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Abstract. We present two numerical methods for the fully nonlinear elliptic Monge-
Ampère equation. The first is a pseudo transient continuation method and the
second is a pure pseudo time marching method. The methods are proven to con-
verge to a strictly convex solution of a natural discrete variational formulation with
C1 conforming approximations. The assumption of existence of a strictly convex
solution to the discrete problem is proven for smooth solutions of the continuous
problem and supported by numerical evidence for non smooth solutions.

1. Introduction

We are interested in numerical solutions of the fully nonlinear elliptic Monge-Ampère
equation

(1.1) detD2u = f in Ω, u = g on ∂Ω,

on a convex bounded domain Ω of Rn, n = 2, 3 with boundary ∂Ω. The unknown u is
a real valued function and f, g are given functions with f > 0 in the non degenerate
case and f ≥ 0 in the degenerate case. We will also assume that f ∈ C(Ω) and g in
C(∂Ω).

Starting with [8, 15], interest has grown for finite element methods which are able to
capture non smooth solutions of second order fully nonlinear equations. For smooth
solutions, the problem was studied in the context of semiconforming C1 finite elements
by Böhmer [9, 10] on both smooth and polygonal domains. Böhmer addressed general
fully nonlinear elliptic equations for the first time. Brenner et al [12] used Lagrange
elements and interior penalty terms on smooth domains. Non smooth solutions can
be handled with finite elements in the context of the vanishing moment methodology
[22], a singular perturbation of (1.1). Proven convergence methods for non smooth
solutions include the work of Oliker and Prussner [31], Feng and Neilan [20] for radial
viscosity solutions in the finite element context and the work of Oberman [30] who
addressed in general functions of the eigenvalues of the Hessian in the context of
monotone finite difference methods. For recent developments we refer to [19].

In this paper we give numerical evidence that C1 conforming approximations of a
natural variational formulation of (1.1) converge for non smooth solutions of the two
dimensional problem. This is achieved by discretizing new iterative methods we in-
troduce. We establish the convergence of the iterative methods under the assumption
that the discrete problem has a strictly convex solution. We prove that such a solu-
tion exists when (1.1) has a smooth strictly convex solution. We do not assume that
(1.1) has a smooth solution for our iterative methods to converge. The existence of a
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convex solution to the discrete problem in the general case and the convergence of the
discretization will be addressed in a subsequent paper. Even with such an existence
result, it is still a non trivial task to solve the discrete nonlinear systems in situations
where (1.1) has a non smooth solution. This paper addresses this issue.

The main technical innovation of this paper is the proof that in the context of C1

conforming approximations, discrete functions near a strictly convex solution are
strictly convex. This explains why convexity did not need to be imposed explicitly
in some previous studies. Newton’s method remains the most appropriate iterative
method for solving the discrete nonlinear equations when (1.1) has a smooth convex
solution. We give a new proof of convergence of Newton’s method in the context of
C1 conforming approximations.

The results of this paper extend easily to finite dimensional spaces of piecewise smooth
C1 functions provided that the approximation property (2.2) and inverse estimates
(2.4) below hold.

Our results can be described in the general context of discretizations by C1 elements
of iterative methods for a general nonlinear elliptic equation F (u) = 0. In the case
of the Monge-Ampère equation, F (u) = detD2u− f . We first describe the iterative
methods at the continuous level. However, we will not address convergence at the
continuous level. As an initial guess we take the solution of the Poisson equation
∆u = nf 1/n in Ω, u = g on ∂Ω.

1.1. Pseudo transient continuation method. We assume that F differentiable
and consider the sequence of problems

(νL+ F ′(uk))(uk+1 − uk) = −F (uk),

where L is a linear operator which can be taken as L = −I where I is the identity
operator or L = ∆ where ∆ is the Laplace operator and ν > 0 is a parameter.
Pseudo transient continuation methods [26] form a general class of methods for solving
nonlinear singular equations. In the case of the Monge-Ampère equation, the method
consists in solving the sequence of approximate problems

νLθk + (cof D2uk) : D2θk = (f − fk), fk = detD2uk, θk = uk+1 − uk.(1.2)

Here cof A denotes the matrix of cofactors of the matrix A.

