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Abstract We discuss the application of isogeometric analysis to the fully non linear
elliptic Monge-Ampère equation, an equation nonlinear in the highest order deriva-
tives. The construction of smooth discrete spaces renders isogeometric analysis a
natural choice for the discretization of the equation.

1 Introduction

We are interested in the numerical resolution of the nonlinear elliptic Monge-
Ampère equation

detD2u = f inΩ

u = 0on∂Ω ,
(1)

where D2v denotes the Hessian of a smooth function v, i.e. D2v is the matrix with
(i, j)-th entry ∂ 2v/(∂xi∂x j). Here Ω is a smooth uniformly convex bounded do-
main of R2 which is at least C1,1and f ∈C(Ω) with f ≥ c0 > 0 for a constant c0.
If f ∈C0,α ,0 < α < 1, (1) has a classical convex solution in C2(Ω)∩C(Ω) and its
numerical resolution assuming more regularity on u is understood e.g. [6, 11, 7]. In
the non smooth case, various approaches have been proposed e.g. [17, 16]. For vari-
ous reasons, it is desirable to use standard discretization techniques, which are valid
for both the smooth and the non smooth cases. We propose to solve numerically (1)
by the discrete version of the sequence of iterates

Gerard Awanou
University of Illinois at Chicago, Department of Mathematics, Statistics, and Computer Science,
M/C 249, Chicago, IL 60607-7045, USA e-mail: awanou@uic.edu

1



2 Gerard Awanou

(cof(D2uk
ε + εI)) : D2uk+1

ε = detD2uk
ε + f inΩ

uk+1
ε = 0on∂Ω ,

(2)

where ε > 0, I is the 2× 2 identity matrix and we use the notation cofA to denote
the matrix of cofactors of A, i.e. for all i, j, (−1)i+ j(cofA)i j is the determinant of the
matrix obtained from A by deleting its i-th row and its j-th column. For two n× n
matrices A,B, we recall the Frobenius inner product A : B = ∑

n
i, j=1 Ai jBi j, where Ai j

and Bi j refer to the entries of the corresponding matrices.
Our recent results [1] indicate that an appropriate space to study a natural vari-

ational formulation of (1) is a finite dimensional space of piecewise smooth C1

functions. For the numerical experiments we will let Vh be a finite dimensional
space of piecewise smooth C1 functions constructed with the isogeometric analy-
sis paradigm. Numerical results indicate that the proposed iterative regularization
(2) is effective for non smooth solutions. Formally the sequence defined by (2) con-
verges to a limit uε and uε converges uniformly on compact subsets of Ω to the
solution u of (1) as ε → 0.

For ε = 0, (2) gives the sequence of Newton’s method iterates applied to (1).
Surprisingly, for the two dimensional problem, the formal limit uε of the sequence
uk+1

ε solves the vanishing viscosity approximation of (1)

ε∆uε +detD2uε − f = 0inΩ

uε = 0on∂Ω .
(3)

However discrete versions of Newton’s method applied to (3) do not in general
perform well for non smooth solutions. This led to the development of alternative
methods, e.g. the vanishing moment methodology [11]. The key feature in (2) is that
the perturbation εI is included to prevent the matrix D2uk

ε + εI from being singular.
The difficulty of constructing piecewise polynomials C1 functions is often cited

as a motivation to seek alternative approaches to C1 conforming approximations of
the Monge-Ampère equation. In [1] Lagrange multipliers are used to enforce the C1

continuity, but the extent to which this constraint is enforced in the computations
is comparable to the accuracy of the discretization. With the isogeometric method,
the basis functions are also C1 at the computational level. On the other hand an-
other advantage of the isogeometric method is the exact representation of a wide
range of geometries which we believe would prove useful in applications of the
Monge-Ampère equation to geometric optics. Finally the isogeometric method is
widely reported to have better convergence properties than the standard finite ele-
ment method.

