SMOOTH APPROXIMATIONS OF THE ALEKSANDROV
SOLUTION OF THE MONGE-AMPERE EQUATION *
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Abstract. We prove the existence of piecewise polynomials strictly convex smooth functions
which converge uniformly on compact subsets to the Aleksandrov solution of the Monge-Ampere
equation. We extend the Aleksandrov theory to right hand side only locally integrable and on
convex bounded domains not necessarily strictly convex. The result suggests that for the numerical
resolution of the equation, it is enough to assume that the solution is convex and piecewise smooth.
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1. Introduction In a previous work [2], we addressed the numerical approxi-
mation of solutions of the Dirichlet problem for the Monge-Ampere equation

detD*u=fin Q, wu=g on 09, (1.1)

by elements of a space V}, of piecewise polynomials C' functions. The domain QC
R?,d=2,3 is assumed to be convex and bounded with boundary 9. For a smooth

. 2 . . . .
function u, D?u= < 818, ;m> is the Hessian of u and f,g are given functions
1O j
ij=1,...,d

with f >0 and g€ C(992) with g convex on any line segment contained in 9€2.
We considered in [2] the variational problem: find wup, € Vi, up =gp, on 99 and

/(detDQuh—f)vhdxzo,whthnﬂg(Q). (1.2)
Q

Here g is the canonical interpolant in V}, of a smooth extension of g. Our nu-
merical experiments indicate that problem (1.2) has a solution u; which is convex
and converges to the unique convex solution u of (1.1), even in situations where the
smoothness of u is not guaranteed.

This points to a theoretical result we establish in this paper: given a quasi-uniform
triangulation of a convex bounded domain, there exist piecewise polynomials strictly
convex C' functions uj, which are Aleksandrov solutions of Monge-Ampere equations
det D?uy, = f5, with f;, >0 almost everywhere. Moreover up|aq converges to g and we
have fQ frn.pdr— fQ fpdz for all continuous functions p with compact support in §2
and any sequence hy —0. The sequence up, is shown to converge uniformly to u
on compact subsets of 2. The second contribution of this work is an approximation
result of a generalized solution of (1.1) with f only locally integrable by solutions of
approximate problems with right hand side integrable. The convergence of solutions
of the discretization (1.2) will be addressed in a subsequent work.

By mollification of dilatations of the exact solution, we show that the Aleksandrov
solution is the limit of smooth convex functions u,,, which converge uniformly to u
and solve Monge-Ampere equations det D?u,, = f,,, with f,, converging to f weakly
as measures and with boundary data converging to g. We then approximate the
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2 Smooth approximations of the Aleksandrov solution

functions u,, by piecewise polynomials strictly convex C! functions which converge
uniformly to ..

The notion of viscosity solution of (1.1) is probably the best known notion of
weak solution of the equation. Its numerical resolution by finite difference methods
was considered in [11]. The notion of Aleksandrov solution is equivalent to the notion
of viscosity solution for f€C(f2) and f>0, [13, Proposition 1.7.1]. A numerical
method based on Aleksandrov solutions was given in [18] for d=2. Finally, there is
the notion of Brenier solution of the equation with a computational fluid dynamics
approach taken in [5].

We note that if one approaches the numerical resolution of (1.1) from a viscosity
solution theory point of view, one naturally expects a discrete maximum principle
which does not necessarily hold for the finite dimensional space V},. It is the geometric
structure of the Monge-Ampere equation, as evidenced by the Aleksandrov theory,
which makes the results of this paper possible.

We organize the paper as follows. In section 2 we introduce some notation and
review the notion of Aleksandrov solution of the Monge-Ampere equation. In section
3, we present a general result on approximation by smooth functions based on mol-
lification of dilatations of the exact solution. In section 4 we prove our main result
which is the existence of C'' approximations which are piecewise smooth and converge
uniformly to the Aleksandrov solution. The results are first presented for the case f
bounded. In the last section we extend our results to the more general case of locally
integrable right hand side f.

We assume that the reader is familiar with the basic elements of measure theory
as given for example in [10].

2. Preliminaries

2.1. Notation We denote by Lllo C(}Rd) the space of locally integrable functions
on RY. We let C>°(S) denote the set of infinitely differentiable functions on the domain
S and use the notation D(2) for the space of infinitely differentiable functions with
compact support in €.

