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ERROR ANALYSIS OF A MIXED FINITE ELEMENT METHOD

FOR THE MONGE-AMPÈRE EQUATION
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Abstract. We analyze the convergence of a mixed finite element method for the elliptic Monge-
Ampère equation in dimensions 2 and 3. The unknowns in the formulation, the scalar variable and
a discrete Hessian, are approximated by Lagrange finite element spaces. The method originally
proposed by Lakkis and Pryer can be viewed as the formal limit of a Hermann-Miyoshi mixed
method proposed by Feng and Neilan in the context of the vanishing moment methodology. Error
estimates are derived under the assumption that the continuous problem has a smooth solution.
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1. Introduction

We are interested in the numerical approximation of convex solutions of the
nonlinear elliptic Monge-Ampère equation

detD2u = f inΩ

u = g on ∂Ω.
(1.1)

Here Ω is a convex polygonal domain of Rd and f ∈ C(Ω), g ∈ C(∂Ω) with f ≥ c0 >
0 for a constant c0 > 0. We give an analysis of a mixed finite element approximation
of (1.1) for dimensions d = 2 and d = 3. The unknowns in the formulation are
the scalar variable and a discrete Hessian and both are approximated by Lagrange
finite element spaces of degree k ≥ 1.

The numerical study of Monge-Ampère type equations is a recent active research
area where it appears that techniques to prove convergence to the so-called viscosity
solutions of (1.1) are inherently different from the ones needed to derive error esti-
mates for smooth solutions. It has been documented in [7, 8] for the two-dimensional
problem that the method of Lakkis and Pryer with Lagrange elements of degree
k ≥ 2 captures viscosity solutions of the Monge-Ampère equation. Some numerical
methods proposed for the Monge-Ampère equation, e.g. [3], do not perform well
for non smooth solutions when the discrete problem is solved by Newton’s method.
On the other hand, with the mixed method one can use Newton’s method and still
have numerical convergence for non smooth solutions. This offers the possibility of
numerical solvers faster than the iterative methods proposed in [1]. In this paper
we assume that (1.1) has a smooth solution.

To guarantee the existence of a smooth solution, one has to assume that the
domain is smooth and strictly convex and the data f and g are also smooth [9].
The convex polygonal domain may be assumed to be an approximation of a smooth
and strictly convex domain. Another approach would be to consider elements with
curved faces and enforce Dirichlet boundary conditions by a penalty method as in
[3].
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The method of Lakkis and Pryer has been recently generalized in [8] where a
discontinuous finite element space is used to approximate the discrete Hessian.
This results in a more efficient numerical method and an analysis of both types
of methods were given in [8] for the two dimensional problem. The connection of
the method of Lakkis and Pryer with a Herman-Miyoshi mixed finite element was
also noted in [8]. But the idea to analyze the method from the point of view of
mixed methods, or to view it as the formal limit of the mixed method proposed in
the context of the vanishing moment methodology in [6], was not considered. One
possible reason is that Herman-Miyoshi type mixed methods were originally studied
for equations involving the biharmonic operator. Several technical arguments have
to be made as the linearized Monge-Ampère equation is a second order elliptic
equation. The contributions of this paper are:

(1) An analysis valid in both dimensions 2 and 3 and different from the one
given in [8] for the two dimensional problem.

(2) Error estimates for Lagrange elements of degree k ≥ 3 in dimensions 2 and
3.

(3) Numerical experiments for smooth solutions and Lagrange elements of de-
gree k = 1. Previous authors in their implementation eliminated the dis-
crete Hessian, which does not necessarily converge for k = 1, and concluded
the divergence of the method for linear elements.

The approach taken in this paper could help in the investigation of the method for
low order elements, i.e. for k = 1, 2.

The paper is organized as follows. In the second section we introduce some
notations, recall classical finite element results, present the mixed method for the
Monge-Ampère equation and useful facts about computations with determinants.
Our variational formulation is well posed for dimensions d = 2 and d = 3 but other
general statements are valid for arbitrary dimension d. In section 3 we give the
error analysis. The last section is devoted to the numerical results.

2. Preliminaries

2.1. Notation and assumptions. Let Ω be an open convex bounded subset of
R

d with boundary ∂Ω and let Th denote a triangulation of Ω into simplices K. We
denote by hK the diameter of the element K and h = maxK∈Th

hK . We make
the assumption that the triangulation is conforming and satisfies the usual shape
regularity condition, i.e. there exists a constant σ > 0 such that hK/ρK ≤ σ, for
all K ∈ Th where ρK denotes the radius of the largest ball inside K. To be able to
use global inverse estimates, c.f. (2.2) and (2.3) below, we require the triangulation
to be also quasi-uniform, i.e. there is a constant C > 0 such that h ≤ ChK for all
K ∈ Th.

We use the usual notation Lp(Ω), 2 ≤ p ≤ ∞ for the Lebesgue spaces and
Hs(Ω), 1 ≤ s < ∞ for the Sobolev spaces of elements of L2(Ω) with weak derivatives
of order less than or equal to s in L2(Ω). We recall that W s,∞(Ω) is the Sobolev
space of functions with weak derivatives of order less than or equal to s in L∞(Ω).
For a given normed space X , we denote by Xd the space of vector fields with
components in X and by Xd×d the space of matrix fields with each component in
X . The norm in X is denoted by || ||X and we omit the subscripts Ω, d, and d× d
when it is clear from the context. We will use the standard notation | |Hs for the
semi norm on Hs(Ω), Hs(Ω)d and Hs(Ω)d×d. The inner product in L2(Ω), L2(Ω)d,
and L2(Ω)d×d is denoted by (, ) and we use 〈, 〉 for the inner product on L2(∂Ω)
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and L2(∂Ω)d. For inner products on subsets of Ω, we will simply append the subset
notation. We denote by n the unit outward normal vector to ∂Ω.

For a scalar function v we denote by Dv the gradient vector and by D2v the Hes-
sian matrix of second order derivatives. For two matrices A = (Aij) and B = (Bij),

A : B =
∑d

i,j=1 AijBij denotes their Frobenius inner product. The divergence of a
matrix field is understood as the vector obtained by taking the divergence of each
row. A quantity which is constant is simply denoted by C.