The main difficulty of the numerical resolution of (1) is that Newton’s method
fails to capture the correct numerical solution when the solution of (1) is not smooth.
We proposed in [1] to use a time marching method for solving the discrete equations
resulting from a discretization of (1). Moreover in [3] we argued that the correct
solution is approximated if one first regularizes the data. However numerical expe-
riments reported in [1] and in this paper indicate that regularization of the data may
not be necessary.
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It is known that the convex solution u of (1) is the unique minimizer of a certain
functional J in a set of convex functions S. It is reasonable to expect, although not
very easy to make rigorous, that the set S can be approximated by a set of smooth
convex functions Sm and minimizers of J in Sm would approximate the minimizer
of J in S. We prove that the functional J has a unique minimizer in a ball of C1

functions centered at a natural interpolant of a smooth solution u. With a sufficiently
close initial guess, a minimization algorithm can be used for the computation of
the numerical solution. The difficulty of choosing a suitable initial guess may be
circumvented by using a global minimization strategy as in [14]. Netherveless our
result can be considered a first step towards clarifying whether regularization of the
data is necessary for a proven convergence theory of C1 approximations of (1) in the
non smooth case.

In this paper the numerical solution uh is computed as the limit of the sequence
uk

ε,h which solve the discrete variational problem associated with (2). For the case
of smooth solutions we use ε = 0 in the resulting discrete problem. See Remark 3.3.
Since (1) is not approximated directly there is a loss of accuracy. Netherveless our
algorithm can be considered a step towards the development of fast iterative methods
capable of retrieving the correct numerical approximation to (1) in the context of C1

conforming approximations.
Let uε,h denote the solution of the discrete problem associated to (3). The exis-

tence of uε,h and uk
ε,h, the convergence of the sequence (uk

ε,h)k as k→ ∞ as well as
the behavior of uε,h as ε → 0 will be addressed in a subsequent paper. These re-
sults parallel our recent proof of the convergence of the discrete vanishing moment
methodology [2].

This paper falls in the category of papers which do not prove convergence of the
discretization of (1) to weak solutions but give numerical evidence of convergence
as well results in the smooth case and/or in particular cases e.g. [13, 12, 10]. We
organize the paper as follows: in the next section we describe the notation used and
some preliminaries. In section 3 we prove minimization results at the discrete level.
We also derive in section 3 the vanishing viscosity approximation (3) from (2) as
well as the discrete variational formulation used in the numerical experiments. In
section 4 we recall the isogeometric concept and give numerical results in section 5.

2 Notation and preliminaries

We denote by Ck(Ω) the set of all functions having all derivatives of order ≤ k
continuous on Ω where k is a nonnegative integer or infinity and by C0(Ω), the
set of all functions continuous on Ω . A function u is said to be uniformly Hölder
continuous with exponent α,0 < α ≤ 1 in Ω if the quantity

supx 6=y
|u(x)−u(y)|
|x− y|α

,
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is finite. The space Ck,α(Ω) consists of functions whose k-th order derivatives are
uniformly Hölder continuous with exponent α in Ω .

We use the standard notation of Sobolev spaces W k,p(Ω) with norms ||.||k,p and
semi-norm |.|k,p. In particular, Hk(Ω) = W k,2(Ω) and in this case, the norm and
semi-norms will be denoted respectively by ||.||k and semi-norm |.|k.

For a function u, we denote by Du its gradient vector and recall that D2u denotes
its Hessian. For a matrix field A, we denote by divA the vector obtained by taking
the divergence of each row.

Using the product rule one obtains for sufficiently smooth vector fields v and
matrix fields A

div(Av) = (divAT ) · v+A : (Dv)T . (4)

Moreover by [8, p. 440]
divcofD2v = 0. (5)

For computation with determinants, the following results are needed.

Lemma 1. We have

detD2v =
1
2
(cofD2v) : D2v =

1
2

div
(
(cofD2v)Dv

)
. (6)

And for F(v) = detD2v we have

F ′(v)(w) = (cofD2v) : D2w = div
(
(cofD2v)Dw

)
,

for v,w sufficiently smooth.

Proof. For a 2×2 matrix A, one easily verifies that 2detA = (cofA) : A. It follows
that detD2v = 1/2(cofD2v) : D2v. Using (4) and (5) we obtain (cofD2v) : D2v =
div
(
(cofD2v)Dv

)
and (cofD2v) : D2w= div

(
(cofD2v) Dw

)
. Finally the expression

of the Fréchet derivative is obtained from the definition of Fréchet derivative and the
expression detD2v = 1/2(cofD2v) : D2v. ut

Lemma 2. Let v,w ∈W 2,∞(Ω) and ψ ∈ H2(Ω)∩H1
0 (Ω), then∣∣∣∣∫

Ω

(detD2v−detD2w)ψ dx
∣∣∣∣≤C(|v|2,∞ + |w|2,∞)|v−w|1|ψ|1. (7)

The above lemma is a simple consequence of the mean value theorem and Cauchy-
Schwarz inequalities. For additional details we refer to [1].