1.2. Pseudo time marching method. Given ν > 0, we consider the sequence of
iterates

(1.3) −ν∆uk+1 = −ν∆uk + F (uk), uk+1 = g on ∂Ω.

This can be interpreted as an Euler discretization of the pseudo time dependent
equation ∂∆u

∂t
+ F (u) = 0, or as a Laplacian preconditioner of a simple pseudo time

marching algorithm, [23] uk+1 = uk − 1
ν
∆−1F (uk). See also a remark in [29].

To the author’s best knowledge, this is the first time the pseudo transient continuation
method and the time marching method are used to indicate numerically convergence
to viscosity solutions of finite element type methods for the Monge-Ampère equation.
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1.3. Advantages and comparison of the two methods. The methods we propose
can be used in the context of different types of discretizations allowing us in particular
to treat more easily non-rectangular domains. The methods can be accelerated with
fast Poisson solvers and multigrid methods. This latter property is even more striking
for the time marching method as its implementation requires only having access to a
multigrid Poisson solver.

Although the theory of the Monge-Ampère equation has concentrated on convex
solutions, one can equally focus on concave solutions. We found out that (1.3) is
better able to capture concave solutions. It is easy to implement, requiring only a
Poisson solver. For example one can capture weak solutions of the Monge-Ampere
equation by simply discretizing (1.3) with the standard Lagrange finite elements. The
time marching method can also be applied to fully nonlinear equations such as the
Pucci equation where F is not differentiable.

In summary the pseudo transient continuation methods are better for smooth solu-
tions and singular solutions on a coarse mesh. Otherwise the method of choice is the
time marching method.

1.4. Organization of the paper. We organize the paper as follows: in the second
section we introduce some notation and prove the key result that discrete functions
near a strictly convex solution are strictly convex. We introduce the natural varia-
tional formulation of (1.1) and state an existence and uniqueness result for the discrete
problem. As a corollary the discrete variational problem has a convex solution when
(1.1) has a smooth convex solution. We study the pseudo transient continuation
methods in section 3. A special case is Newton’s method for which we prove a qua-
dratic convergence rate. The time marching methods are studied in section 4. The
last section is devoted to numerical results. We give a brief description of the spline
element method which is used for the computations and offer heuristics about why
our methods appear to preserve convexity.

2. Notation and preliminaries

We use the standard notation for the Sobolev spaces W k,p(Ω) with norms ||.||k,p and
semi-norm |.|k,p. In particular, Hk(Ω) = W k,2(Ω) and in this case, the norm and semi-
norms will be denoted respectively by ||.||k and |.|k. For a vector field v = (vi)i=1,...,d

with values in W k,p(Ω)n, 1 ≤ p < ∞, we set ||v||k,p = (
∑n

i=1 ||vi||2k,p)
1
2 and a similar

notation for |v|k,p. In the case p = ∞, we set ||v||k,∞ = maxi=1,...,n ||vi||k,∞ with a
similar notation for |v|k,∞. For matrix valued fields, the above notation is extended
canonically.

We make the usual convention of denoting constants by C but will occasionally index
some constants.

We make the assumption that the boundary of Ω is polygonal and that the triangu-
lation T is shape regular in the sense that there is a constant C > 0 such that for any
triangle K, hK/ρK ≤ C, where hK denotes the diameter of K and ρK the radius of the
largest ball contained in K. We also require the triangulation to be quasi-uniform in
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the sense that h/hmin is bounded where h and hmin are the maximum and minimum
respectively of {hK , K ∈ Th}.
We define

(2.1) V h := S1
d(T ) = {s ∈ C1(Ω), s|t ∈ Pd, ∀t ∈ T },

where Pd denotes the space of polynomials of degree less than or equal to d.