2.2. Lagrange finite element spaces. Let Vh denote the standard Lagrange
finite element space of degree k ≥ 1 and Σh = V d×d

h . Thus elements of Σh are not
necessarily symmetric matrix fields. We recall that H1

0 (Ω) is the subset of H1(Ω)
of elements with vanishing trace on ∂Ω. Let Ih denote the standard Lagrangian
interpolation operator from Hs(Ω), s ≥ k + 1 into the space Vh. We have the
following approximation property

||v − Ihv||Hj ≤ Chk+1−j ||v||Hk+1 , ∀v ∈ Hs(Ω), j = 0, 1,

||v − Ihv||L∞ ≤ Chk+1− d
2 |v|Hk+1 , ∀v ∈ Hs(Ω).

(2.1)

We use the notation Ih for the matrix version of the interpolation operator into
V d×d
h . For a continuous function g defined on ∂Ω, we let gh denote its piecewise

Lagrange interpolant on ∂Ω. Finally we denote by I the d× d identity matrix.
We will need the inverse estimates, c.f. Theorem 4.5.11 of [4],

||v||L∞ ≤ Ch− d
2 ||v||L2 , ∀v ∈ Vh(2.2)

||v||H1 ≤ Ch−1||v||L2 , ∀v ∈ Vh,(2.3)

and the trace inequality

(2.4) ||v||L2(∂Ω) ≤ C||v||H1(Ω), ∀v ∈ H1(Ω),

which gives the scaled trace inequality by standard scaling arguments

(2.5) ||v||2L2(∂Ω) ≤ C(h−1||v||2L2 + h||∇v||2L2), ∀v ∈ Vh.

We note that (2.5) holds for all v ∈ H1(Ω). The scaled trace inequality and the
inverse estimate imply

(2.6) ||v||L2(∂Ω) ≤ Ch− 1
2 ||v||L2 , ∀v ∈ Vh.

The discrete Sobolev inequalities give estimates sharper than the inverse inequality
(2.2)

||v||L∞ ≤ C(1 + | lnh|
1
2 )||v||H1 , ∀v ∈ Vh andd = 2(2.7)

||v||L∞ ≤ Ch− 1
2 ||v||H1 , ∀v ∈ Vh and d = 3.(2.8)

The first one can be found in [2] and the second follows from an inverse estimate
and the embedding of H1(Ω) in L6(Ω).

2.3. Variational formulations. We make the assumption that (1.1) has a unique
strictly convex solution u ∈ Hs(Ω), s > 3 for d = 2 and s > 4 for d = 3. Additional
assumptions about the regularity of u will be made for the error analysis. By
Sobolev embedding u ∈ C2(Ω). Moreover the unique convex solution of (1.1)
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satisfies the following mixed problem: Find (u, σ) ∈ H2(Ω)×H1(Ω)d×d such that

(σ, τ) + (div τ,Du)− 〈Du, τn〉 = 0, ∀τ ∈ H1(Ω)d×d

(detσ, v) = (f, v), ∀v ∈ H1
0 (Ω)

u = g on∂Ω.

(2.9)

To see that the quantity (detσ, v) is finite for v ∈ L2(Ω) and σ ∈ H1(Ω)d×d, note
that for d = 2, detσ is a quadratic function of the entries of σ. For σ1, σ2 ∈ H1(Ω),
by Hölder’s inequality and the embedding of H1(Ω) into Lq(Ω), 1 ≤ q < ∞ for
d = 2

∫

Ω

σ1σ2vdx ≤ ||σ1||L4 ||σ2||L4 ||v||L2 ≤ ||σ1||H1 ||σ2||H1 ||v||L2 .

For d = 3, σ1, σ2, σ3 ∈ H1(Ω), by Hölder’s inequality and the embedding of H1(Ω)
into Lq(Ω), 1 ≤ q ≤ 6 for d = 3

∫

Ω

σ1σ2σ3vdx ≤ ||σ1||L6 ||σ2||L6 ||σ3||L6 ||v||L2 ≤ ||σ1||H1 ||σ2||H1 ||σ3||H1 ||v||L2 .

A mixed formulation of (2.9) consists in finding (uh, σh) ∈ Vh × Σh such that

(σh, τ) + (div τ,Duh)− 〈Duh, τn〉 = 0, ∀τ ∈ Σh

(detσh, v) = (f, v), ∀v ∈ Vh ∩H1
0 (Ω)

uh = gh on ∂Ω.

(2.10)

The condition τ ∈ H1(Ω)d×d in the formulation (2.9) may be replaced by τ ∈
L2(Ω)d×d with div τ ∈ L2(Ω)d. Also, we need v ∈ H1

0 (Ω) only to be able to take
traces on ∂Ω.

Remark 2.1. The mixed method (2.10) is a nonconforming mixed method as we
require u ∈ H2(Ω) for the term 〈Du, τn〉 to be well defined.

2.4. Computation with determinants. For a matrix A, we denote by Aij its

entries and by cof A its cofactor matrix, i.e. (cof A)ij = (−1)i+j det(A)ji where

det(A)ji is the determinant of the matrix obtained from A by deleting the ith row
and the jth column.

Lemma 2.2. For a d × d matrix A, detA = d−1(cof A) : A and for u ∈ C3(Ω),
detD2u = d−1 div((cofD2u)Du).

Proof. The first statement follows from the row expansion definition of the deter-
minant, expanding detA in d different ways using each row.

For a vector field v = (vi), let Dv be the matrix such that (Dv)ij = (∂vi)/(∂xj).
We claim that div(Av) = (divAT ) · v +A : (Dv)T . Indeed

div(Av) =

d
∑

i=1

∂

∂xi
(Av)i =

d
∑

i=1

∂

∂xi

( d
∑

j=1

Aijvj

)

=

d
∑

i=1

d
∑

j=1

(

∂Aij

∂xi
vj +Aij

∂vj
∂xi

)

=

d
∑

j=1

( d
∑

i=1

∂Aij

∂xi

)

vj +

d
∑

i=1

d
∑

j=1

Aij
∂vj
∂xi

= (divAT ) · v +A : (Dv)T .

We take v = Du and note that div cof Dv = div cofD2u = 0 by the divergence-free
row property of the cofactor matrix, p. 440 of [5]. Since cofD2u and D2u are
symmetric matrices, the result then follows. �
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Lemma 2.3. Fréchet derivative of the determinant. For F (u) = detD2u, we have
F ′(u)(v) = (cof D2u) : D2v.