We require our approximation spaces Vh to satisfy the following properties: There
exists an interpolation operator Qh mapping W l+1,p(Ω) into the space Vh for 1≤ p≤
∞,0≤ l ≤ d with d a constant that depends on Vh and such that

||v−Qhv||k,p ≤Caphl+1−k||v||l+1,p, (8)

for 0≤ k ≤ l and

||v||s,p ≤Cinvhl−s+min(0, n
p−

n
q )||v||l,q,∀v ∈Vh, (9)
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for 0≤ l ≤ s,1≤ p,q≤ ∞.
The discussion in [1] is for a space Vh of piecewise polynomials. However, the

results quoted here are valid for spaces of piecewise smooth C1 functions.
We consider the following discretization of (1): find uh ∈Vh∩H1

0 (Ω) such that∫
Ω

(detD2uh)vdx =
∫

Ω

f vdx, ∀v ∈Vh∩H1
0 (Ω). (10)

It can be shown that for uh ∈H2(Ω), the left hand side of the above equation is well
defined [1]. We recall from [1] that under the assumption that u∈C4(Ω) is a strictly
convex function, there exists δ > 0 such that if we define

Xh = {vh ∈Vh,vh = 0on∂Ω , ||vh−Qhu||1 <
δh2

4
},

then for h sufficiently small and vh ∈ Xh, ||vh−Qhu||1 < δh2/2, vh is convex with
smallest eigenvalue bounded a.e. below by m′/2 and above by 3M′/2. Here m′ and
M′ are respectively lower and upper bounds of the smallest and largest eigenvalues
of D2u in Ω . The idea of the proof is to use the continuity of the eigenvalues of a
matrix as a function of its entries. Thus using (8) with k = 2, p = ∞ and l = d one
obtains that D2Qhu(x) is also positive definite element by element for h sufficiently
small. The same argument shows that a C1 function close to D2Qhu is also piecewise
convex and hence convex due to the C1 continuity. The power of h which appears in
the definition of Xh arises from the use of the inverse estimate (9).

We note that by an inverse estimate, for vh ∈ Xh,

||vh−Qhu||2,∞ ≤Cinvh−2||vh−Qhu||1 ≤Cinvδ .

3 Minimization results

We first note

Lemma 3. Let vn,v,wn and w ∈W 2,∞(Ω)∩H1
0 (Ω) such that ||vn− v||2,∞→ 0 and

||wn−w||2,∞→ 0. Then∫
Ω

(detD2vn)wn dx→
∫

Ω

(detD2v)wdx (11)∫
Ω

f vn dx→
∫

Ω

f vdx. (12)

Proof. Put α =
∫

Ω
(detD2vn)wn dx−

∫
Ω
(detD2v)wdx. We have

α =
∫

Ω

(detD2vn−detD2v)wn dx+
∫

Ω

(detD2v)(wn−w)dx.

Using (7) we obtain



6 Gerard Awanou

|α| ≤C(|vn|2,∞ + |v|2,∞)|vn− v|1|wn|1 +C|v|2,∞|v|1|wn−w|1.

Since |vn−v|1 ≤C||vn−v||2,∞ and convergent sequences are bounded, (11) follows.
We have ∣∣∣∣3∫

Ω

f (vn− v)dx
∣∣∣∣≤C|| f ||0||vn− v||0,

and so (12) holds.

We consider the functional J defined by

J(v) =−
∫

Ω

vdetD2vdx+3
∫

Ω

f vdx.

We have

Lemma 4. For v,w ∈W 2,∞(Ω)∩H1
0 (Ω)

J′(v)(w) = 3
∫

Ω

( f −detD2v)wdx.

Proof. Note that for v,w smooth, vanishing on ∂Ω and by Lemma 1

J′(v)(w) = 3
∫

Ω

f wdx−
∫

Ω

wdetD2vdx−
∫

Ω

vdiv[(cofD2v)Dw]dx.