We denote by d(S,T) the distance between two subsets S and T of R? and we
use the notation diam S for the diameter of the set S. We use the standard notation
B(z,p) for the ball of center z and radius p in R?.

For a matrix A, we denote by A;; its entries. The smallest and largest eigenvalue
of the symmetric d x d matrix A are denoted respectively by A\ (A) and A\s(A). We
will use the notation C for a generic constant but will index some other constants.

2.2. The Aleksandrov solution The presentation of the Aleksandrov solu-
tion of the Monge-Ampere equation given here is essentially taken from [13] to which
we refer for further details. Let Q be an open subset of R?.

The normal mapping or subdifferential of a real valued function v defined on (2,
is a set-valued mapping v defined from € to the set of subsets of R? such that for
any xg €2,

Ov(xo)={qeR:v(x) >v(xo) +q-(x—1x0),for allz €Q}.
For a subset EC 2, we define

Ov(E) =Uzepdv(z).
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Let us denote by |E| the Lebesgue measure of E when E is measurable and let
veC(Q). The class

S={ECQ,0v(F)is Lebesgue measurable},
is a Borel o-algebra and the mapping
M[v]:8 =R, M[v](E)=|0v(E)|,

is a measure, finite on compact sets, called the Monge-Ampére measure associated
with the function v.

Let Q be a convex domain. We denote by K () the set of convex functions on (2.
DEFINITION 2.1. Let p be a Borel measure on Q. A function ve K(Q) is an Alek-
sandrov solution of

det D*v=p,

if and only if M[v]=pu. We recall that a measure p is absolutely continuous with
respect to the Lebesgue measure and with density f if and only if

w(B) :/ fdx, for any Borel set B.
B

The measure p is then identified with f. We have

THEOREM 2.2 ([14] Theorem 1.1 ). Let Q be a bounded convex domain of R.
Assume f € L*(Q) and g€ C(09) can be extended to a function g€ C(Q) which is con-
vex in Q. Then the Monge-Ampére equation (1.1) has a unique Aleksandrov solution
in K(Q)NC(Q). The general case of locally integrable right hand side f is addressed
in section 5.

COROLLARY 2.3. Let Q be a bounded convexr domain of RY. Assume f€C(Q) and
g€ C(09). Then the Monge-Ampére equation (1.1) has a unique Aleksandrov solution
in K(Q)NC(Q).

Proof. The result follows from the equivalence of viscosity and Aleksandrov solu-
tion when f >0, [13, Proposition 1.7.1]. In the general case, we note that (1.1) has a
unique convex viscosity solution [16]. Thus g extends to a continuous function on €,
namely the viscosity solution, and we can apply Theorem 2.2. 0

Let v in K(Q)NC?(Q), we have

Mp|(E)= /Edet D?v(z)dzx,

for all Borel sets E C €.
DEFINITION 2.4. A sequence ., of Borel measures converges weakly to a Borel
measure p if and only if

/Qp(x)dum — /Qp(af) dp,

for every continuous function p with compact support in 2. We also have
DEFINITION 2.5. Assume that f,,f>0. The sequence f,, converges weakly to f as

measures if and only if
/ fmpdsc—>/ frdz,
Q Q
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for all continuous functions p with compact support in . We have the following
weak continuity result of Monge-Ampere measures with respect to local uniform con-
vergence.

LEMMA 2.1 ([13] Lemma 1.2.3). Let u,, be a sequence of convex functions in
QO such that w., —u uniformly on compact subsets of Q. Then Mu,,] tend to M]u)
weakly.
REMARK 2.6. If u,, is a sequence of C?(Q) convexr functions such that u, —u
uniformly on compact subsets of Q, with u solving (1.1), then det D?u,, converges
weakly to f as measures.

3. Approximation by mollified functions Let u€ C(f2) be a convex func-
tion on the convex bounded domain Q. Then Q is convex and u is convex on €. For
1<A<2 and for 29 € define O* = {2’ €R", 2’ =x¢+ A(z — 0), for somer €Q} and
for 2’ € QM 2’ =20+ \(z —70), we define u*(z') =u(z). Let

dy=d(0Q,0(0)). (3.1)
LEMMA 3.1. We have
dy >0, (32)

for 1< A<2.