In two dimensions, it is known that, [28], for d ≥ 5 and 0 ≤ l ≤ d, there exists a
linear quasi-interpolation operator Qh mapping L1(Ω) into the spline space S1

d(T )
and a constant C such that if v is in the Sobolev space W l+1,p(Ω), 1 ≤ p ≤ ∞

(2.2) ||v −Qhv||k,p ≤ Chl+1−k|v|l+1,p,

for 0 ≤ k ≤ l. If Ω is convex, the constant C in (2.2) depends only on d, l and on
the smallest angle θh in T . In the nonconvex case, C depends only on the Lipschitz
constant associated with the boundary of Ω. It is also known c.f. [16] that the full
approximation property for spline spaces holds on special triangulations for certain
values of d.

In three dimensions, (2.2) holds in general for d ≥ 9, c.f. [28].

Note that, by (2.2),

(2.3) ||Qhv||2,p ≤ C||v||2,p, v ∈ W 2,p(Ω),

for all p ≥ 1.

We assume that the following inverse inequality holds

(2.4) ||v||s,p ≤ Chl−s+min(0,n
p
−n

q
)||v||l,q, ∀v ∈ V h,

for 0 ≤ l ≤ s, 1 ≤ p, q ≤ ∞. For C1 finite element spaces the result can be found in
[14], Theorem 4.5.11. For the spline spaces they may be viewed as a consequence of
the assumption of uniform triangulation and of Markov inequality, [28] p. 2. See also
[10], section 4.2.6.

2.1. Variational formulations. We first recall the divergence form of the determi-
nant and the expression of its Fréchet derivative.

For two n× n matrices M,N , we recall the Frobenius product

M : N =
n∑

i,j=1

MijNij.

In particular, for a matrix A, we have (cof A) : A =
∑n

i,j=1(cof A)ijAij.

Lemma 2.1. We have

(2.5) detD2u =
1

n
(cof D2u) : D2u =

1

n
div
(
(cof D2u)Du

)
.

And for F (u) = detD2u we have

F ′(u)(w) = (cof D2u) : D2w = div
(
(cof D2u)Dw

)
,

for u,w sufficiently smooth.
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Proof. Note that for any n × n matrix A, detA = (cof A) : A/n, where cof A is
the matrix of cofactors of A. This follows from the row expansion definition of the
determinant.

For any sufficiently smooth matrix field A and vector field v, divATv = (divA)·v+A :
Dv. Here the divergence of a matrix field is the divergence operator applied row-
wise. If we put v = Du, then detD2u = (cof D2u) : (D2u)/n = (cof Dv) : (Dv)/n
and div(cof Dv)Tv = div(cof Dv) · v + (cof Dv) : Dv. But div cof Dv = 0, c.f. for
example [17] p. 440. Hence since D2u and cof D2u are symmetric matrices (2.5)
follows. The assertion about the Fréchet derivative of F follows from the definition
of the determinant as a multilinear map (e.g (2.5)) and the definition of matrix of
cofactors. See also [17] p. 440.

�

Using the divergence form of the determinant (2.5) and integration by parts, one
obtains the variational formulation of (1.1) given by: find u ∈ W 2,n(Ω), u = g on ∂Ω
such that

(2.6) − 1

n

∫
Ω

(cof D2u)Du ·Dw dx =

∫
Ω

fw dx, ∀w ∈ W 2,n(Ω) ∩H1
0 (Ω).

We show that for u ∈ W 2,n(Ω), (2.6) is well defined.

Case n = 2. For n = 2, each entry of cof D2u consists of a second derivative
∂2u/(∂xi∂xj), i, j = 1, . . . , n. By Hölder’s inequality,∣∣∣∣ ∫

Ω

(cof D2u)Du ·Dw dx

∣∣∣∣ ≤ C||D2u||0,2||Du||0,4||Dw||0,4.

