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Abstract. We prove the existence of piecewise polynomials strictly convex smooth functions
which converge uniformly on compact subsets to the Aleksandrov solution of the Monge-Ampère
equation. We extend the Aleksandrov theory to right hand side only locally integrable and on
convex bounded domains not necessarily strictly convex. The result suggests that for the numerical
resolution of the equation, it is enough to assume that the solution is convex and piecewise smooth.
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1. Introduction In a previous work [2], we addressed the numerical approxi-
mation of solutions of the Dirichlet problem for the Monge-Ampère equation

detD2u=f in Ω, u=g on ∂Ω, (1.1)

by elements of a space Vh of piecewise polynomials C1 functions. The domain Ω⊂
Rd,d= 2,3 is assumed to be convex and bounded with boundary ∂Ω. For a smooth

function u, D2u=

(
∂2u

∂xi∂xj

)
i,j=1,...,d

is the Hessian of u and f,g are given functions

with f ≥0 and g∈C(∂Ω) with g convex on any line segment contained in ∂Ω.
We considered in [2] the variational problem: find uh∈Vh, uh=gh on ∂Ω and∫

Ω

(detD2uh−f)vhdx= 0,∀vh∈Vh∩H1
0 (Ω). (1.2)

Here gh is the canonical interpolant in Vh of a smooth extension of g. Our nu-
merical experiments indicate that problem (1.2) has a solution uh which is convex
and converges to the unique convex solution u of (1.1), even in situations where the
smoothness of u is not guaranteed.

This points to a theoretical result we establish in this paper: given a quasi-uniform
triangulation of a convex bounded domain, there exist piecewise polynomials strictly
convex C1 functions uh which are Aleksandrov solutions of Monge-Ampère equations
detD2uh=fh with fh>0 almost everywhere. Moreover uh|∂Ω converges to g and we
have

∫
Ω
fhkpdx→

∫
Ω
fpdx for all continuous functions p with compact support in Ω

and any sequence hk→0. The sequence uhk is shown to converge uniformly to u
on compact subsets of Ω. The second contribution of this work is an approximation
result of a generalized solution of (1.1) with f only locally integrable by solutions of
approximate problems with right hand side integrable. The convergence of solutions
of the discretization (1.2) will be addressed in a subsequent work.

By mollification of dilatations of the exact solution, we show that the Aleksandrov
solution is the limit of smooth convex functions um, which converge uniformly to u
and solve Monge-Ampère equations detD2um=fm, with fm converging to f weakly
as measures and with boundary data converging to g. We then approximate the
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functions um by piecewise polynomials strictly convex C1 functions which converge
uniformly to um.

The notion of viscosity solution of (1.1) is probably the best known notion of
weak solution of the equation. Its numerical resolution by finite difference methods
was considered in [11]. The notion of Aleksandrov solution is equivalent to the notion
of viscosity solution for f ∈C(Ω) and f >0, [13, Proposition 1.7.1]. A numerical
method based on Aleksandrov solutions was given in [18] for d= 2. Finally, there is
the notion of Brenier solution of the equation with a computational fluid dynamics
approach taken in [5].

We note that if one approaches the numerical resolution of (1.1) from a viscosity
solution theory point of view, one naturally expects a discrete maximum principle
which does not necessarily hold for the finite dimensional space Vh. It is the geometric
structure of the Monge-Ampère equation, as evidenced by the Aleksandrov theory,
which makes the results of this paper possible.

We organize the paper as follows. In section 2 we introduce some notation and
review the notion of Aleksandrov solution of the Monge-Ampère equation. In section
3, we present a general result on approximation by smooth functions based on mol-
lification of dilatations of the exact solution. In section 4 we prove our main result
which is the existence of C1 approximations which are piecewise smooth and converge
uniformly to the Aleksandrov solution. The results are first presented for the case f
bounded. In the last section we extend our results to the more general case of locally
integrable right hand side f .

We assume that the reader is familiar with the basic elements of measure theory
as given for example in [10].

2. Preliminaries

2.1. Notation We denote by L1
loc(Rd) the space of locally integrable functions

on Rd. We let C∞(S) denote the set of infinitely differentiable functions on the domain
S and use the notation D(Ω) for the space of infinitely differentiable functions with
compact support in Ω.

We denote by d(S,T ) the distance between two subsets S and T of Rd and we
use the notation diamS for the diameter of the set S. We use the standard notation
B(x,ρ) for the ball of center x and radius ρ in Rd.

For a matrix A, we denote by Aij its entries. The smallest and largest eigenvalue
of the symmetric d×d matrix A are denoted respectively by λ1(A) and λd(A). We
will use the notation C for a generic constant but will index some other constants.