Proof. Assume that dy=0 and let y€9Q. There would exist a sequence
2!, € () such that y=1lim, o2, =lim, 2o+ Az, —x0) for x, €0Q. Put r=
lim;,—, 00 Z,, and note that z € 9Q. We have y=1x0+ A(x — ) and hence zg,z and y
are on the same line L with zp €2 and both = and y in 0€2.

A convex bounded domain is Lipschitz continuous [12]. Thus there exists points z;
and zo in LN such that the the rays {tz1 +(1—1t)z,0<t<1} and {ty+(1—1)22,0<
t<1} is entirely contained in Q. But then the line segment [z7,25] is not entirely
contained in €. This contradicts the convexity of .

O
LEMMA 3.2. The set Q) is open, convex and u* is convex in Q*. Moreover Q C Q*
for A>1, and u* converges uniformly to v on Q as A — 1%,

Proof. The proof of the first three statements readily follows from the definitions.
We first prove that 2 C Q* and since dy >0 by Lemma 3.1 for A> 1 with both Q and
Q> open, this would prove that Q cC Q*.

Let 2/ €9(*). We first show that 2’ =z + (2 —79),2 € Q. There exists a se-
quence z/, € Q> such that 2’ =lim,, o 2, =1iM,, 0o 7o+ A(2m —0) for 2, €Q. We
therefore have 2’ =z +\(z —20) = (1 = A\)xg +Az,2 € Q. If 2€Q we must have 2’ € Q*
by definition of Q*. Therefore z € 9. It is therefore not restrictive to write 9Q* or
(0Q)* for O(QM).

Let y€Q. Since A>1, t=1/1€][0,1) and hence 0<1—¢<1. Since € is convex,
r=(1-t)xo+ty€Q. But y=x¢+\(z—20) and hence y € Q*. This proves that Q C
0*. We have proved that QcC Q.

We now prove that u* converges uniformly to v on Q as A— 1. Since points on
0} are limits of points in €2, it is enough to prove the uniform convergence on 2. Let
€>0. We seek \g € (1,2) such that 1 <A< )g implies [u*(z') —u(2’)| <e for all ' € Q.

Put | =max{|zg—2'|,2' €Q}. Since u is uniformly continuous on €2, we can choose
d such that 0<d <! and |2/ —y'| <§ implies |u(z') —u(y')| <e for all /.y’ € Q. We
choose A\g=1/(l—0). For A<Xg and 2’ € Q, we have (1—1/\)] < ¢ and hence

1 1, p 1 / 1
— Dag+— —2=(1-= —2<(1-= }
‘((1 )\):co )\x) z (1 )\)|x0 2’| < (1 )\)l<6
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For 2’ €, since
A/ / 1 1 / /
W) —u(e’) =u( (1= J)ao+ 3’ ) —ue),

the result follows. O
REMARK 3.1. The idea to use dilations of the domain for smooth approximations of
convex functions in a Sobolev space was first used in [1]. We are interested in this
paper in uniform convergence.

Let ¢ >0 be infinitely differentiable with compact support in {z €Q,|z| <1} and
Jga®dz=1. For €>0, let ¢(x)=1/ep(x/e) and for ve L' (), we define the regu-
larization or mollification of v by

Ve(z) =gk v( /@x y)o(y)dy,

which is well defined on
Qe ={xeQ,d(z,00)>€}.

For a convex function v, v, is also convex as a linear combination with positive
coeflicients of convex functions as

vel) =% be(a) = /B Moy

We recall that v, € C*°(£2) and v, converges uniformly to v € C'(£2) on compact subsets
of Q.. Properties of mollification are discussed for example in [21]. We state one of
the main results of this paper

THEOREM 3.2. Let u be the convex solution of the Monge-Ampére equation (1.1).
There exists a sequence u. € C™(Q) of convex functions, obtained by dilatations and
convolutions of u, such that det D?u. = f. converges to f weakly as measures and u.
converges uniformly to u on Q. Explicitly

uE:u(’;\A,with)\:1—|—ecmd)\lig1+ 5, =0. (3.3)

Proof. Recall from Lemma 3.2 that dy=d(09Q,0(2*)) >0 and so u), € C>(Q) fo
€ <dy/2. For 1<A<2, since u o — > uniformly on Q, Ve > 0,35, suchthat0<6 <
and

dx
2

u}, (2) —u ()| < /2, € Q.

To alleviate the notation, we do not explicitly write the dependence of J on e. We
define for e >0

uezug,with)\zlJre.