But by integration by parts, the symmetry of D2v and Lemma 1∫
Ω

vdiv[(cofD2v)Dw]dx =−
∫

Ω

[(cofD2v)Dw] ·Dvdx =−
∫

Ω

[(cofD2v)Dv] ·Dwdx

=
∫

Ω

wdiv[(cofD2v)Dv]dx = 2
∫

Ω

wdetD2vdx.

Thus
J′(v)(w) = 3

∫
Ω

( f −detD2v)wdx.

We have proved that for v,w smooth, vanishing on ∂Ω

J(v+w)− J(v) = 3
∫

Ω

( f −detD2v)wdx+O(|w|21).

Since the space of infinitely differentiable functions with compact support is dense
in W 2,∞(Ω)∩H1

0 (Ω), the result holds for v,w ∈W 2,∞(Ω)∩H1
0 (Ω) by a density

argument and using Lemma 3. ut

The Euler-Lagrange equation for J is therefore (10).

Remark 3.1 It has been shown in [4, 19] that a generalized solution of (1) is the
unique minimizer of the functional J on the set of convex functions vanishing on the
boundary.
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Theorem 3.2 Let u ∈C4(Ω) be the unique strictly convex solution of (1). Then for
h sufficiently small, the functional J has a unique minimizer ûh in Xh. Moreover
||u− ûh||1→ 0 as h→ 0.

Proof. We first note that by (7), the functional J is sequentially continuous in
W 2,∞(Ω)∩H1

0 (Ω). For vn,v ∈W 2,∞(Ω)∩H1
0 (Ω) we have

J(vn)− J(v) = 3
∫

Ω

f (vn− v)dx+
∫

Ω

(vdetD2v− vn detD2vn)dx.

We conclude from Lemma 3 that J(vn)→ J(v) as ||vn−v||2,∞→ 0. Moreover using
the expression of J′(v)(w) given in Lemma 4, we obtain

J′′(v)(w)(z) =−3
∫

Ω

wdiv[(cofD2v)Dz]dx = 3
∫

Ω

[(cofD2v)Dz] ·Dwdx.

We conclude that

J′′(v)(w)(w) = 3
∫

Ω

[(cofD2v)Dw] ·Dwdx.

That is, J is strictly convex in Xh by definition of Xh. A minimizer, if it exists, is
therefore unique.

The argument to prove that J has a minimizer follows the lines of Theorem 5.1
in [9]. We have for some θ ∈ [0,1]

J(v) = J(0)+ J′(0)(v)+
1
2

J′′(θv)(v)(v)

= 0+3
∫

Ω

f vdx+
3
2

θ

∫
Ω

[(cofD2v)Dv] ·Dvdx.
(13)

We claim that for v ∈ Xh,v 6= 0, we have θ 6= 0. Assume otherwise. Then

0 =−
∫

Ω

vdetD2vdx =−1
2

∫
Ω

vdiv(cofD2v)Dvdx

=
1
2

∫
Ω

[(cofD2v)Dv] ·Dvdx≥ m
2
|v|21,

(14)

where m is a lower bound on the smallest eigenvalue of cofD2v. By the assumption
on v ∈ Xh we have m > 0 . We obtain the contradiction v = 0 and conclude that
θ ∈ (0,1].

Next, note that∣∣∣∣∫
Ω

f vdx
∣∣∣∣≤ || f ||0||v||0 ≤ || f ||0||v||1.Thus

∫
Ω

f vdx≥−|| f ||0||v||1.

By (13), we obtain using Poincare’s inequality
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J(v)≥−3|| f ||0||v||1 +
3
2

θm|v|21 ≥−3|| f ||0||v||1 +C||v||21
≥ ||v||1(−3|| f ||0 +C||v||1),

(15)

for a constant C > 0. Let now R > 0 such that

Xh∩{v ∈Vh∩H1
0 (Ω), ||v||1 ≤ R} 6= /0.

Since J is continuous, J is bounded below on the above set. Moreover for ||v||1 ≥ R,
we have

J(v)≥ R(−3|| f ||0 +CR).

We conclude that the functional J is bounded below. We show that its infimum is
given by some ûh in Xh. Let vn ∈ Xh such that limn→∞ J(vn) = infv∈XhJ(v) which has
just been proved to be finite. Then the sequence J(vn) is bounded and by (15), the
sequence vn is also necessary bounded. Let vkn be a weakly convergent subsequence
with limit ûh. We have

lim
n→∞

J′(ûh)(vkn) = J′(ûh)(uh).