2.2. The Aleksandrov solution The presentation of the Aleksandrov solu-
tion of the Monge-Ampère equation given here is essentially taken from [13] to which
we refer for further details. Let Ω be an open subset of Rd.

The normal mapping or subdifferential of a real valued function v defined on Ω,
is a set-valued mapping ∂v defined from Ω to the set of subsets of Rd such that for
any x0∈Ω,

∂v(x0) ={q∈Rd :v(x)≥v(x0)+q ·(x−x0), for allx∈Ω}.

For a subset E⊂Ω, we define

∂v(E) =∪x∈E∂v(x).
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Let us denote by |E| the Lebesgue measure of E when E is measurable and let
v∈C(Ω). The class

S={E⊂Ω,∂v(E)is Lebesgue measurable},

is a Borel σ-algebra and the mapping

M [v] :S→R,M [v](E) = |∂v(E)|,

is a measure, finite on compact sets, called the Monge-Ampère measure associated
with the function v.

Let Ω be a convex domain. We denote by K(Ω) the set of convex functions on Ω.
Definition 2.1. Let µ be a Borel measure on Ω. A function v∈K(Ω) is an Alek-
sandrov solution of

detD2v=µ,

if and only if M [v] =µ. We recall that a measure µ is absolutely continuous with
respect to the Lebesgue measure and with density f if and only if

µ(B) =

∫
B

f dx, for any Borel setB.

The measure µ is then identified with f . We have
Theorem 2.2 ([14] Theorem 1.1 ). Let Ω be a bounded convex domain of Rd.

Assume f ∈L1(Ω) and g∈C(∂Ω) can be extended to a function g̃∈C(Ω) which is con-
vex in Ω. Then the Monge-Ampère equation (1.1) has a unique Aleksandrov solution
in K(Ω)∩C(Ω). The general case of locally integrable right hand side f is addressed
in section 5.
Corollary 2.3. Let Ω be a bounded convex domain of Rd. Assume f ∈C(Ω) and
g∈C(∂Ω). Then the Monge-Ampère equation (1.1) has a unique Aleksandrov solution
in K(Ω)∩C(Ω).

Proof. The result follows from the equivalence of viscosity and Aleksandrov solu-
tion when f >0, [13, Proposition 1.7.1]. In the general case, we note that (1.1) has a
unique convex viscosity solution [16]. Thus g extends to a continuous function on Ω,
namely the viscosity solution, and we can apply Theorem 2.2.

Let v in K(Ω)∩C2(Ω), we have

M [v](E) =

∫
E

detD2v(x)dx,

for all Borel sets E⊂Ω.
Definition 2.4. A sequence µm of Borel measures converges weakly to a Borel
measure µ if and only if ∫

Ω

p(x)dµm→
∫

Ω

p(x)dµ,

for every continuous function p with compact support in Ω. We also have
Definition 2.5. Assume that fm,f ≥0. The sequence fm converges weakly to f as
measures if and only if ∫

Ω

fmpdx→
∫

Ω

fpdx,
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for all continuous functions p with compact support in Ω. We have the following
weak continuity result of Monge-Ampère measures with respect to local uniform con-
vergence.

Lemma 2.1 ([13] Lemma 1.2.3). Let um be a sequence of convex functions in
Ω such that um→u uniformly on compact subsets of Ω. Then M [um] tend to M [u]
weakly.
Remark 2.6. If um is a sequence of C2(Ω) convex functions such that um→u
uniformly on compact subsets of Ω, with u solving (1.1), then detD2um converges
weakly to f as measures.

3. Approximation by mollified functions Let u∈C(Ω) be a convex func-
tion on the convex bounded domain Ω. Then Ω is convex and u is convex on Ω. For
1<λ≤2 and for x0∈Ω define Ωλ={x′∈Rn,x′=x0 +λ(x−x0), for somex∈Ω} and
for x′∈Ωλ,x′=x0 +λ(x−x0), we define uλ(x′) =u(x). Let

dλ≡d(∂Ω,∂(Ωλ)). (3.1)

Lemma 3.1. We have

dλ>0, (3.2)

for 1<λ≤2.
Proof. Assume that dλ= 0 and let y∈∂Ω. There would exist a sequence

x′n∈∂(Ωλ) such that y= limn→∞x
′
n= limn→∞x0 +λ(xn−x0) for xn∈∂Ω. Put x=

limn→∞xn and note that x∈∂Ω. We have y=x0 +λ(x−x0) and hence x0,x and y
are on the same line L with x0∈Ω and both x and y in ∂Ω.

A convex bounded domain is Lipschitz continuous [12]. Thus there exists points z1

and z2 in L∩Ω such that the the rays {tz1 +(1− t)x,0<t≤1} and {ty+(1− t)z2,0≤
t<1} is entirely contained in Ω. But then the line segment [z1,z2] is not entirely
contained in Ω. This contradicts the convexity of Ω.