Proof. We have ∂(detA)/(∂Aij) = (cof A)ij . See for example formula (23) p. 440
of [5]. The result then follows from the chain rule. �

Lemma 2.4. Mean value theorem for the determinant. For K ∈ Th and u, v ∈
C2(K) we have on K

detD2u− detD2v = cof(tD2u+ (1 − t)D2v) : (D2u−D2v),

for some t ∈ [0, 1].

Proof. The result follows immediately from Lemma 2.3 and the mean value theo-
rem. �

Lemma 2.5. For d = 2 and d = 3, and two matrix fields η and τ

|| cof(η) : τ ||L2 ≤ C||η||d−1
L∞ ||τ ||L2 .

Proof. The proof follows from direct computation. �

Lemma 2.6. For d = 2 and d = 3, and two matrix fields η and τ

|| cof(η)− cof(τ)||L2(K) ≤ C(||tη + (1 − t)τ ||L∞(K))
d−2||η − τ ||L2(K),

for some t ∈ [0, 1].

Proof. For d = 2, we have cof(η)−cof(τ) = cof(η−τ) from which the result follows.
For d = 3 we use the mean value theorem. It is enough to estimate the first entry
of cof(η) − cof(τ) which is equal to

det

(

η22 η23
η32 η33

)

− det

(

τ22 τ23
τ32 τ33

)

= cof

(

t

(

η22 η23
η32 η33

)

+ (1− t)

(

τ22 τ23
τ32 τ33

))

:

(

η22 − τ22 η23 − τ23
η32 − τ32 η33 − τ33

)

= cof

(

tη22 + (1− t)τ22 tη23 + (1− t)τ23
tη32 + (1− t)τ32 tη33 + (1− t)τ33

)

:

(

η22 − τ22 η23 − τ23
η32 − τ32 η33 − τ33

)

,

for some t ∈ [0, 1]. The result then follows from Lemma 2.5. �

3. Error analysis of the Monge-Ampère equation

We use a fixed point argument which consists of linearizing the nonlinear equa-
tion at the exact solution and use the stability of the linearized problem. This
technique has recently been used for the vanishing moment methodology approach
to the Monge-Ampère equation in [6] . We first derive and study the linearized
problem. Then we prove the existence and uniqueness of a solution to the nonli-
near discrete equations.
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3.1. The linearized Monge-Ampère equation. Put F (u) = f − detD2u and
recall that the Fréchet derivative of F is given by F ′(u)(v) = − div

(

(cofD2u)Dv
)

.

See Lemma 2.3. We are thus led to consider the linearized problem: find w ∈ H1(Ω)

− div
(

(cofD2u)Dw
)

= m inΩ

w = l on∂Ω,
(3.1)

for given m ∈ L2(Ω) and l ∈ C(∂Ω).
By the assumptions on the right hand side f of (1.1), its solution u is strictly

convex and thus A = cof(D2u) is uniformly positive definite. Problem (3.1) is
therefore well posed.

A mixed formulation of (3.1) consists in finding (w, η) ∈ H1(Ω)×L2(Ω)d×d such
that

η = D2w inΩ

− div cof(D2u)Dw = m inΩ

w = l on ∂Ω.

A weak formulation of the above problem is given by: Find (w, η) ∈ H1(Ω) ×
L2(Ω)d×d

(η, τ) + (div τ,Dw) − 〈Dw, τn〉 = 0, ∀τ ∈ H1(Ω)d×d,

((cof(D2u)Dw,Dv) = (m, v), ∀v ∈ H1
0 (Ω),

w = l on ∂Ω,

The discrete problem consists in finding (wh, ηh) ∈ Vh × Σh

(ηh, τ) + (div τ,Dwh)− 〈Dwh, τn〉 = 0, ∀τ ∈ Σh,

((cof(D2u)Dwh, Dv) = (m, v), ∀v ∈ Vh ∩H1
0 (Ω),

wh = lh on∂Ω.

(3.2)

Theorem 3.1. Problem (3.2) has a solution which is unique.

Proof. To prove existence and uniqueness of the problem (3.2), we assume m =
0, lh = 0 and show that wh = 0 and ηh = 0. Taking v = wh and τ = ηh in (3.2), by
the strict convexity of u, we obtain |wh|H1 = 0 which gives wh = 0. It then follows
that ηh = 0 as well. �

Remark 3.2. We make the observation that the last two equations of (3.2), which
solve a linear diffusion equation, completely decouple from the first equation. Thus,
for the linearized problem, we view ηh as a projection of wh.

3.2. Error analysis of the nonlinear problem. Without loss of generality, we
will assume that h ≤ 1. Define a mapping T : Vh × Σh → Vh × Σh by

T (wh, ηh) = (T1(wh, ηh), T2(wh, ηh)),

where T1(wh, ηh) and T2(wh, ηh) satisfy

(ηh − T2(wh, ηh), τ) + (div τ,D(wh − T1(wh, ηh)))

− 〈D(wh − T1(wh, ηh)), τn〉 = (ηh, τ)

+ (div τ,Dwh)− 〈Dwh, τn〉, ∀ τ ∈ Σh

(3.3)

((cof D2u)D(wh − T1(wh, ηh)), Dv) = (f, v) − (det ηh, v), ∀ v ∈ Vh ∩H1
0 (Ω)

(3.4)

wh − T1(wh, ηh) = 0 on ∂Ω.(3.5)
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The motivation of the definition of the mapping T is given by Lemma 3.3 and 3.4
below.

Lemma 3.3. T is well defined by the well-posedness of the linearized problem, i.e.
Theorem 3.1 applied to (3.2). The proof is immediate.

Lemma 3.4. A fixed point of (3.3)–(3.5) with wh = gh on ∂Ω solves the nonlinear
problem (2.10). The proof is immediate.

We denote by ν > 0 a lower bound of the smallest eigenvalue of cofD2u. Let
(u, σ) ∈ Hk+3(Ω) × Hk+1(Ω)d×d denote the unique convex solution of (2.9) with
k ≥ 1. Note that by Sobolev embedding we then have σ ∈ L∞(Ω)d×d. For ρ > 0,
define

B̄h(ρ) = {(wh, ηh) ∈ Vh × Σh, ‖wh − Ihu‖H1 ≤ ρ, ‖ηh − Ihσ‖L2 ≤ h−1ρ}

Zh = { (wh, ηh) ∈ Vh × Σh, wh = gh on∂Ω,

(ηh, τ) + (div τ,Dwh)− 〈Dwh, τn〉 = 0, ∀τ ∈ Σh } and
(3.6)

(3.7) Bh(ρ) = B̄h(ρ) ∩ Zh.

