−2

Table 3 Vanishing moment Test 2 ε = 10−3 and ε = 10−2, d = 5

Fig. 1 Number of iterations as a function of d = 3, . . . , 7 with − ◦ ε = 10−3, −− ε = 10−2

for Test 2 with h = 1/2, d = 3.

h nit L2 norm H1 norm
1/21 6 2.1954 10−2 1.6409 10−1

1/22 5 3.6097 10−3 6.1405 10−2

1/23 6 1.0685 10−3 4.0978 10−2

1/24 3 5.0838 10−3 2.8048 10−1

1/25 2 2.5797 10+3 2.2688 10+5

1/26 1 1.8452 10+4 3.5922 10+6

h nit L2 norm H1 norm
1/21 50 2.3921 10−1 1.1900
1/22 159 1.2585 10−1 7.1292 10−1

1/23 151 1.0341 10−1 6.4299 10−1

1/24 160 9.6031 10−2 6.2088 10−1

1/25 199 9.4551 10−2 6.2453 10−1

1/26 8 1.6977 10−2 2.2925 10−1

Table 4 Newton’s method and BFO iterative method (24) for Test 2, d = 3

For this non smooth solution, it is essential to adapt the choice of the pa-
rameter ε in the discrete vanishing methodology as a function of h, c.f. Table 3.
This point was already made in [30]. We also recall that for this problem, New-
ton’s method diverges and note that the subharmonicity preserving iterations
are robust, c.f. Table 4.
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d nit L2 norm H1 norm H2 norm
3 1 1.2338 10−2 7.6984 10−2 4.4411 10−1

4 3 1.6289 10−3 1.4719 10−2 1.3983 10−1

5 4 1.5333 10−3 8.7312 10−3 6.0412 10−2

6 5 1.2324 10−4 9.7171 10−4 1.0584 10−2

Rate 0.18 0.25d−1 4.58 0.25d 59.96 0.3d+1

Table 5 Newton’s method Test 3, Domain 1 on T1, h = 1

d nit L2 norm H1 norm H2 norm
3 1 3.1739 10−3 2.3005 10−2 2.4496 10−1

4 7 3.2786 10−4 3.5626 10−3 5.2079 10−2

5 5 2.4027 10−5 3.9210 10−4 8.8868 10−3

6 6 1.3821 10−6 2.2369 10−5 6.0918 10−4

Rate 0.65 0.075d−1 28.96 0.1d 849.85 0.14d+1

Table 6 Newton’s method Test 3, Domain 1 on T2, h = 1/2

4.5 Three dimensional computational results

Böhmer [15] and Feng and Neilan [30] have discussed the possibility of using C1

finite elements in three dimension but no numerical evidence was given. This
can be addressed with the spline element method. We used two computational
domains both on the unit cube [0, 1]3 which is first divided into six tetrahedra
(Domain 1) or twelve tetrahedra (Domain 2) forming a tetrahedral partition
T1. This partition is uniformly refined following a strategy introduced in [2]
similar to the one of [47] resulting in successive level of refinements Tk, k =
2, 3, . . .

We consider the following test cases

Test 3: u(x, y, z) = e(x
2+y2+z2)/3 so that f(x, y, z) = 8/81(3 + 2(x2 + y2 +

z2))e(x
2+y2+z2) and g(x, y, z) = e(x

2+y2+z2)/3 on ∂Ω.

Since the solution is smooth, it is enough to use Newton’s method, c.f.
Tables 5 and 6. To emphasize this point, we numerically show in Table 7 the
convergence as ε→ 0 of the solution of (6) to the solution of (2). We also plot
in Figure 2 the number of iterations as a function of ε.

Test 4: f(x, y, z) = 0 and g(x, y, z) = |x − 1/2|. For the degenerate case
of this test, we did not capture the convexity of the discrete solution by dis-
cretizing (26) with the standard finite difference method. Surprisingly, with C1

splines, we were able to capture a C1 function which appears to approximate
well the solution after 4 iterations, c.f. Figure 3.

For non smooth solutions in three dimension, it would be better to have
iterative methods which preserve explicitly convexity. In some cases, i.e. for
f = 1 and g = 0, we were able to capture the correct solution. Our methods
did not work for the 3D analogue of Test 2.
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ε L2 norm H1 norm H2 norm
10−1 6.6870 10−2 3.9292 10−1 2.8852
10−2 1.8832 10−2 1.3137 10−1 1.5882
10−3 2.4237 10−3 2.5273 10−2 5.3206 10−1

10−4 2.5661 10−4 3.2633 10−3 7.9936 10−2

10−5 3.1058 10−5 5.0367 10−4 1.2543 10−2

10−6 2.3519 10−5 3.9165 10−4 8.9744 10−3

10−7 2.3964 10−5 3.9193 10−4 8.8921 10−3

10−10 2.4027 10−5 3.9210 10−4 8.8868 10−3

0 2.4027 10−5 3.9210 10−4 8.8868 10−3

Table 7 3D numerical robustness Test 3, Domain 1 on T2, h = 1/2, d = 5

Fig. 2 Number of iterations as a function of j = 1, . . . , 10 with ε = 10−j for Test 3 with
h = 1/2, d = 5 on Domain 1.
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