Lemma 3.2. The set Ωλ is open, convex and uλ is convex in Ωλ. Moreover Ω⊂Ωλ

for λ>1, and uλ converges uniformly to u on Ω as λ→1+.
Proof. The proof of the first three statements readily follows from the definitions.

We first prove that Ω⊂Ωλ and since dλ>0 by Lemma 3.1 for λ>1 with both Ω and
Ωλ open, this would prove that Ω⊂Ωλ.

Let z′∈∂(Ωλ). We first show that z′=x0 +λ(z−x0),z∈∂Ω. There exists a se-
quence z′m∈Ωλ such that z′= limm→∞z

′
m= limm→∞x0 +λ(zm−x0) for zm∈Ω. We

therefore have z′=x0 +λ(z−x0) = (1−λ)x0 +λz,z∈Ω. If z∈Ω we must have z′∈Ωλ

by definition of Ωλ. Therefore z∈∂Ω. It is therefore not restrictive to write ∂Ωλ or
(∂Ω)λ for ∂(Ωλ).

Let y∈Ω. Since λ>1, t= 1/λ∈ [0,1) and hence 0≤1− t≤1. Since Ω is convex,
x= (1− t)x0 + ty∈Ω. But y=x0 +λ(x−x0) and hence y∈Ωλ. This proves that Ω⊂
Ωλ. We have proved that Ω⊂Ωλ.

We now prove that uλ converges uniformly to u on Ω as λ→1+. Since points on
∂Ω are limits of points in Ω, it is enough to prove the uniform convergence on Ω. Let
ε>0. We seek λ0∈ (1,2) such that 1<λ<λ0 implies |uλ(x′)−u(x′)|<ε for all x′∈Ω.

Put l= max{|x0−x′|,x′∈Ω}. Since u is uniformly continuous on Ω, we can choose
δ such that 0<δ<l and |x′−y′|<δ implies |u(x′)−u(y′)|<ε for all x′,y′∈Ω. We
choose λ0 = l/(l−δ). For λ<λ0 and x′∈Ω, we have (1−1/λ)l<δ and hence∣∣∣∣((1− 1

λ
)x0 +

1

λ
x′
)
−x′

∣∣∣∣= (1− 1

λ
)|x0−x′|≤ (1− 1

λ
)l<δ.
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For x′∈Ω, since

uλ(x′)−u(x′) =u

(
(1− 1

λ
)x0 +

1

λ
x′
)
−u(x′),

the result follows.
Remark 3.1. The idea to use dilations of the domain for smooth approximations of
convex functions in a Sobolev space was first used in [1]. We are interested in this
paper in uniform convergence.

Let φ≥0 be infinitely differentiable with compact support in {x∈Ω,|x|<1} and∫
Rd φdx= 1. For ε>0, let φε(x) = 1/εdφ(x/ε) and for v∈L1(Ω), we define the regu-

larization or mollification of v by

vε(x) =φε ∗v(x) =

∫
Ω

φε(x−y)v(y)dy,

which is well defined on

Ωε={x∈Ω,d(x,∂Ω)>ε}.

For a convex function v, vε is also convex as a linear combination with positive
coefficients of convex functions as

vε(x) =v∗φε(x) =

∫
B(0,ε)

v(x−y)φε(y)dy.

We recall that vε∈C∞(Ωε) and vε converges uniformly to v∈C(Ω) on compact subsets
of Ωε. Properties of mollification are discussed for example in [21]. We state one of
the main results of this paper
Theorem 3.2. Let u be the convex solution of the Monge-Ampère equation (1.1).
There exists a sequence uε∈C∞(Ω) of convex functions, obtained by dilatations and
convolutions of u, such that detD2uε=fε converges to f weakly as measures and uε
converges uniformly to u on Ω. Explicitly

uε=uλδλ ,withλ= 1+εand lim
λ→1+

δλ= 0. (3.3)

Proof. Recall from Lemma 3.2 that dλ=d(∂Ω,∂(Ωλ))>0 and so uλε′ ∈C∞(Ω) for
ε′≤dλ/2. For 1<λ≤2, since uλε′→uλ uniformly on Ω, ∀ε>0,∃δλ such that 0<δλ≤ dλ

2
and

|uλδλ(x)−uλ(x)|<ε/2,∀x∈Ω.

To alleviate the notation, we do not explicitly write the dependence of δλ on ε. We
define for ε>0

uε=uλδλ ,withλ= 1+ε.