Since J is strictly convex in Xh,

J(vkn)≥ J(ûh)+ J′(ûh)(vkn − ûh),

and so at the limit infv∈XhJ(v)≥ J(ûh). This proves that ûh minimizes J in Xh.
We now prove that ||u− ûh||1 → 0 as h→ 0. Note that since uh ∈ Xh, ||ûh −

Qhu||1 ≤ δh2/4. By (8) and triangle inequality, we obtain the result. ut

Remark 3.3 From the approach taken in [1] we may conclude that (10) has a
unique convex solution uh in Xh which therefore solves the Euler-Lagrange equation
for the functional J. Since Xh is open and convex and J convex on Xh, by Theorem
3.9.1 of [15] we have

J(v)≥ J(uh)+ J′(uh)(v−uh),∀v ∈ Xh.

Since uh is a critical point of J in Xh, we get

J(v)≥ J(uh),∀v ∈ Xh.

We conclude that both uh and ûh are minimizers of J in Xh. By the strict convexity of
J in Xh, they are equal. Therefore the unique minimizer of J in Xh solves (10).

We now turn to the regularized problems (2) and (3). The formal limit of uk
ε as

k→ ∞ solves

(cof(D2uε + εI)) : D2uε = detD2uε + f inΩ

uε = 0on∂Ω .
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But since I and D2uε are 2× 2 matrices, we have cof(D2uε + εI) = cofD2uε +
cofεI = cofD2uε + εI and we obtain

(cofD2uε) : D2uε + εI : D2uε = detD2uε + f .

Since εI : D2uε = ε∆uε and by (6) we have (cofD2uε) : D2uε = 2detD2uε , we
obtain (3).

Next we present the discrete variational formulation used in the numerical ex-
periments. To avoid large errors, we used a damped version of (2). Let ν > 0. We
consider the problem

(cof(D2uk
ε + εI)) : D2uk+1

ε = 2detD2uk
ε +

1
ν
(−detD2uk

ε + f ) inΩ

uk+1
ε = 0on∂Ω .

(16)

We note that for ν = 1, (16) reduces to (2). Also the formal limit, as ε → 0 and
k→ ∞, of uk

ε solving (16) is a solution of 1/ν( f −detD2u) = 0.
Let |x| denote the Euclidean norm of x ∈ R2. Note that that D2(|x|2/2) = I and

thus for uk
ε smooth, cof(D2uk

ε + εI) = cofD2(uk
ε + ε/2|x|2) and thus using (4) and

(5) we obtain

div
(
(cof(D2uk

ε + εI))Duk+1
ε

)
= 2detD2uk

ε +
1
ν
(−detD2uk

ε + f ) inΩ

uk+1
ε = 0on∂Ω .

This leads to the following discretization: find uk+1
ε,h ∈Vh∩H1

0 (Ω) such that ∀v ∈
Vh∩H1

0 (Ω)

−
∫

Ω

(
(cof(D2uk

ε,h + εI))Duk+1
ε,h

)
·Dvdx =

∫
Ω

(
2detD2uk

ε,h

+
1
ν
(−detD2uk

ε,h + f )
)

vdx.
(17)

For the initial guess u0
ε,h when ε ≥ 0, we take the discrete approximation of the

solution of the problem

∆u0
ε = 2

√
f inΩ

u0
ε = 0on∂Ω .

While this does not assure that u0
ε,h ∈ Xh the above choice appears to work in all our

numerical experiments.

Remark 3.4 For a possible extension of the minimization result in Theorem 3.2 to
the case of non smooth solutions, the homogeneous boundary condition is necessary.
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4 Isogeometric analysis

We refer to [20] for a short introduction to isogeometric analysis. Here we give
a shorter overview suitable for our needs. Precisely, we are interested in the abi-
lity of this approach to generate finite dimensional spaces of piecewise smooth C1

functions which can be used in the Galerkin method for approximating partial dif-
ferential equations.

A univariate NURBS of degree p is given by

wiNi,p(u)
∑ j∈J w jN j,p(u)

,u ∈ [0,1],

with B-splines Ni,p, weights wi and an index set J which encodes its smoothness.
The parameter h refers to the maximum distance between the knots ui, i ∈J .