Lemma 3.5. Bh(ρ) 6= ∅ for h sufficiently small and ρ = C0h
k, for a positive

constant C0 > 0.

Proof. We show that there exists ηh ∈ Σh such that (Ihu, ηh) ∈ Zh for h sufficiently
small. By (3.6) the problem: find ηh ∈ Σh such that

(ηh, τ) = −(div τ,DIhu) + 〈DIhu, τn〉, ∀τ ∈ Σh,

has a unique solution ηh by the Lax-Milgram Lemma. Clearly the right hand side
defines a linear functional of τ ∈ Σh. To see that it is a continuous functional, note
that by the Schwarz inequality, (2.3) and (2.6)

| − (div τ,DIhu) + 〈DIhu, τ · n〉| ≤ C||τ ||H1 ||Ihu||H1 + C||Ihu||H1(∂Ω)||τ ||L2(∂Ω)

≤ C(h−1||Ihu||H1 + h− 1
2 ||Ihu||H1(∂Ω))||τ ||L2 .

Next, recall from (2.9)

(σ, τ) = −(div τ,Du) + 〈Du, τn〉.

Therefore

(ηh − σ, τ) = −(div τ,D(Ihu− u)) + 〈D(Ihu− u), τn〉.

Thus,

(ηh − Ihσ, τ) = (σ − Ihσ, τ) − (div τ,D(Ihu− u)) + 〈D(Ihu− u), τn〉.

Let τ = ηh − Ihσ. Then by the Schwarz inequality, (2.3) and (2.6)

‖ηh − Ihσ‖
2
L2

≤ ‖σ − Ihσ‖L2‖ηh − Ihσ‖L2 + C‖ηh − Ihσ‖H1‖D(Ihu− u)‖L2

+C‖D(Ihu− u)‖L2(∂Ω)‖ηh − Ihσ‖L2(∂Ω)

≤ ‖σ − Ihσ‖L2‖ηh − Ihσ‖L2 + Ch−1‖ηh − Ihσ‖L2‖D(Ihu− u)‖L2

+Ch− 1
2 ‖D(Ihu− u)‖L2(∂Ω)‖ηh − Ihσ‖L2 .

Therefore

‖ηh − Ihσ‖L2 ≤ ‖σ − Ihσ‖L2 + Ch
−1‖D(Ihu− u)‖L2 +Ch

−1/2‖D(Ihu− u)‖L2(∂Ω)

≤ Ch
k+1 + Ch

k−1 + Ch
k− 1

2 = h
k−1(Ch

2 + C + h
1
2 )

≤ h
−1(C0h

k) = h
−1

ρ.
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This proves the result.
�

Remark 3.6. For the solvability of (3.3)–(3.5) it is enough to study a certain

mapping T̃1 : Vh → Vh defined as follows. Given wh ∈ Vh there exists a unique
ηh ∈ Σh which satisfies the condition in (3.6). The proof is analogue to the proof of

the previous lemma. We define T̃1(wh) = T1(wh, ηh). Next, note that with (wh, ηh)
satisfying (3.6), T2(wh, ηh) is uniquely determined by wh, ηh and T1(wh, ηh). It then

follows that if uh is a fixed point of T̃1, i.e. T1(uh, σh) = uh, then T2(uh, σh) = σh.
Thus (uh, σh) is a fixed point of T . It is possible to describe the approach in [8] in

terms of the mapping T̃1 by referring to ηh as a discrete Hessian.

The next lemma characterizes pairs (wh, ηh) ∈ Vh ×Σh which are in Zh defined
by (3.6).

Lemma 3.7. Let (wh, ηh) ∈ Zh. Then

|((cof D2u) : ηh, v) + ((cof D2u)Dwh, Dv)| ≤ Ch||v||H1 ||wh||H1 ,

for all v ∈ Vh ∩H1
0 (Ω).

Proof. Recall that elements of Σh are continuous across inter-elements. We denote
by E i

h the set of interior faces. For a vector field, we denote by [[w]] = wK+ −wK−

its jump across the intersection of the elements K+ and K−. We use n to denote
the unit outward normal to the face e. Let he measure the size of the face e and
denote by PΣh

the L2 projection into the space Σh. With A = cofD2u we have for
v ∈ Vh ∩H1

0 (Ω) and using (3.6)

(A : ηh, v) = (ηh, vA) = (ηh, PΣh
(vA))

= −(divPΣh
(vA), Dwh) + 〈Dwh, (PΣh

(vA))n〉∂Ω

= −
∑

K∈Th

(divPΣh
(vA), Dwh)K + 〈Dwh, (PΣh

(vA))n〉∂Ω

=
∑

K∈Th

(PΣh
(vA), D2wh)K −

∑

K∈Th

〈Dwh, (PΣh
(vA))n〉∂K

+ 〈Dwh, (PΣh
(vA))n〉∂Ω

=
∑

K∈Th

(PΣh
(vA), D2wh)K −

∑

e∈Ei
h

〈[[Dwh]], (PΣh
(vA))n〉e

=
∑

K∈Th

(PΣh
(vA)− vA,D2wh)K +

∑

K∈Th

(vA,D2wh)K

−
∑

e∈Ei
h

〈[[Dwh]], (PΣh
(vA))n〉e

=
∑

K∈Th

(PΣh
(vA)− vA,D2wh)K −

∑

K∈Th

(div(vA), Dwh)K

+
∑

K∈Th

〈Dwh, (vA)n〉∂K −
∑

e∈Ei
h

〈[[Dwh]], (PΣh
(vA))n〉e

=
∑

K∈Th

(PΣh
(vA)− vA,D2wh)K −

∑

K∈Th

(ADv,Dwh)K

+
∑

e∈Ei
h

〈[[Dwh]], (vA)n〉e −
∑

e∈Ei
h

〈[[Dwh]], (PΣh
(vA))n〉e
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= −(ADwh, Dv) +
∑

K∈Th

(PΣh
(vA)− vA,D2wh)K

−
∑

e∈Ei
h

〈[[Dwh]], (PΣh
(vA))n − (vA)n〉e,

where we used v = 0 on ∂Ω, the divergence-free row property of cofD2u, i.e.
divA = 0 and the symmetry of A. Using again integration by parts, we obtain

(A : ηh, v) + (ADwh, Dv)

= −
∑

K∈Th

(div(PΣh
(vA) − vA), Dwh)K +

∑

K∈Th

〈(PΣh
(vA)− vA)n,Dwh〉∂K

−
∑

e∈Ei
h

〈[[Dwh]], (PΣh
(vA))n − (vA)n〉e

= −
∑

K∈Th

(div(PΣh
(vA) − vA), Dwh)K + 〈(PΣh

(vA)− vA)n,Dwh〉∂Ω.