Next for u ∈ H2(Ω), ∂u/∂xi ∈ H1(Ω), i = 1, . . . , n and by Sobolev embedding, i.e.
the embedding of H1(Ω) in Lq(Ω) for q ≥ 1 when n = 2, the right hand side above is
bounded by C||D2u||L2(Ω)||u||H2(Ω) ||w||H2(Ω).

Case n = 3. For n = 3, each entry of cof D2u involves the product of two second
order derivatives. We have by Hölder’s inequality and Sobolev embedding, i.e. the
embedding of H1(Ω) in Lq(Ω) for 1 ≤ q ≤ 6 when n = 3,∣∣∣∣ ∫

Ω

∂2u

∂x2
1

∂2u

∂x2
3

∂u

∂x1

∂w

∂x2

dx

∣∣∣∣ ≤ ||∂2u

∂x2
1

||0,3||
∂2u

∂x2
3

||0,3||
∂u

∂x1

||0,6||
∂w

∂x2

||0,6

≤ ||u||22,3||u||2||w||2.
We conclude that for n = 3,∣∣∣∣ ∫

Ω

(cof D2u)Du ·Dw dx

∣∣∣∣ ≤ C||u||22,3||u||2||w||2.

In summary for n = 2, 3, we may write∣∣∣∣ ∫
Ω

(cof D2u)Du ·Dw dx

∣∣∣∣ ≤ C||u||n−1
2,n ||u||2||w||2.(2.7)

Put V = W 2,n(Ω) and V0 = W 2,n(Ω) ∩H1
0 (Ω). Note that V h given by (2.1) satisfies

V h ⊂ W 2,n(Ω). Let V h
0 = V h ∩ H1

0 (Ω) and furthermore let gh be the interpolant in
V h of a smooth extension of g.
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We have the following conforming discretization of (2.6): find uh ∈ V h, uh = gh on
∂Ω such that

(2.8) − 1

n

∫
Ω

(cof D2uh)Duh ·Dwh dx =

∫
Ω

fwh dx, ∀wh ∈ V h
0 .

We now present a number of preliminary results.

2.2. Preliminary results. We first prove that when (1.1) has a smooth strictly
convex solution, (2.8) has a unique local solution and we give error estimates. After
introducing tools for computations with determinants, we show that a finite element
function sufficiently close to a strictly convex finite element function is also strictly
convex. It follows that the solution uh of (2.8) is strictly convex when (1.1) has a
smooth strictly convex solution.

Theorem 2.2. Let 3 ≤ l ≤ d and assume that u ∈ W l+1,∞(Ω) is a strictly convex
function, that Ω is convex with a polygonal boundary and that the spaces V h have the
optimal approximation property (2.2) and satisfy the inverse estimates (2.4). Then
the problem (2.8) has a unique solution uh for h sufficiently small and we have the
error estimates

||u− uh||2 ≤ Chl−1

||u− uh||1 ≤ Chl

||u− uh||0 ≤ Chl+1 + C(hl−1−n
2 + C)n−2h2l−1−n

2 ,

with a constant C which depends on u but is independent of h.

Proof. The H1 error estimate is given in [9], Theorems 5.1 and 8.7. See also [10].
The H2 error estimate follows from an inverse estimate. For the proof of the L2 error
estimate, the proof in [22] can be adapted. The results of [12, 13] also give the error
estimates in the theorem. They were given with the interior penalty formulation but
the variational problems discussed there reduce to the one considered in this paper
for C1 finite element spaces. For another proof of the H1 error estimate, we refer to
[3]. �

Next we give some preliminary results which are essential for computations with terms
involving the determinant.

We first recall the Mean Value Theorem for Banach spaces. Let E and F be Banach
spaces and let us denote by L(E,F ) the space of continuous linear mappings from E
to F . Let also X be an open subset of E and let F : X → F be a differentiable map.
If F ′ : X → L(E,F ) is continuous, F is said to be of class C1 and for all a, x ∈ X,
we have

F (x) = F (a) +

∫ 1

0

F ′[(1− t)a+ tx](x− a) dt.