Let v>0. By Lemma 3.2, u* — u uniformly on Q. Thus, Jeg > 0 such that for 0 <e<ep
we have [u!T¢(z) —u(z)| <~/2. For 0<e<min(e,7) and z € Q we have

|ue(@) —u(z)| < Iue(x) @)+ [u' T (@) —u(@)]

u
Yo,
-|-2<2—|-2 Y.

5



6 Smooth approximations of the Aleksandrov solution

This proves that u, —u uniformly on Q. By Lemma 3.2, u, is convex and in C*°(Q).
By Remark 2.6, det D?u, converges to f weakly as measures.
0

We now establish that the sequence u, from Theorem 3.2 may be assumed to be
uniformly strictly convex.
THEOREM 3.3. There exists a sequence u. which satisfies the conditions of Theorem
3.2 and such that det D*u.>¢? and |(D?uc); j| <Co(€),i,j=1,...,d for a constant
Co >0 which depends on € and lim¢_,oCo(€) =00. Moreover the smallest eigenvalue
of cof D%u. is uniformly in x bounded below by Cy(€)=¢€?/(dCy(e)).

Proof. Let us denote by . the sequence given by Theorem 3.2. We choose yg €2
and define

€
w€:§|x—y0|2.

We have w, € C*°(Q) and D?*w, = eI where [ is the d x d identity matrix. Put
Ue(z) =te(x) +we(x).

Then u, € C*(£), is convex and converges uniformly to u on Q. It then follows by
Lemma 2.1 that det D%u, converges to f weakly as measures.
Next, using for example Proposition 3.3 of [19], we have

det D?u, > det D2 +det D*w, > €.

Let us denote by )\;,i=1,...,d, the eigenvalues of D?u, with 0<X; <...<\4. Since
D?u, is symmetric and invertible, cof D?u, = (det D?u.)(D?u.)~! has smallest eigen-
value (det D%u.)/\qg.

On the other hand, recall from (3.3), that . is obtained from u by dilatation and
convolution, i.e. . :ug‘ for some A and § which depends on €. For 7,5=1,...,d

o2 1 92 Z—y R ;
8:52»8:53»”((96)5‘1/]11@ om0, <¢( 5 >)u (y)dy + ek

= 1 82¢ xTr—y N ;
042 g 8xi8xj< 5 >“ (y) dy + ex;

1 % (x—y\ i j
_6d+2 ~/B(m,6) 6331(95%‘( § )'LL (y)dy—’—e’im

where /ﬁg =1ifi=j and /@g =0 otherwise. Since ¢ and its derivatives have compact
support, and u is bounded on 2, we conclude that

10%u, /(0z:0z;)| SC(E):%—FE, (3.4)

for a constant C' >0 which is independent of ¢ and x. It follows that [A\;| <dC(e),i=
1,...,d, by using for example the Gershgorin circle theorem. We then get that the
smallest eigenvalue of cof D?u, is bounded below by €?/(dC()).

Explicitly . :ug‘ with A=14¢, 0<J<d)/2 and limy_,; dy =0. Using (3.4), we
conclude that lim._,oCoy(€) = oc0.
0
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4. Approximation by piecewise polynomials C! functions In this section
we assume that 0 < f <M for a constant M. For simplicity, for the construction of
the finite dimensional spaces, we now assume that the domain € has a polygonal
boundary. We establish our main result on approximation of the Monge-Ampere
equation (1.1) by piecewise polynomial C'! functions.

4.1. Additional notation and approximation results

We recall the standard notation W*P(Q) for the Sobolev spaces and use ||.||xp
and |.|x,p respectively for their norms and semi-norms. We will also use the notation
H*(Q) for W*2(Q) and in this case, the norm and semi-norms are denoted respectively
by ||/l and ||

Let 7 denote a triangulation of €2 into simplices K which is conforming in the
sense that the intersection of any two simplices is either empty or is a vertex, an edge
or more generally a common subface. We denote by hg the diameter of K and by
pk the radius of the largest ball contained in K. We assume that the triangulation
is shape regular, i.e. there exists a constant C'>0 such that for any triangle K,
hi/pr <C. We also assume that the triangulation is quasi-uniform, i.e. h/hpin <C
where h and Ay, are the maximum and minimum respectively of {hx, K €Ty }.