Let γ>0. By Lemma 3.2, uλ→u uniformly on Ω. Thus, ∃ε0>0 such that for 0<ε<ε0
we have |u1+ε(x)−u(x)|<γ/2. For 0<ε<min(ε0,γ) and x∈Ω we have

|uε(x)−u(x)|≤ |uε(x)−u1+ε(x)|+ |u1+ε(x)−u(x)|

≤ ε

2
+
γ

2
<
γ

2
+
γ

2
=γ.
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This proves that uε→u uniformly on Ω. By Lemma 3.2, uε is convex and in C∞(Ω).
By Remark 2.6, detD2uε converges to f weakly as measures.

We now establish that the sequence uε from Theorem 3.2 may be assumed to be
uniformly strictly convex.

Theorem 3.3. There exists a sequence uε which satisfies the conditions of Theorem
3.2 and such that detD2uε≥ εd and |(D2uε)i,j |≤C0(ε),i,j= 1,. ..,d for a constant
C0>0 which depends on ε and limε→0C0(ε) =∞. Moreover the smallest eigenvalue
of cofD2uε is uniformly in x bounded below by C1(ε) = εd/(dC0(ε)).

Proof. Let us denote by ûε the sequence given by Theorem 3.2. We choose y0∈Ω
and define

wε=
ε

2
|x−y0|2.

We have wε∈C∞(Ω) and D2wε= εdI where I is the d×d identity matrix. Put

uε(x) = ûε(x)+wε(x).

Then uε∈C∞(Ω), is convex and converges uniformly to u on Ω. It then follows by
Lemma 2.1 that detD2uε converges to f weakly as measures.

Next, using for example Proposition 3.3 of [19], we have

detD2uε≥detD2ûε+detD2wε≥ εd.

Let us denote by λi,i= 1,. ..,d, the eigenvalues of D2uε with 0<λ1≤ .. .≤λd. Since
D2uε is symmetric and invertible, cofD2uε= (detD2uε)(D

2uε)
−1 has smallest eigen-

value (detD2uε)/λd.

On the other hand, recall from (3.3), that ûε is obtained from u by dilatation and
convolution, i.e. ûε=uλδ for some λ and δ which depends on ε. For i,j= 1,. ..,d

∂2

∂xi∂xj
uε(x) =

1

δd

∫
Rn

∂2

∂xi∂xj

(
φ

(
x−y
δ

))
uλ(y)dy+εκji

=
1

δd+2

∫
Rn

∂2φ

∂xi∂xj

(
x−y
δ

)
uλ(y)dy+εκji

=
1

δd+2

∫
B(x,δ)

∂2φ

∂xi∂xj

(
x−y
δ

)
uλ(y)dy+εκji ,

where κji = 1 if i= j and κji = 0 otherwise. Since φ and its derivatives have compact
support, and u is bounded on Ω, we conclude that

|∂2uε/(∂xi∂xj)|≤C(ε) =
C

δ2
+ε, (3.4)

for a constant C>0 which is independent of ε and x. It follows that |λi|≤dC(ε),i=
1,. ..,d, by using for example the Gershgorin circle theorem. We then get that the
smallest eigenvalue of cofD2uε is bounded below by εd/(dC(ε)).

Explicitly ûε=uλδ with λ= 1+ε, 0<δ≤dλ/2 and limλ→1dλ= 0. Using (3.4), we
conclude that limε→0C0(ε) =∞.
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4. Approximation by piecewise polynomials C1 functions In this section
we assume that 0≤f ≤M for a constant M . For simplicity, for the construction of
the finite dimensional spaces, we now assume that the domain Ω has a polygonal
boundary. We establish our main result on approximation of the Monge-Ampère
equation (1.1) by piecewise polynomial C1 functions.

4.1. Additional notation and approximation results
We recall the standard notation W k,p(Ω) for the Sobolev spaces and use ||.||k,p

and |.|k,p respectively for their norms and semi-norms. We will also use the notation
Hk(Ω) forW k,2(Ω) and in this case, the norm and semi-norms are denoted respectively
by ||.||k and |.|k.

Let T denote a triangulation of Ω into simplices K which is conforming in the
sense that the intersection of any two simplices is either empty or is a vertex, an edge
or more generally a common subface. We denote by hK the diameter of K and by
ρK the radius of the largest ball contained in K. We assume that the triangulation
is shape regular, i.e. there exists a constant C>0 such that for any triangle K,
hK/ρK ≤C. We also assume that the triangulation is quasi-uniform, i.e. h/hmin≤C
where h and hmin are the maximum and minimum respectively of {hK ,K ∈Th}.