Lemma 2.3. For n = 2 and n = 3, and two matrix fields η and τ

|| cof(η)− cof(τ)||∞ ≤ (n− 1)2(||η||∞ + ||τ ||∞)n−2||η − τ ||∞.
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Proof. For n = 2, we have cof(η)− cof(τ) = cof(η− τ) from which the result follows.
For n = 3 we use the Mean Value Theorem. It is enough to estimate the first entry
of cof(η)− cof(τ) which is equal to

det

(
η22 η23

η32 η33

)
− det

(
τ22 τ23

τ32 τ33

)
= cof

(
t

(
η22 η23

η32 η33

)
+ (1− t)

(
τ22 τ23

τ32 τ33

))
:(

η22 − τ22 η23 − τ23

η32 − τ32 η33 − τ33

)
,

for some t ∈ [0, 1]. The result then follows. �

Lemma 2.4. Let v, w ∈ W 2,n(Ω), n = 2, 3 and ψ ∈ H1
0 (Ω) ∩H2(Ω), then∫

Ω

(detD2v − detD2w)ψ dx = −
∫ 1

0

{∫
Ω

(
(cof[(1− t)D2w + tD2v)]

(Dv −Dw)
)
·Dψ dx

}
dt,

and if in addition v, w ∈ W 2,n(Ω) ∩W 2,∞(Ω)∣∣∣∣ ∫
Ω

(detD2v − detD2w)ψ dx

∣∣∣∣ ≤ n(|v|2,∞ + |w|2,∞)n−1|v − w|1|ψ|1,(2.9)

and ∣∣∣∣ ∫
Ω

[(cof D2v − cof D2w)D(v − w)] ·Dψ dx
∣∣∣∣ ≤ n(n− 1)2(|v|2,∞

+ |w|2,∞)n−2|v − w|2,∞|v − w|1|ψ|1.
(2.10)

Proof. We first note that for a matrix field A and vector fields b, c, we have (Ab) · c =∑n
i=1(Ab)ici =

∑n
i,j=1Aijbjci. Thus by Cauchy-Schwarz inequality,∫

Ω

(Ab) · c ≤ ||A||∞
n∑

i,j=1

∫
Ω

|bjci| ≤ ||A||∞
n∑

i,j=1

||bj||0||ci||0

= ||A||∞
( n∑

i=1

||ci||0
)( n∑

j=1

||bj||0
)

≤ n||A||∞
( n∑

i=1

||ci||20
) 1

2
( n∑

j=1

||bj||20
) 1

2

.

It follows that for L∞ valued matrix fields A,B and v, w ∈ W 2,n(Ω), n = 2, 3, by
Cauchy-Schwarz inequality∣∣∣∣ ∫

Ω

[(cof A− cof B)Dv]Dw dx

∣∣∣∣ ≤ n|| cof A− cof B||∞|v|1|w|1.(2.11)

Next, let F : C∞(Ω) → C∞(Ω) denote the mapping v 7→ detD2v. Then F is
differentiable with

F ′[u](v) = (cof D2u) : D2v = div
(
(cof D2u)Dv

)
.
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Since v 7→ F ′[v] is linear, F is of class C1 and by the Mean Value Theorem

F (v)− F (w) =

∫ 1

0

div
(
(cof(1− t)D2w + tD2v)(Dv −Dw)

)
dt.

It follows that for ψ ∈ D(Ω), and v, w ∈ C∞(Ω) ∩W 2,∞(Ω),∫
Ω

(detD2v−detD2w)ψ dx =

∫
Ω

{∫ 1

0

div
(
(cof(1−t)D2w+tD2v)(Dv−Dw)

)
dt

}
ψ dx.

By Fubini’s theorem,∫
Ω

(detD2v − detD2w)ψ dx =

∫ 1

0

{∫
Ω

div
(
(cof(1− t)D2w + tD2v)(Dv −Dw)

)
ψ dx

}
dt

=−
∫ 1

0

{∫
Ω

[(cof(1− t)D2w + tD2v)(Dv −Dw)] ·Dψ dx
}
dt.