We let V;, denote a finite dimensional space of piecewise polynomial C'! functions
of local degree r >3, i.e., V}, is a subspace of

{seCY(Q), s/, €P,, VtETY,

where P, denotes the space of polynomials of degree less than or equal to r. Such
spaces can be realized as finite element spaces [7] or more generally as spline spaces
[17]. We make the assumption that the degree r is sufficiently high so that the
following approximation properties hold:

|[v=T40||kp < Caph! ™ F 0141, (4.1)

where I, is an interpolation operator mapping the Sobolev space W!T1P(Q) into V},
1<p<ooand 0<Ek<I<r. Unless the mesh has a special form, in general one needs
r>5 for d=2 and r>9 for d=3. The constant C,;, depends only on r,/, the domain
Q and is independent of h. We also make the assumption that the following inverse
inequality holds

— i d_d
|v]]s,p < Cinph!=5Tmin©:5 =)y g, v eV (4.2)

and for 0<1<s,1<p,gq<o0. The constant Cj;,, is independent of h. The above
assumptions hold for finite element spaces [7].

4.2. Discrete convexity
LEMMA 4.1 ([15]). For two symmetric d x d matrices A and B, we have

[A1(A) =i (B)] Scdnilf;fx|Aij —Byj,

where cq s a constant which depends only on d.
REMARK 4.1. It follows from Lemma 4.1 that for max; ;|A;; — B;j| < i (B)/(2¢q),
and B positive definite, A is also positive definite with A1(A) >\ (B)/2.

The proof of the following result can be found in section 5 of [8].
LEMMA 4.2. Let vy be a function which is a polynomial of degree r and convex on
each element K. Assume that v, € C*(Q). Then vy, is convez.
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4.3. Approximation results In [2] and also [6], the following result was
proven
THEOREM 4.2. Let u. and g. be C*(Q) functions such that det D?u.= f.>c.>0
with uc =g, on 0. Let g =1Inge. Then the problem: find ucp € Vy, Ueh=gen ON
0 and

/ (det D?u,j, — fo)vpdx =0,Yv, € Vi, N HE(Q),
Q

has a unique solution u. p, in a sufficiently small neighborhood of Inu. and we have
e =t p|l < ChHJuel[141,5 <1<

From the above result, one derives easily an estimate in the H?({2) Sobolev norm.
Recall that V,, C H?(Q). We have by (4.1) and (4.2)

l[te — e n|l2 <[|ue — Tnuel|2 + [ Inte — ue nll2
< Ot +Ch | Tt — el
<Ch Y |ue| 101+ Ch™ | Thue —ucl|1 +Ch ™ |ue —ue p|1
<COR' ™ [uel141-
By the embedding of H%(Q) into L>°(Q2), we have

|2 SCR " Y|uell141,5 <1<

Hue - ue,h| |O,oo S C’| |Ue — Ue,h

It follows that u. j converges uniformly to u. on compact subsets of €.
Moreover, again by (4.1) and (4.2), using d=2,3

12,00 <|Jte = Intte]|2,00 + || Tnte — e p||2,00
< Ch ™ YJuel 141,00 + 0 F || Intte — e |2
< C el 11,00 + OB 7 78 || 141
<Ch'™Juelli41.00-

||ue — Ue,h

Since 5<1<r, for h<h, for some he, we have Ch!'=*||uc||i+1,00 <A1 (D?ue)/(2¢a)-
Thus max;; |(D2ue)ij - (D2u67h)z—j| < Jtte = Ue.nl|2.00 <A1 (D?ue)/(2¢4). Since fo>ce>
0, there exists a constant which we also denote by ¢, such that )\1(D2u6) >c.. Hence
by Remark 4.1 and Lemma 4.2, uc j, is piecewise strictly convex and convex.

We now consider the family {u. ,h <h.} of convex functions and can now prove
one of the main results of this paper.
THEOREM 4.3. The family {ue p,h <h.} has a subsequence which converges uniformly
on compact subsets of Q to the solution u of (1.1).