We define

Γ = −
∑

K∈Th

(div(PΣh
(vA) − vA), Dwh)K + 〈(PΣh

(vA)− vA)n,Dwh〉∂Ω.

Therefore, (A : ηh, v) + (ADwh, Dv) = Γ. To estimate Γ, we proceed with an
approach similar to the one taken in [8]. By Lemma 4.4 and 4.5 of [8], one obtains

||PΣh
(vA)− vA||H1 ≤ Ch||v||H1(3.8)

(

∑

e∈∂Ω

h−1
e ||PΣh

(vA) − vA||2L2(e)

)1/2
≤ Ch||v||H1 .(3.9)

The results in [8] are stated in terms of Ah the L2 projection of A into Σh. But
the analysis there easily holds. Put

||v||Hk(Th) =

(

∑

K∈Th

||v||2Hk(K)

)
1
2

.

For example, to prove (3.8), note that v is a piecewise polynomial of degree k and
hence ||v||Hk+1(Th) = ||v||Hk(Th). Thus using an inverse estimate and the approxi-
mation properties of PΣh

, we have for m = 0, 1

||PΣh
(vA) − vA||Hm(Th) ≤ Chk+1−m||v||Hk+1(Th) = Chk+1−m||v||Hk(Th)

≤ Chk+1−mh1−k||v||H1(Th) ≤ Ch2−m||v||H1(Th).

Similarly, one proves (3.9) using the above result, the trace inequality and inverse
estimates. Thus

∣

∣

∣

∣

−
∑

K∈Th

(div(PΣh
(vA)− vA), Dwh)K

∣

∣

∣

∣

≤ Ch||v||H1 ||w||H1 .(3.10)
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Moreover
∣

∣

∣

∣

〈(PΣh
(vA)− vA)n,Dwh〉∂Ω

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

e∈∂Ω

〈(PΣh
(vA) − vA)n,Dwh〉e

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

e∈∂Ω

〈h−1/2
e (PΣh

(vA) − vA)n, h1/2
e Dwh〉e

∣

∣

∣

∣

≤

(

∑

e∈∂Ω

h−1
e ||PΣh

(vA)− vA||2L2(e)

)1/2(
∑

e∈∂Ω

he||Dwh||
2
L2(e)

)1/2

.

By (3.9) and the trace-inverse inequality (2.6), we get

|〈(PΣh
(vA) − vA)n,Dwh〉∂Ω| ≤ Ch||v||H1 ||w||H1 .(3.11)

By (3.10) and (3.11), we obtain |Γ| ≤ Ch||v||H1 ||w||H1 . This completes the proof.
�

Lemma 3.8. The mapping T does not move the center (Ihu, Ihσ) of the ball B̄h(ρ)
too far, i.e.

||Ihu− T1(Ihu, Ihσ)||H1 ≤ Chk+1‖σ‖d−1
L∞ ‖σ‖Hk+1 ≡ C1h

k+1(3.12)

‖Ihσ − T2(Ihu, Ihσ)‖L2 ≤ Chk−1(‖σ‖d−1
L∞ ‖σ‖Hk+1 + ‖σ‖Hk+1 + ‖u‖Hk+1)

≡ C2h
k−1.

(3.13)

Proof. Since T1(Ihu, Ihσ) = Ihu on ∂Ω by (3.5), we have v = Ihu− T1(Ihu, Ihσ) ∈
Vh ∩H1

0 (Ω). Using it in (3.4), detD2u = det σ = f and using the strict convexity
of D2u and Cauchy-Schwarz inequality, we have

ν|Ihu− T1(Ihu, Ihσ)|
2
H1 ≤ || det Ihσ − detσ||L2 ||Ihu− T1(Ihu, Ihσ)||L2

≤ || det Ihσ − detσ||L2 ||Ihu− T1(Ihu, Ihσ)||H1 .

By Poincaré’s inequality

||Ihu− T1(Ihu, Ihσ)||H1 ≤ C|| det Ihσ − detσ||L2 .

By Lemma 2.4, on each element K

det Ihσ − detσ = cof(tIhσ + (1− t)σ) : (Ihσ − σ),

for some t ∈ [0, 1]. By (2.1) we have ‖Ihσ‖L∞ ≤ C‖σ‖L∞ . Thus by Lemma 2.5

‖ det(Ihσ)− detσ‖L2(K) ≤ C‖tIhσ + (1− t)σ‖d−1
L∞(K)‖Ihσ − σ‖L2(K)

≤ C‖σ‖d−1
L∞ ‖Ihσ − σ‖L2(K).

Therefore

‖ det(Ihσ)− detσ‖L2 ≤ C‖σ‖d−1
L∞ ‖Ihσ − σ‖L2 .

And so by (2.1)

||Ihu− T1(Ihu, Ihσ)||H1 ≤ C‖σ‖d−1
L∞ ‖Ihσ − σ‖L2 ≤ Chk+1‖σ‖d−1

L∞ ‖σ‖Hk+1 ,

which proves (3.12).
Next, use wh = Ihu, ηh = Ihσ and τ = Ihσ − T2(Ihu, Ihσ) in (3.3) to obtain

||τ ||2L2 = −(div τ,D(wh − T1(wh, ηh))) + 〈D(wh − T1(wh, ηh)), τn〉 + (ηh, τ)

+ (div τ,Dwh)− 〈Dwh, τn〉.
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Note that

(σ, τ) + (div τ,Du)− 〈Du, τn〉 = 0, ∀ τ ∈ H1(Ω),

and thus

||τ ||2L2 = −(div τ,D(Ihu− T1(Ihu, Ihσ))) + 〈D(Ihu− T1(Ihu, Ihσ)), τn〉

+ (Ihσ − σ, τ) + (div τ,D(Ihu− u))− 〈D(Ihu− u), τn〉.