Applying (2.11), we obtain∣∣∣∣ ∫
Ω

(detD2v − detD2w)ψ dx

∣∣∣∣ ≤ n

∫ 1

0

|| cof(1− t)D2w + tD2v||∞|v − w|1|ψ|1 dt

≤ n

∫ 1

0

||(1− t)D2w + tD2v||n−1
∞ |v − w|1|ψ|1 dt

≤ n(|v|2,∞ + |w|2,∞)n−1|v − w|1|ψ|1.

We have therefore obtained (2.9) for v, w ∈ C∞(Ω) ∩W 2,∞(Ω) and ψ ∈ D(Ω). We
recall thatD(Ω) is dense in H1

0 (Ω)∩H2(Ω) and C∞(Ω)∩W 2,∞(Ω) is dense in W 2,∞(Ω).
We then obtain (2.9) by a density argument.

Inequality (2.10) is a direct consequence of (2.11) and Lemma 2.3. �

Let λ1(A) and λn(A) denote the smallest and largest eigenvalues of a symmetric
matrix A. Since detD2u ≥ f ≥ c0 > 0 and u is smooth and convex, there exist
constants m′,M ′ > 0, independent of h

(2.12) m′ ≤ λ1(D2u(x)) ≤ λn(D2u(x)) ≤M ′,∀x ∈ Ω.

It follows from [24] Theorem 1 and Remark 2 p. 39 that for two symmetric n × n
matrices A and B,

(2.13) |λk(A)− λk(B)| ≤ nmax
i,j
|Aij −Bij|, k = 1, . . . , n.

It follows that for u, v ∈ W 2,∞(Ω),

|λ1(D2u(x))− λ1(D2v(x))| ≤ n|u− v|2,∞(2.14)

|λn(D2u(x))− λn(D2v(x))| ≤ n|u− v|2,∞.(2.15)

By (2.4) we have for v ∈ V h

|v|2,∞ ≤ C0h
−1−n

2 ||v||1.
Let δ > 0 such that

(2.16) δ < min

{
1,

m′

2nC0

}
.
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Lemma 2.5. For h sufficiently small and for all vh ∈ V h with ||vh − Qhu||1 <
δh1+n/2/2, D2(vh|K) is positive definite with

m′

2
≤ λ1D

2(vh|K) ≤ λnD
2(vh|K) ≤ 3M ′

2
,

where m′ and M ′ are the constants of Assumption (2.12). It follows that vh is convex.

Proof. For v ∈ W 2,∞(Ω), |v − u|2,∞ ≤ δC0 and (2.16) imply

|λ1(D2v(x))− λ1(D2u(x))| ≤ n|v − u|2,∞ ≤ nδC0 ≤
m′

2
a.e. in Ω,

since δ < m′/(2nC0. By Assumption (2.12) λ1(D2u(x)) ≥ m′, and thus λ1(D2v(x)) ≥
λ1(D2u(x)) − m′/2 ≥ m′/2 a.e. in Ω. We conclude that for |v − u|2,∞ ≤ δC0,
λ1(D2v(x)) > m′/2, a.e. in Ω.

Now, by (2.2), |u−Qhu|2,∞ ≤ Chd−1|u|d+1,∞. So for h sufficiently small, |u−Qhu|2,∞ ≤
δC0/2. Moreover by (2.4) and the assumption of the lemma

|vh −Qhu|2,∞ ≤ C0h
−1−n

2 ||vh −Qhu||1 ≤
δC0

2
.

Therefore |vh − u|2,∞ ≤ δC0 as well and it follows that λ1(D2vh(x)) > m′/2, a.e. in
Ω as claimed.

Since m′ ≤ M ′, we also have |λn(D2vh(x)) − λn(D2u(x))| ≤ M ′/2 a.e. in Ω. Thus
λn(D2vh(x)) ≤ λn(D2u(x)) +M ′/2 ≤ 3M ′/2.