Proof. Let K be a compact subset of €. Since u. — u uniformly on K, for k> 1,
Jex, > 0 such that for 0<e<eg, and z € K, |u(z) —ue(z)| <1/(2k). Since ue, n — e,
uniformly on K, we can choose hy < h,, such that |ue, () —ue, n, ()| <1/(2k) for all
x € K. The result then follows from the triangular inequality. O

As a consequence of Lemma 2.1, det D?u,, j, converges weakly to f as measures.
REMARK 4.4. Although Theorem 4.3 asserts the existence of a discrete strictly con-
vex function, the latter may have a discrete Hessian with very small eigenvalues, in
absolute value, prohibiting the direct use of Newton’s method. The use of fixed point
iterative methods, as in [2], which enforce locally convezity are the best options avai-
lable.

For simplicity, we now refer to u., as up for an arbitrary family e—0, e.g.
e=1/mm=1.2...



Gerard Awanou 9

5. The general case of locally integrable right hand side f In this part,
we show how our results can be extended to the general case where 0 < f but with
f locally integrable. Bakelman [3, 4] introduced a notion of weak solution of the
problem

det D?*u=y in Q

5.1
u=gonds), (5-1)

where p is not necessarily a finite Borel measure and with the boundary condition
satisfied in a generalized sense. We first recall what he called the border of a convex
function and the notion of solution in the sense of Bakelman. We extend his existence
and uniqueness results when p has density f to the case where the domain is only
assumed to be convex. We do it by considering the problems

det D*u= fp; in

5.2
u=gonds), (5:2)

where far(x)=f(x) for f(z) <M and fyr(z)=0 otherwise. We show that the solu-
tions ups of (5.2) converge uniformly on compact subsets of €2 to a generalized solution
in the sense of Bakelman of (1.1). And so do the approximate solutions uay .

We now view R¢ as a hyperplane of R4t!. Let v be a bounded convex function
on Q. We denote by S, the graph of v and by Co(S,) the closed convex hull of the
graph of v. Let Z be the cylinder with base 92 and generators parallel to the x4y
axis. It can be shown that the closed set

H=2ZnCo(S,),

is a union of sets I(z),x €0 and I(x) is either a point {(z,29)}, a closed segment
{(x,2),20<z<21} or a closed ray {(z,2)z0<z<oo}. See [3] and [4, p. 128]. The
function defined on 0f) by

gv(x) :'207($7z0> El(x),

is called the border of the convex function v(x).

REMARK 5.1. Ifve K(Q)NC(Q), then g, =v on 2. We have

LEMMA 5.1. Assume that v and w are convex functions on ) such that v(x)<
w(zx),x €Q. Then g, < gy on Q.

Proof. Since v<w in Q, for z €9, points (x,z) in ZNCo(S,) are below the
corresponding points (x,2) in ZNCo(S,,). By definition of border as an infimum, we
obtain the result. O
DEFINITION 5.2. We assume that the measure p is finite on compact subsets of Q). Let
V(w,g) denote the set of convex functions v on Q such that M[v]=p and g,(x) < g(x)
for all x€dQ. A convex function u€V(u,g) is a solution of (5.1) in the sense of
Bakelman if

Gu(T) > gy (), 0 €08,

for allveV(u,g).

REMARK 5.3. Assume that Q is a bounded convex domain of R? and g can be extended
to a function g€ C(Q) which is convex in Q. Then if u is a finite Borel measure,
(5.1) has a unique convex Aleksandrov solution in C(S) which assumes the boundary
condition in the classical sense. (c.f. [14, Theorem 1.1]).
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As a consequence of [4, Theorem 10.4] we have
THEOREM 5.4. Let Q be a bounded convex domain of R% and let i be a Borel measure
on 2. Assume that z. is a family of convex functions such that

—00< 11 < 2cJgn <ra <00
Mz < .

Then we have
T/l Sze STQ,J'EQ,

where r} depends only on 11, and ).

In [3] a comparison principle is proved for convex solutions of (1.1) which are not
necessarily in C(Q). We give a new proof based on the proof for C'(§) solutions given
in [13].

THEOREM 5.5. Let Q) be a bounded convex domain and let zy and zo be conver
functions in Q such that r >z, > zo on 0, r €R. Assume that

Mz < Mz3].

Then z1 > z9 in ).

Proof. The theorem without the requirement of an upper bound for z; and z5 on
09 is given as Theorem 10.1 of [3]. If z; and 2z are in C(f2), the proof can be found
in [13] Theorem 1.4.6. We use a contradiction argument. Let

Ur={zeQ,z(x)<z(x)}.