A bivariate NURBS is given by

Rkl(u,v) =
wklNk(u)Nl(v)

∑i∈I ∑ j∈J w jNi(u)N j(v)
,u,v ∈ [0,1],

with index sets I and J . In the above expression, we omit the degrees pU and pV
of the NURBS Rkl in the u and v directions.

The domain Ω is described parametrically by a mapping F : [0,1]2→Ω ,F(u,v)=
∑i∈I ∑ j∈J Ri j(u,v)ci j with NURBS Ri j and control points ci j. We take equally
spaced knots ui,v j and hence h refers to the size of an element in the parametric
domain.

We say that a NURBS Rkl has degree p if the univariate NURBS Nk and Nl all
have degree p. The NURBS considered in this paper are all of a fixed degree p and
C1.

The basis functions Ri j used in the description of the domain are also used in the
definition of the finite dimensional space Vh ⊂ span{Ri j ◦F−1}. Thus the numerical
solution takes the form

Th(x,y) = ∑
i∈I

∑
j∈J

Ri j(F−1(x,y))qi j,

with unknowns qi j.
It can be shown [18] that there exists an interpolation operator Qh mapping

Hr(Ω),r ≥ p+1 into Vh such that if 0≤ l ≤ p+1,0≤ l ≤ r ≤ p+1, we have

|u−Qhu|l ≤Chr−l ||u||r,

with C independent of h. Thus the approximation property (8) holds for spaces con-
structed with the isogeometric analysis concept. For the inverse estimates (9) we
refer to [5].
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5 Numerical results

The implementation was done by modifying the companion code to [20]. The com-
putational domain is taken as the unit circle: x2 + y2−1 = 0 with an initial triangu-
lation depicted in Figure 1. The numerical solutions are obtained by computing uk

ε,h
defined by (17).

We consider the following test cases.
Test 1: (smooth solution) u(x,y)= (x2+y2−1)ex2+y2

with f (x,y)= 4e2(x2+y2)(x2+
y2)2(2x2 +3+2y2). Numerical results are given in Table 1. Since pU = 2, pV = 2,
the approximation space in the parametric domain contains piecewise polynomials
of degree p = 2. The analysis in [1] suggests that the rate of convergence for smooth
solutions is O(hp) in the H1 norm, O(hp+1) and O(hp−1) in the L2 and H2 norms
respectively. No regularization or damping was necessary for this case.

Test 2 (No known exact solution) f = ex2+y2
,g = 0. As expected the numerical

solution displayed in Figure 2 appears to be a convex function.
Test 3 (solution not in H1(Ω)) u(x,y) = −

√
1− x2− y2 with f (x,y) = 1/(x2 +

y2− 1)2. With regularization and damping, we were able to avoid the divergence
of the discretization. These results should be compared with the ones in [1] where
iterative methods with only a linear convergence rate were proposed for non smooth
solutions of (1). Note that u in this case is highly singular as f vanishes on ∂Ω .

In the tables nit refers to the number of iterations for Newton’s method.

Table 1 Smooth solution u(x,y) = (x2 + y2−1)ex2+y2

h nit L2 norm rate H1 norm rate H2 norm rate
1/26 3 4.5620 10−1 1.5565 10−0 1.1877 10+1

1/27 6 8.4903 10−3 5.75 1.6442 10−1 3.24 5.0963 10−0 1.2
1/28 4 7.7160 10−4 3.46 3.9573 10−2 2.05 2.5880 10−0 0.97
1/29 4 9.0321 10−5 3.09 9.8122 10−3 2.01 1.3019 10−0 0.99
1/210 4 1.1077 10−5 3.03 2.4462 10−3 2.00 6.5184 10−1 0.99

Fig. 1 Circle represented exactly. pU = 2, pV = 2
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Table 2 Solution not in H1(Ω) u(x,y) =−
√

1− x2− y2 with ν = 2.5,ε = 0.01

h nit L2 norm rate
1/25 42 4.0261 10−1

1/26 2 1.7529 10−1 1.20
1/27 5 1.3612 10−1 0.36
1/28 3 1.0609 10−1 0.36
1/29 2 9.6321 10−2 0.14
1/210 4 7.8179 10−2 0.30
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