By Cauchy-Schwarz and Poincaré’s inequalities, the inverse estimate (2.3), (3.12),
the trace-inverse inequality (2.6) and the interpolation estimates (2.1), we have

||τ ||2L2

≤ ||τ ||H1 ||Ihu− T1(Ihu, Ihσ)||H1 + C||Ihu− T1(Ihu, Ihσ)||H1(∂Ω)||τ ||L2(∂Ω)

+ ||Ihσ − σ||L2 ||τ ||L2 + ||τ ||H1 ||Ihu− u||H1 + C||Ihu− u||H1(∂Ω)||τ ||L2(∂Ω)

≤ Chk‖σ‖d−1
L∞ ‖σ‖Hk+1 ||τ ||L2 + Ch−1||Ihu− T1(Ihu, Ihσ)||H1 ||τ ||L2

+ Chk+1‖σ‖Hk+1 ||τ ||L2 + Chk−1‖u‖Hk+1||τ ||L2 + Chk−1|u|Hk+1/2(∂Ω)||τ ||L2

≤ Chk‖σ‖d−1
L∞ ‖σ‖Hk+1 ||τ ||L2 + Chk+1‖σ‖Hk+1 ||τ ||L2 + Chk−1‖u‖Hk+1 ||τ ||L2 .

We conclude that ||τ ||L2 ≤ Chk−1(‖σ‖d−1
L∞ ‖σ‖Hk+1 + ‖σ‖Hk+1 + ‖u‖Hk+1) which is

(3.13). �

Lemma 3.9. Let ρ > 0 and (w1, η1) and (w2, η2) in Bh(ρ). We have

||T2(w1, η1)− T2(w2, η2)||L2 ≤ C4h
−1||T1(w1, η1)− T1(w2, η2)||H1 ,(3.14)

and C4 can be chosen such that C4 ≥ 1.

Proof. For (w1, η1) and (w2, η2) in Bh(ρ). We have using (3.3)

((T2(w1, η1)− T2(w2, η2), τ) = −(div τ,D((T1(w1, η1)− T1(w2, η2)))

+ 〈D((T1(w1, η1)− T1(w2, η2)), τn〉.

Choosing τ = T2(w1, η1) − T2(w2, η2) and using Cauchy-Schwarz and Poincaré’s
inequalities, the inverse estimate (2.3) and the trace-inverse inequality (2.6), we
obtain

||τ ||2L2

≤ ||τ ||H1 ||T1(w1, η1)− T1(w2, η2)||H1 + Ch−1||τ ||L2 ||T1(w1, η1)− T1(w2, η2)||H1

≤ Ch−1||τ ||L2 ||T1(w1, η1)− T1(w2, η2)||H1 .

We conclude that (3.14) holds. �

Lemma 3.10. Let ρ > 0 and (w1, η1) and (w2, η2) in Bh(ρ). We have

||T1(w1, η1)−T1(w2, η2)||
2
H1 ≤ C(hk+1−d/2||u||Hk+3 + h− d

2
−1ρ+ ||u||W 2,∞)d−2

(hk+1||u||Hk+3 + h−1ρ)||η1 − η2||L2 ||T1(w1, η1)− T1(w2, η2)||L∞

+ Ch||w1 − w2||H1 ||T1(w1, η1)− T1(w2, η2)||H1 .

(3.15)

Proof. Using (3.4) we have

((cofD2u)D(T1(w1, η1)− T1(w2, η2)), Dv)

= ((cof D2u)D(w1 − w2), Dv) + (det η1 − det η2, v) + ((cof D2u) : (η1 − η2), v)

− ((cofD2u) : (η1 − η2), v),



756 G. AWANOU AND H. LI

for all v ∈ Vh. By the definition of Bh(ρ), (3.7) and Lemma 3.7, we have

((cof D2u)D(T1(w1, η1)− T1(w2, η2)), Dv)

= −((cofD2u) : (η1 − η2), v) + (det η1 − det η2, v) + Γ,
(3.16)

for all v ∈ Vh with

|Γ| ≤ Ch||w1 − w2||H1 ||v||H1 .(3.17)

By Lemma 2.4, on each element K, for some t ∈ [0, 1] we have

det η1 − det η2 = cof(tη1 + (1− t)η2) : (η1 − η2),

where for simplicity we do not explicitly indicate the dependence of t on K. There-
fore on each element K

(cofD2u) : (η1 − η2)− (det η1 − det η2) =
(

(cofD2u)

− cof(tη1 + (1− t)η2)
)

: (η1 − η2).
(3.18)

We have T1(w1, η1) − T1(w2, η2) = w1 − w2 = 0 on ∂Ω by (3.5). We can then use
v = T1(w1, η1)− T1(w2, η2) in (3.16). By (3.18), and with σ = D2u, we get

ν|v|2H1 ≤

∣

∣

∣

∣

∑

K∈Th

((

(cof σ) − cof(tη1 + (1− t)η2)
)

: (η1 − η2), v
)

K

∣

∣

∣

∣

+ |Γ|.(3.19)

Let us define

AK =
((

(cof σ)− cof(tη1 + (1− t)η2)
)

: (η1 − η2), v
)

K
.

By Hölder’s inequality, Lemma 2.6, the interpolation estimate (2.1) and the defini-
tion of Bh(ρ) (3.7), we have for some s ∈ [0, 1] which depends on K

AK ≤ C||sσ + (1− s)(tη1 + (1− t)η2)||
d−2
L∞(K)||σ − (tη1 + (1− t)η2)||L2(K)

||η1 − η2||L2(K)||v||L∞

≤ C||s(σ − Ihσ) + (1− s)(t(η1 − Ihσ) + (1− t)(η2 − Ihσ)) + Ihσ||
d−2
L∞(K)

||σ − (tη1 + (1− t)η2||L2(K)||η1 − η2||L2(K)||v||L∞

≤ C(||σ − Ihσ||L∞ + t||η1 − Ihσ||L∞ + (1 − t)||η2 − Ihσ||L∞

+ ‖Ihσ‖L∞)d−2||σ − (tη1 + (1 − t)η2)||L2(K)||η1 − η2||L2(K)||v||L∞

≤ C(Chk+1−d/2||σ||Hk+1 + th− d
2 ||η1 − Ihσ||L2 + (1− t)h− d

2 ||η2 − Ihσ||L2

+ ‖Ihσ‖L∞)d−2||σ − (tη1 + (1 − t)η2)||L2(K)||η1 − η2||L2(K)||v||L∞

≤ C(Chk+1−d/2||σ||Hk+1 + h− d
2
−1ρ+ ||σ||L∞)d−2

||σ − (tη1 + (1− t)η2)||L2(K)||η1 − η2||L2(K)||v||L∞ .