Assume that U; is non-empty. Since z; and z; are convex, they are uniformly
bounded above by r and are therefore continuous. Thus U; is open. Let U be
a non-empty open subset of Uy such that UCU;. Let a=min g{z(z)—22(z)}.
Put b=infyepn{z1(z) —22(x)}. By assumption a<0<b. There exists xo€U
such that a=2z1(x0) —22(x0). It follows that a <0<b. We choose ¢ >0 such that
§(diamQ)? < (b—a)/2. We define

b
w(x) = zo(x) + 8|z — x> + —12—a.

Let G={z€ U,z (x)<w(z)}. We have z9€G and as in [13] Theorem 1.4.6, one
shows that GNIN =0 with M[z1](G) > M[z2](G) contradicting the assumption of the
theorem. We conclude that U; must be empty and hence z; > zo in Q. O
We will also need
LEMMA 5.2 ([14] Lemma 5.1). Let Q CR? be a bounded convex domain, p;,u be
Borel measures in Q with p finite, u; € C(Y) convex in Q and g can be extended to a
function g€ C(Q) which is convez in Q with
1. uj=g on 09,
2. Mu;]=p; in L,
3. pj — p weakly in , and
4. 11;(Q) <A for all j for a constant A.
Then there exists u € C(Q2) convex in Q0 such that u; converges, up to a subsequence,
to u uniformly on compact subsets of 0, and M[u|=p with u=g on 9.
We can now prove the following theorem.
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THEOREM 5.6. Assume that Q is a bounded convexr domain of R? and g can be
extended to a function g€ C(Q) which is convex in Q. If f>0 is locally integrable,
the problem (1.1) has a unique convex solution in the sense of Bakelman. Moreover
the solution w is the uniform limit on compact subsets of Q0 of the solutions uy; of the
problems (5.2) with truncated right hand sides as M — oco.

Proof. For € >0 sufficiently small, we recall that

Qe ={xeQ,d(z,00)>€}.

We define a finite Borel measure u. by

mﬁﬂzl%ﬂf@ﬂ%

Given M >0, we define finite Borel measures fic ar by

ue,M(B):/BmQ far(x)da.

€

Part 1: Limits as M — oo.

We claim that up to a subsequence g ps converges weakly to pe as M — oco. By [9,
Theorem 1, section 1.9], it is enough to show that p. ar(B) — pe(B) for any bounded
Borel set B with p.(0B)=0. Since fy — f a.e. as M — oo, by Fatou’s lemma

pie(B) <liminf pc ar(B).
M — o0

Moreover, 0< fas(z) < f(z) for all z€Q. Thus pe p(B) < pe(B) and this proves the
claim.

Note also that fie ar(€2) < pte(2) < oo and () is independent of M.

By Remark 5.3, there exists u, ps € C(Q) such that

detDzueyM = fie,pr in Q
Ue, i = gonosd.

By Lemma 5.2, as M — 00, u pr converges uniformly on compact subsets of €2, up to
a subsequence, to the convex solution u. of the problem

det D*u, = p in Q
Ue = gon o).

Part 2: Existence and uniqueness of the Bakelman solution.
We denote by p the measure with density f, i.e.

u(B)= [ j(@yds,

for any Borel set B. Since u. < p and u. = gondf?, applying Theorem 5.4 to the family
e, we obtain the uniform boundedness in = of u.. We conclude the existence of a
function u(z) and a subsequence u.,, such that . (z) converges pointwise to u(x). As
a limit of convex functions, u is necessarily convex. Moreover by [20, Theorem 10.8],
the convergence is uniform on compact subsets of Q. By Lemma 2.1, Mu., | — M[u]
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weakly. Again by [9, Theorem 1, section 1.9], M[u,, ](B)— M[u](B) for any bounded
Borel set B with M[u](0B)=0. But

M[uem](B):/ f(m)dx—)/ f(z)dx,asem — 0.

BNQ.,, B

We conclude that M[u](B) = [, f(x)dz for any closed ball B contained in Q and hence
M u] has density f.

Next, for € <e, we have po > p. with ue =u, on 9Q. Since g€ C(IN), u. is
uniformly bounded above on 0f2. By the comparison principle given in Theorem 5.5
we have ue <wu, in € and hence u <u, for all e. By Lemma 5.1, we have g, <g,. =¢
on 0f).