We let Vh denote a finite dimensional space of piecewise polynomial C1 functions
of local degree r≥3, i.e., Vh is a subspace of

{s∈C1(Ω), s|t∈Pr, ∀t∈T },

where Pr denotes the space of polynomials of degree less than or equal to r. Such
spaces can be realized as finite element spaces [7] or more generally as spline spaces
[17]. We make the assumption that the degree r is sufficiently high so that the
following approximation properties hold:

||v−Ihv||k,p≤Caphl+1−k|v|l+1,p, (4.1)

where Ih is an interpolation operator mapping the Sobolev space W l+1,p(Ω) into Vh,
1≤p≤∞ and 0≤k≤ l≤ r. Unless the mesh has a special form, in general one needs
r≥5 for d= 2 and r≥9 for d= 3. The constant Cap depends only on r,l, the domain
Ω and is independent of h. We also make the assumption that the following inverse
inequality holds

||v||s,p≤Cinvhl−s+min(0, dp−
d
q )||v||l,q,∀v∈V h, (4.2)

and for 0≤ l≤s,1≤p,q≤∞. The constant Cinv is independent of h. The above
assumptions hold for finite element spaces [7].

4.2. Discrete convexity
Lemma 4.1 ([15]). For two symmetric d×d matrices A and B, we have

|λ1(A)−λ1(B)|≤ cdmax
i,j
|Aij−Bij |,

where cd is a constant which depends only on d.
Remark 4.1. It follows from Lemma 4.1 that for maxi,j |Aij−Bij |<λ1(B)/(2cd),
and B positive definite, A is also positive definite with λ1(A)≥λ1(B)/2.

The proof of the following result can be found in section 5 of [8].
Lemma 4.2. Let vh be a function which is a polynomial of degree r and convex on
each element K. Assume that vh∈C1(Ω). Then vh is convex.
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4.3. Approximation results In [2] and also [6], the following result was
proven
Theorem 4.2. Let uε and gε be C∞(Ω) functions such that detD2uε=fε>cε>0
with uε=gε on ∂Ω. Let gε,h= Ihgε. Then the problem: find uε,h∈Vh, uε,h=gε,h on
∂Ω and ∫

Ω

(detD2uε,h−fε)vhdx= 0,∀vh∈Vh∩H1
0 (Ω),

has a unique solution uε,h in a sufficiently small neighborhood of Ihuε and we have

||uε−uε,h||1≤Chl||uε||l+1,5≤ l≤ r.

From the above result, one derives easily an estimate in the H2(Ω) Sobolev norm.
Recall that Vh⊂H2(Ω). We have by (4.1) and (4.2)

||uε−uε,h||2≤||uε−Ihuε||2 + ||Ihuε−uε,h||2
≤Chl−1||uε||l+1 +Ch−1||Ihuε−uε,h||1
≤Chl−1||uε||l+1 +Ch−1||Ihuε−uε||1 +Ch−1||uε−uε,h||1
≤Chl−1||uε||l+1.

By the embedding of H2(Ω) into L∞(Ω), we have

||uε−uε,h||0,∞≤C||uε−uε,h||2≤Chl−1||uε||l+1,5≤ l≤ r.

It follows that uε,h converges uniformly to uε on compact subsets of Ω.
Moreover, again by (4.1) and (4.2), using d= 2,3

||uε−uε,h||2,∞≤||uε−Ihuε||2,∞+ ||Ihuε−uε,h||2,∞
≤Chl−1||uε||l+1,∞+h−

d
2 ||Ihuε−uε,h||2

≤Chl−1||uε||l+1,∞+Chl−1− d2 ||uε||l+1

≤Chl−4||uε||l+1,∞.

Since 5≤ l≤ r, for h≤hε for some hε, we have Chl−4||uε||l+1,∞≤λ1(D2uε)/(2cd).
Thus maxij |(D2uε)ij−(D2uε,h)ij |≤ ||uε−uε,h||2,∞≤λ1(D2uε)/(2cd). Since fε>cε>
0, there exists a constant which we also denote by cε such that λ1(D2uε)≥ cε. Hence
by Remark 4.1 and Lemma 4.2, uε,h is piecewise strictly convex and convex.

We now consider the family {uε,h,h≤hε} of convex functions and can now prove
one of the main results of this paper.
Theorem 4.3. The family {uε,h,h≤hε} has a subsequence which converges uniformly
on compact subsets of Ω to the solution u of (1.1).

Proof. Let K be a compact subset of Ω. Since uε→u uniformly on K, for k≥1,
∃εk>0 such that for 0<ε≤ εk, and x∈K, |u(x)−uε(x)|<1/(2k). Since uεk,h→uεk
uniformly on K, we can choose hk<hεk such that |uεk(x)−uεk,hk(x)|<1/(2k) for all
x∈K. The result then follows from the triangular inequality.