Moreover

σ − (tη1 + (1 − t)η2) = σ − Ihσ + tIhσ + (1− t)Ihσ − (tη1 + (1 − t)η2)

= σ − Ihσ + t(Ihσ − η1) + (1− t)(Ihσ − η2).

We conclude using again (2.1) that

||σ − (tη1 + (1− t)η2)||L2(K) ≤ ||σ − Ihσ||L2(K) + t||Ihσ − η1||L2(K)

+ (1− t)||Ihσ − η2||L2(K)

≤ ||σ − Ihσ||L2(K) + ||Ihσ − η1||L2(K)

+ ||Ihσ − η2||L2(K).
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It follows that
∑

K∈Th

|AK | ≤ C(Chk+1−d/2||σ||Hk+1 + h− d
2
−1ρ+ ||σ||L∞)d−2||v||L∞

∑

K∈Th

(

||σ − Ihσ||L2(K) + ||Ihσ − η1||L2(K)

+ ||Ihσ − η2||L2(K)

)

||η1 − η2||L2(K)

≤ C(Chk+1−d/2||σ||Hk+1 + h− d
2
−1ρ+ ||σ||L∞)d−2||v||L∞

(

||σ − Ihσ||L2 + ||Ihσ − η1||L2 + ||Ihσ − η2||L2

)

||η1 − η2||L2

≤ C(Chk+1−d/2||σ||Hk+1 + h− d
2
−1ρ+ ||σ||L∞)d−2||v||L∞

(Chk+1||σ||Hk+1 + Ch−1ρ)||η1 − η2||L2 ,

where we again used the interpolation estimate (2.1) and the definition of Bh(ρ).
Combined with (3.19) we obtain

||T1(w1, η1)− T1(w2, η2)||
2
H1 ≤ C(Chk+1−d/2||σ||Hk+1 + h− d

2
−1ρ+ ‖Ihσ‖L∞)d−2

(Chk+1||σ||Hk+1 + Ch−1ρ)||η1 − η2||L2

||T1(w1, η1)− T1(w2, η2)||L∞ + |Γ|

≤ C(hk+1−d/2||u||Hk+3 + h− d
2
−1ρ+ ‖σ‖L∞)d−2

(hk+1||u||Hk+3 + h−1ρ)||η1 − η2||L2

||T1(w1, η1)− T1(w2, η2)||L∞ + |Γ|.

In view of (3.17), this completes the proof. �

Lemma 3.11. Let ρ(h) = 2C3h
k where C3 = max(C0, C1, C2) with C0 the constant

in Lemma 3.5 and C1, C2 the constants from Lemma 3.8. Then the mapping T1

has a strict contraction property in Bh(ρ) for h sufficiently small. That is

||T1(w1, η1)− T1(w2, η2)||H1 ≤
h

4C4
||η1 − η2||L2

+
1

4C4
||w1 − w2||H1 .

(3.20)

for (w1, η1), (w2, η2) ∈ Bh(ρ).

Proof. The proofs in dimensions 2 and 3 are different.
Case d = 2. Using the discrete Sobolev inequality (2.7) and (3.15), we have

||T1(w1, η1)− T1(w2, η2)||H1 ≤ C(hk+1||u||Hk+3 + h−1ρ)(1 + | lnh|
1
2 )||η1 − η2||L2

+ Ch||w1 − w2||H1

≤ C(hk + h−2ρ)(1 + | lnh|
1
2 )h||η1 − η2||L2

+ Ch||w1 − w2||H1

≤ C(hk + hk−2)(1 + | lnh|
1
2 )h||η1 − η2||L2

+ Ch||w1 − w2||H1 ,

where we also used the expression of ρ given in the lemma to be proved.
For k ≥ 3 and h sufficiently small we have C(hk + hk−2)(1 + | lnh|

1
2 ) ≤ 1/(4C4)

and Ch ≤ 1/(4C4). Thus (3.20) holds.
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Case d = 3. Using the discrete Sobolev inequality (2.8) and (3.15), we have

||T1(w1, η1)− T1(w2, η2)||H1 ≤ Ch− 1
2 (hk−1/2||u||Hk+3 + h− 5

2 ρ+ ||u||W 2,∞)

(hk+1||u||Hk+3 + h−1ρ)||η1 − η2||L2

+ Ch||w1 − w2||H1

≤ C(hk−1 + hk−3 + h− 1
2 )(hk+1 + hk−1)||η1 − η2||L2

+ Ch||w1 − w2||H1

≤ C(hk−1 + hk−3 + h− 1
2 )(hk + hk−2)h||η1 − η2||L2

+ Ch||w1 − w2||H1 ,

where we also used the expression of ρ given in the lemma to be proved.
For k ≥ 3 and h sufficiently small we have C(hk−1 + hk−3 + h− 1

2 )(hk + hk−2) ≤
1/(4C4) and Ch ≤ 1/(4C4). Thus (3.20) holds as well.

�

Lemma 3.12. T maps Bh(ρ) into itself for h sufficiently small and with ρ(h) given
in Lemma 3.11.