Finally, let v€V(u,g). By definition M[v]=p and g, <g on 9. We show that
Ju > gv. Note that uc=g>g, on 0Q with Mu.]=p.<p=M][v]. By Theorem 5.5,
we conclude that u. >wv in Q and hence u>wv in 2. By Lemma 5.1, we obtain g, > g,.
This proves that u is a Bakelman solution of (1.1).

The uniqueness of the Bakelman solution is an immediate consequence of Theorem
5.5.

Part 3: Limits as e—0.

Let the finite Borel measure ujp; be given by

MM(B):/BfM(I)d%

and let 1p denote the indicator function of the set D. Then pic 2 (B) = [ 1o, far(x)dx
and pte, v (B) < pe(B) for all € >0. Moreover 1q,_ far(z) = far(z) a.e as e—0. With the
same arguments as above, one shows that pie pr — pas weakly as € —0 with pe a7 (Q) <
par(2) <oo and par(2) is independent of e.

Thus again by Lemma 5.2, as e = 0, u,,ps converges uniformly on compact subsets
of Q, up to a subsequence, to the solution u,; of the problem

det D?upy =pp in Q
ups = gonold.

Part 4. Finishing up.

We show that the Bakelman solution w is the uniform limit on compact subsets of
Q of ups as M — oo. Note that we can not use the approach in part I as f is assumed
to be only locally integrable. However the approach taken in part II can be adapted.
For the convenience of the reader we explicitly repeat the argument.

Since ppr < pand upr = gondf2, applying Theorem 5.4 to the family ujs, we obtain
the uniform boundedness in z € Q2 of ups(z). We conclude the existence of a function
w(z) and a subsequence uys, such that wys, (z) converges pointwise to w(z). As a
limit of convex functions, w is necessarily convex. Moreover by [20, Theorem 10.8],
the convergence is uniform on compact subsets of Q2. By Lemma 2.1, M[uyy, | = M [w]
weakly. Again by [9, Theorem 1, section 1.9], M[uas, |(B) — M [w](B) for any bounded
Borel set B with M[w](0B)=0. But

M[uM,C](B):/Bka(:r)dmﬁ/Bf(x)dx,ask%oo.

We conclude that M[w](B)= [, f(z)dz for any closed ball B contained in € and
hence M[w] has density f.
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Next, for M’ > M, we have pyp > ppr with wup =wups on 9. Since g € C(0Q), upy
is uniformly bounded above on 02. By the comparison principle given in Theorem
5.5 we have upp <wups in Q and hence w <wuyy, for all k. By Lemma 5.1, we have
G < Guny, =9 On L

Finally, let v €V (u,g). By definition M[v]=p and g, <g on 9. We show that
Gw > gv- Note that up;, =g > g, on 0Q with M[ups, ] = par, < pu=M|v]. By Theorem
5.5, we conclude that ups, >v in Q and hence w>wv in €). By Lemma 5.1, we obtain
gw > gy~ This proves that w is a Bakelman solution of (1.1).

By uniqueness of the Bakelman solution w=wu. The limit u being unique, the
whole sequence wuj; must converge to u. This concludes the proof.

0

Theorem 5.6 suggests that, for the numerical resolution of (1.1), one should solve

the problems (5.2) with truncated right hand sides for increasing values of M. We
now prove that this process gives a convergent scheme.
THEOREM 5.7. Assume that up; converges uniformly to u on compact subsets of
as M — o0 and uprp converges uniformly to up on compact subsets of  as h—0.
Then up,n has a subsequence which converges uniformly to u on compact subsets of
Q as h—0 and M — occ.

Proof. Let T be a compact subset of 2 and let k£ > 1. Since uj; converges uniformly
to u on T, there exists My >0 such that for M > My, |up(z) —u(z)| <1/(2k) for all
x€T. Next, up, , converges uniformly to ups, on 7. Thus, there exists hy >0 such
that for 0<h <hg, |up, n,(x) —unm, ()| <1/(2k). The result then follows from the
triangular inequality. O
REMARK 5.8. By the results of section 4, upr,, may be assumed to be convex and thus
det D%upy, p, — [ weakly as measures for appropriate sequences hy, — 0 and My, — co.
REMARK 5.9. Throughout this paper, we used the well known fact that a uniformly
bounded sequence of conver functions on a conver domain € is locally uniformly
equicontinuous and hence has a pointwise convergent subsequence. The result is a
consequence of [18, Lemma 3.2.1].
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