As a consequence of Lemma 2.1, detD2uεk,hk converges weakly to f as measures.
Remark 4.4. Although Theorem 4.3 asserts the existence of a discrete strictly con-
vex function, the latter may have a discrete Hessian with very small eigenvalues, in
absolute value, prohibiting the direct use of Newton’s method. The use of fixed point
iterative methods, as in [2], which enforce locally convexity are the best options avai-
lable.

For simplicity, we now refer to uε,h as uh for an arbitrary family ε→0, e.g.
ε= 1/m,m= 1,2.. .
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5. The general case of locally integrable right hand side f In this part,
we show how our results can be extended to the general case where 0≤f but with
f locally integrable. Bakelman [3, 4] introduced a notion of weak solution of the
problem

detD2u=µ in Ω

u=gon∂Ω,
(5.1)

where µ is not necessarily a finite Borel measure and with the boundary condition
satisfied in a generalized sense. We first recall what he called the border of a convex
function and the notion of solution in the sense of Bakelman. We extend his existence
and uniqueness results when µ has density f to the case where the domain is only
assumed to be convex. We do it by considering the problems

detD2u=fM in Ω

u=gon∂Ω,
(5.2)

where fM (x) =f(x) for f(x)≤M and fM (x) = 0 otherwise. We show that the solu-
tions uM of (5.2) converge uniformly on compact subsets of Ω to a generalized solution
in the sense of Bakelman of (1.1). And so do the approximate solutions uM,h.

We now view Rd as a hyperplane of Rd+1. Let v be a bounded convex function
on Ω. We denote by Sv the graph of v and by Co(Sv) the closed convex hull of the
graph of v. Let Z be the cylinder with base ∂Ω and generators parallel to the xd+1

axis. It can be shown that the closed set

H=Z∩Co(Sv),

is a union of sets l(x),x∈∂Ω and l(x) is either a point {(x,z0)}, a closed segment
{(x,z),z0≤z≤z1} or a closed ray {(x,z)z0≤z<∞}. See [3] and [4, p. 128]. The
function defined on ∂Ω by

gv(x) =z0,(x,z0)∈ l(x),

is called the border of the convex function v(x).
Remark 5.1. If v∈K(Ω)∩C(Ω), then gv =v on ∂Ω. We have
Lemma 5.1. Assume that v and w are convex functions on Ω such that v(x)≤
w(x),x∈Ω. Then gv≤gw on ∂Ω.

Proof. Since v≤w in Ω, for x∈∂Ω, points (x,z) in Z∩Co(Sv) are below the
corresponding points (x,z) in Z∩Co(Sw). By definition of border as an infimum, we
obtain the result.
Definition 5.2. We assume that the measure µ is finite on compact subsets of Ω. Let
V (µ,g) denote the set of convex functions v on Ω such that M [v] =µ and gv(x)≤g(x)
for all x∈∂Ω. A convex function u∈V (µ,g) is a solution of (5.1) in the sense of
Bakelman if

gu(x)≥gv(x),x∈∂Ω,

for all v∈V (µ,g).
Remark 5.3. Assume that Ω is a bounded convex domain of Rd and g can be extended
to a function g̃∈C(Ω) which is convex in Ω. Then if µ is a finite Borel measure,
(5.1) has a unique convex Aleksandrov solution in C(Ω) which assumes the boundary
condition in the classical sense. (c.f. [14, Theorem 1.1]).
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As a consequence of [4, Theorem 10.4] we have
Theorem 5.4. Let Ω be a bounded convex domain of Rd and let µ be a Borel measure
on Ω. Assume that zε is a family of convex functions such that

−∞<r1≤zε|∂Ω≤ r2<∞
M [zε]≤µ.

Then we have

r′1≤zε≤ r2,x∈Ω,

where r′1 depends only on r1,µ and Ω.
In [3] a comparison principle is proved for convex solutions of (1.1) which are not

necessarily in C(Ω). We give a new proof based on the proof for C(Ω) solutions given
in [13].
Theorem 5.5. Let Ω be a bounded convex domain and let z1 and z2 be convex
functions in Ω such that r≥z1≥z2 on ∂Ω, r∈R. Assume that

M [z1]≤M [z2].

Then z1≥z2 in Ω.
Proof. The theorem without the requirement of an upper bound for z1 and z2 on

∂Ω is given as Theorem 10.1 of [3]. If z1 and z2 are in C(Ω), the proof can be found
in [13] Theorem 1.4.6. We use a contradiction argument. Let

U1 ={x∈Ω,z1(x)<z2(x)}.