Proof. Let (wh, ηh) ∈ Bh(ρ). By definition, ||wh − Ihu||H1 ≤ ρ and ||ηh − Ihσ|| ≤
h−1ρ. By (3.20), (3.12), and using 1/C4 ≤ 1

||T1(wh, ηh)− Ihu||H1 ≤ ||T1(wh, ηh)− T1(Ihu, Ihσ)||H1 + ||T1(Ihu, Ihσ)− Ihu||H1

≤
h

4
||ηh − Ihσ||L2 +

1

4
||uh − Ihu||H1 + C1h

k+1

≤
ρ

2
+ C3h

k =
ρ

2
+

ρ

2
≤ ρ,

for h sufficiently small. In addition, by (3.20), (3.14) and (3.13) and a similar
argument we get

||T2(wh, ηh)− Ihσ||L2 ≤ ||T2(wh, ηh)− T2(Ihu, Ihσ)||L2 + ||T2(Ihu, Ihσ)− Ihσ||L2

≤ C4h
−1||T1(wh, ηh)− T1(Ihu, Ihσ)||H1 + ||T2(Ihu, Ihσ)− Ihσ||L2

≤
1

4
||ηh − Ihσ||L2 +

h−1

4
||uh − Ihu||H1 + C2h

k−1

≤
h−1ρ

2
+ C3h

k−1 =
h−1ρ

2
+

h−1ρ

2

≤ h−1ρ.

By (3.3) (T1(wh, ηh), T2(wh, ηh)) is in the space Zh defined by (3.6). This concludes
the proof. �

We can now claim

Theorem 3.13. Let (u, σ) ∈ Hk+3(Ω) × Hk+1(Ω)d×d denotes the unique convex
solution of (2.9) with k ≥ 3. Then the problem (2.10) has a unique solution in
Bh(ρ) ⊂ Vh × Σh for h sufficiently small and with ρ(h) given in Lemma 3.11.
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Proof. The proof follows from the Brouwer fixed point theorem. For h sufficiently
small and for (w1, η1), (w2, η2) ∈ Bh(ρ), by (3.20) and (3.14)

||T1(w1, η1)− T1(w2, η2)||H1 + ||T2(w1, η1)− T2(w2, η2)||L2

≤ (1 + Ch−1)||T1(w1, η1)− T1(w2, η2)||H1

≤ (1 + Ch−1)||w1 − w2||H1 + C||η1 − η2||L2 .

Hence the mapping T is continuous in Bh(ρ). Since for h sufficiently small and the
choice of ρ(h), the continuous mapping T maps the closed ball Bh(ρ) into itself,
there exists a fixed point (uh, σh) in Bh(ρ).

Assume that (w1
h, η

1
h) and (w2

h, η
2
h) are two fixed points of T . Then T1(w

1
h, η

1
h) =

w1
h and T1(w

2
h, η

2
h) = w2

h. By (3.20) and using 1/C4 ≤ 1, we have

||w1
h − w2

h|| ≤
h

4
||η1h − η2h||L2 +

1

4
||w1

h − w2
h||H1 ,

and so

||w1
h − w2

h|| ≤
h

3
||η1h − η2h||L2 .

We also have T2(w
1
h, η

1
h) = η1h and T2(w

2
h, η

2
h) = η2h. By (3.14)

||η1h − η2h||L2 ≤ h−1||w1
h − w2

h|| ≤
1

3
||η1h − η2h||L2 .

This implies η1h = η2h and so w1
h = w2

h. This proves uniqueness. �

The following error estimates hold

Theorem 3.14. Under the assumptions of Theorem 3.13, the solution (uh, σh) of
(3.3)–(3.5) satisfies

||u− uh||H1 ≤ Chk(3.21)

||σ − σh||L2 ≤ Chk−1.(3.22)

Proof. By the definition of the ball Bh(ρ) (3.7), the existence of the solution (uh, σh)
in Bh(ρ) with ρ = O(hk) given in Lemma 3.11, we have

||Ihu− uh||H1 ≤ Chk

||Ihσ − σh||L2 ≤ Chk−1.

The estimates (3.21) and (3.22) then follow from triangular inequalities and stan-
dard interpolation inequalities. �

Remark 3.15. For computational efficiency, one may impose that elements of Σh

are symmetric matrix fields. The analysis of this paper also holds in that case.

Remark 3.16. It is not necessary to use the same polynomial degrees for Vh and
Σh. However for Vh the Lagrange space of degree k1 and Σh a finite element space
of matrix fields with each component in a Lagrange space of degree k2, we need
k2 ≥ k1 ≥ 3 for the analysis of the paper to hold. Lemma 3.7 breaks down for
k2 < k1. The analogue of (3.8) for v a piecewise polynomial of degree k1 gives

||PΣh
(vA)− vA||Hm(Th) ≤ Chk2+1−m||v||Hk2+1(Th) = Chk2+1−m||v||Hk2 (Th)

≤ Chk2+1−mh1−k2 ||v||H1(Th) ≤ Ch2−m||v||H1(Th),

only if k2 ≥ k1.
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Table 1. Linear Lagrange elements for a smooth solution

u(x, y) = e(x
2+y2)/2

h ||u− uh||L2 rate |u− uh|H1 rate ||σ − σh||L2 rate
1/2 1.05 10−1 5.41 10−1 4.14
1/4 2.53 10−2 2.05 2.80 10−1 0.95 3.13 0.40
1/8 5.95 10−3 2.09 1.41 10−1 0.99 2.35 0.41
1/16 1.46 10−3 2.02 7.08 10−2 0.99 1.71 0.45
1/32 3.70 10−4 1.98 3.54 10−2 1 1.22 0.49
1/64 9.41 10−5 1.97 1.77 10−2 1 0.87 0.49
1/128 2.37 10−5 1.99 8.85 10−3 1 0.61 0.51

4. Numerical Results

We give numerical results for linear finite elements and a smooth solution u(x, y) =

e(x
2+y2)/2 on the unit square [0, 1]2, c.f. Table 1. The method was implemented

with the software freefem++ on a uniform mesh obtained by dividing the domain
into squares, then each square is divided into two triangles by taking the diagonal
with positive slope. The numerical results indicate a superconvergence result for
||σ − σh||L2 .

Numerical results for the method analyzed in this paper were reported in [7, 8]
for the two dimensional problem and high order elements, i.e. k ≥ 2. Therefore,
we do not repeat these tests here. The authors of [7, 8] reported the divergence of
the method for linear finite elements. This is probably the case if the method is
implemented in a primal form with the discrete Hessian, which does not necessarily
converge for linear elements, eliminated from the equations. It has been reported
in [8] that penalizing the jumps of the first derivatives make the method suitable
for linear finite elements and non smooth solutions. Our numerical results indicate
that for smooth solutions, there is an advantage in considering the method in mixed
form using linear elements for all the variables.

The reader interested in discontinuous elements for Σh may refer to [8] or prove a
version of Lemma 3.7 without using the continuity across inter elements of elements
of Σh.
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