Assume that U1 is non-empty. Since z1 and z2 are convex, they are uniformly
bounded above by r and are therefore continuous. Thus U1 is open. Let U be
a non-empty open subset of U1 such that U ⊂U1. Let a= minx∈U{z1(x)−z2(x)}.
Put b= infx∈∂Ω{z1(x)−z2(x)}. By assumption a≤0≤ b. There exists x0∈U1

such that a=z1(x0)−z2(x0). It follows that a<0≤ b. We choose δ>0 such that
δ(diamΩ)2< (b−a)/2. We define

w(x) =z2(x)+δ|x−x0|2 +
b+a

2
.

Let G={x∈ U,z1(x)<w(x)}. We have x0∈G and as in [13] Theorem 1.4.6, one
shows that G∩∂Ω =∅ with M [z1](G)>M [z2](G) contradicting the assumption of the
theorem. We conclude that U1 must be empty and hence z1≥z2 in Ω.

We will also need
Lemma 5.2 ([14] Lemma 5.1). Let Ω⊂Rd be a bounded convex domain, µj ,µ be

Borel measures in Ω with µ finite, uj ∈C(Ω) convex in Ω and g can be extended to a
function g̃∈C(Ω) which is convex in Ω with

1. uj =g on ∂Ω,
2. M [uj ] =µj in Ω,
3. µj→µ weakly in Ω, and
4. µj(Ω)≤A for all j for a constant A.

Then there exists u∈C(Ω) convex in Ω such that uj converges, up to a subsequence,
to u uniformly on compact subsets of Ω, and M [u] =µ with u=g on ∂Ω.

We can now prove the following theorem.
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Theorem 5.6. Assume that Ω is a bounded convex domain of Rd and g can be
extended to a function g̃∈C(Ω) which is convex in Ω. If f ≥0 is locally integrable,
the problem (1.1) has a unique convex solution in the sense of Bakelman. Moreover
the solution u is the uniform limit on compact subsets of Ω of the solutions uM of the
problems (5.2) with truncated right hand sides as M→∞.

Proof. For ε>0 sufficiently small, we recall that

Ωε={x∈Ω,d(x,∂Ω)>ε}.

We define a finite Borel measure µε by

µε(B) =

∫
B∩Ωε

f(x)dx.

Given M>0, we define finite Borel measures µε,M by

µε,M (B) =

∫
B∩Ωε

fM (x)dx.

Part 1: Limits as M→∞.
We claim that up to a subsequence µε,M converges weakly to µε as M→∞. By [9,

Theorem 1, section 1.9], it is enough to show that µε,M (B)→µε(B) for any bounded
Borel set B with µε(∂B) = 0. Since fM→f a.e. as M→∞, by Fatou’s lemma

µε(B)≤ liminf
M→∞

µε,M (B).

Moreover, 0≤fM (x)≤f(x) for all x∈Ω. Thus µε,M (B)≤µε(B) and this proves the
claim.

Note also that µε,M (Ω)≤µε(Ω)<∞ and µε(Ω) is independent of M .
By Remark 5.3, there exists uε,M ∈C(Ω) such that

detD2uε,M =µε,M in Ω

uε,M =gon∂Ω.

By Lemma 5.2, as M→∞, uε,M converges uniformly on compact subsets of Ω, up to
a subsequence, to the convex solution uε of the problem

detD2uε=µε in Ω

uε=gon∂Ω.

Part 2: Existence and uniqueness of the Bakelman solution.
We denote by µ the measure with density f , i.e.

µ(B) =

∫
B

f(x)dx,

for any Borel set B. Since µε≤µ and uε=gon∂Ω, applying Theorem 5.4 to the family
uε, we obtain the uniform boundedness in x of uε. We conclude the existence of a
function u(x) and a subsequence uεm such that uεm(x) converges pointwise to u(x). As
a limit of convex functions, u is necessarily convex. Moreover by [20, Theorem 10.8],
the convergence is uniform on compact subsets of Ω. By Lemma 2.1, M [uεm ]→M [u]



12 Smooth approximations of the Aleksandrov solution

weakly. Again by [9, Theorem 1, section 1.9], M [uεm ](B)→M [u](B) for any bounded
Borel set B with M [u](∂B) = 0. But

M [uεm ](B) =

∫
B∩Ωεm

f(x)dx→
∫
B

f(x)dx, asεm→0.

We conclude that M [u](B) =
∫
B
f(x)dx for any closed ball B contained in Ω and hence

M [u] has density f .
Next, for ε′<ε, we have µε′ ≥µε with uε′ =uε on ∂Ω. Since g∈C(∂Ω), uε is

uniformly bounded above on ∂Ω. By the comparison principle given in Theorem 5.5
we have uε′ ≤uε in Ω and hence u≤uε for all ε. By Lemma 5.1, we have gu≤guε =g
on ∂Ω.

Finally, let v∈V (µ,g). By definition M [v] =µ and gv≤g on ∂Ω. We show that
gu≥gv. Note that uε=g≥gv on ∂Ω with M [uε] =µε≤µ=M [v]. By Theorem 5.5,
we conclude that uε≥v in Ω and hence u≥v in Ω. By Lemma 5.1, we obtain gu≥gv.
This proves that u is a Bakelman solution of (1.1).

The uniqueness of the Bakelman solution is an immediate consequence of Theorem
5.5.

Part 3: Limits as ε→0.
Let the finite Borel measure µM be given by

µM (B) =

∫
B

fM (x)dx,

and let 1D denote the indicator function of the set D. Then µε,M (B) =
∫
B

1ΩεfM (x)dx
and µε,M (B)≤µε(B) for all ε>0. Moreover 1ΩεfM (x)→fM (x) a.e as ε→0. With the
same arguments as above, one shows that µε,M→µM weakly as ε→0 with µε,M (Ω)≤
µM (Ω)<∞ and µM (Ω) is independent of ε.

Thus again by Lemma 5.2, as ε→0, uε,M converges uniformly on compact subsets
of Ω, up to a subsequence, to the solution uM of the problem

detD2uM =µM in Ω

uM =gon∂Ω.

Part 4. Finishing up.
We show that the Bakelman solution u is the uniform limit on compact subsets of

Ω of uM as M→∞. Note that we can not use the approach in part I as f is assumed
to be only locally integrable. However the approach taken in part II can be adapted.
For the convenience of the reader we explicitly repeat the argument.

Since µM ≤µ and uM =gon∂Ω, applying Theorem 5.4 to the family uM , we obtain
the uniform boundedness in x∈Ω of uM (x). We conclude the existence of a function
w(x) and a subsequence uMk

such that uMk
(x) converges pointwise to w(x). As a

limit of convex functions, w is necessarily convex. Moreover by [20, Theorem 10.8],
the convergence is uniform on compact subsets of Ω. By Lemma 2.1, M [uMk

]→M [w]
weakly. Again by [9, Theorem 1, section 1.9], M [uMk

](B)→M [w](B) for any bounded
Borel set B with M [w](∂B) = 0. But

M [uMk
](B) =

∫
B

fMk
(x)dx→

∫
B

f(x)dx, ask→∞.

We conclude that M [w](B) =
∫
B
f(x)dx for any closed ball B contained in Ω and

hence M [w] has density f .
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Next, for M ′>M , we have µM ′ ≥µM with uM ′ =uM on ∂Ω. Since g∈C(∂Ω), uM
is uniformly bounded above on ∂Ω. By the comparison principle given in Theorem
5.5 we have uM ′ ≤uM in Ω and hence w≤uMk

for all k. By Lemma 5.1, we have
gw≤guMk =g on ∂Ω.

Finally, let v∈V (µ,g). By definition M [v] =µ and gv≤g on ∂Ω. We show that
gw≥gv. Note that uMk

=g≥gv on ∂Ω with M [uMk
] =µMk

≤µ=M [v]. By Theorem
5.5, we conclude that uMk

≥v in Ω and hence w≥v in Ω. By Lemma 5.1, we obtain
gw≥gv. This proves that w is a Bakelman solution of (1.1).

By uniqueness of the Bakelman solution w=u. The limit u being unique, the
whole sequence uM must converge to u. This concludes the proof.

Theorem 5.6 suggests that, for the numerical resolution of (1.1), one should solve
the problems (5.2) with truncated right hand sides for increasing values of M . We
now prove that this process gives a convergent scheme.

Theorem 5.7. Assume that uM converges uniformly to u on compact subsets of Ω
as M→∞ and uM,h converges uniformly to uM on compact subsets of Ω as h→0.
Then uM,h has a subsequence which converges uniformly to u on compact subsets of
Ω as h→0 and M→∞.

Proof. Let T be a compact subset of Ω and let k>1. Since uM converges uniformly
to u on T , there exists Mk>0 such that for M ≥Mk, |uM (x)−u(x)|<1/(2k) for all
x∈T . Next, uMk,h converges uniformly to uMk

on T . Thus, there exists hk>0 such
that for 0<h≤hk, |uMk,hk(x)−uMk

(x)|<1/(2k). The result then follows from the
triangular inequality.

Remark 5.8. By the results of section 4, uM,h may be assumed to be convex and thus
detD2uMk,hk→f weakly as measures for appropriate sequences hk→0 and Mk→∞.

Remark 5.9. Throughout this paper, we used the well known fact that a uniformly
bounded sequence of convex functions on a convex domain Ω is locally uniformly
equicontinuous and hence has a pointwise convergent subsequence. The result is a
consequence of [13, Lemma 3.2.1].
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