Since vh is piecewise convex and C1, vh is convex [27] Lemma 1. This concludes the
proof. �

Put

Xh = { vh ∈ V h, vh = gh on ∂Ω, ||vh −Qhu||1 <
δh1+n

2

4
}.

By Lemma 2.5, for h sufficiently small and vh ∈ Xh, ||vh − Qhu||1 < δh1+n/2/2 and
hence vh is convex with smallest eigenvalue bounded a.e. below by m′/2 and above
by 3M ′/2.

As a consequence of Assumption (2.12) we have

Lemma 2.6. For h sufficiently small and all vh ∈ Xh

m ≤ λ1(cof D2vh(x)) ≤ λn(cof D2vh(x)) ≤M, ∀x ∈ K,K ∈ Th,
with m = (m′)n/M ′ and M = (M ′)n/m.

It follows that for w ∈ H1(K)

(2.17) m|w|21,K ≤
∫
K

[(cof D2vh(x))Dw(x)] ·Dw(x) dx ≤M |w|21,K .

Proof. We first note that by Lemma 2.5, there exist constants m,M > 0 such that
m ≤ λ1(cof D2vh(x)) ≤ λn(cof D2vh(x)) ≤ M a.e. in Ω for vh ∈ Xh. To prove this,
recall that for an invertible matrix A, cof A = (detA)(A−1)T . Since a matrix and its
transpose have the same set of eigenvalues, the eigenvalues of cof A are of the form
detA/λi where λi, i = 1, . . . , n is an eigenvalue of A. Applying this observation to
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A = D2u(x) and using Lemma 2.5, we obtain that the eigenvalues of cof D2vh(x) are
a.e. uniformly bounded below by m = (m′)n/M ′ and above by M = (M ′)n/m.

Since λ1(D2vh(x)) and λn(D2vh(x)) are the minimum and maximum respectively
of the Rayleigh quotient [(cof D2vh(x))z] · z/||z||2, where ||z|| denotes the standard
Euclidean norm in Rn, we have

m||z||2 ≤ [(cof D2vh(x))z] · z ≤M ||z||2, z ∈ Rn.

This implies

m|w|21,K ≤
∫
K

[(cof D2vh(x))Dw(x)] ·Dw(x) dx ≤M |w|21,K , w ∈ H1(K).

�

Remark 2.7. As a consequence of Lemma 2.5 and Theorem 2.2, for h sufficiently
small, the solution uh of (2.8) is in Xh and hence convex.

Let (V h
0 )′ denote the dual space of V h

0 with V h
0 equipped with ||.||1. We consider the

mapping Fh : V h → (V h
0 )′ defined by

〈Fh(vh), ψh〉 =

∫
Ω

(detD2vh)ψh dx, vh ∈ V h, ψh ∈ V h
0 ,

and recall that f > 0 is continuous. Since Ω is bounded, by L2 duality, V h ⊂ (V h
0 )′.

We use the notation ||.|| for the operator norm of an element of a dual space. With this
notation, (2.6) can be written detD2u = f in V ′0 and (2.8) can be written Fh(uh) = f
in (V h

0 )′.

Let C1 denote the constant in the Poincare’s inequality, i.e. ||p||1 ≤ C1|p|1, p ∈ H1
0 (Ω).

Without loss of generality, we may assume that C1 ≤ 1, for example by assuming that
the domain Ω is contained in a cube of side length at most 1, [11] p.30.

Note that by Lemma 2.1 and integration by parts,

(2.18) 〈F ′h(vh)(p), p〉 = −
∫

Ω

[(cof D2vh)Dp] ·Dpdx, p ∈ H1
0 (Ω).

Thus by Lemma 2.6 and h sufficiently small

(2.19) −M ||p||21 ≤ 〈F ′h(vh)(p), p〉 ≤ −
m

C2
1

||p||21, p ∈ H1
0 (Ω),

for vh ∈ Xh. We have

Lemma 2.8. The following properties hold for h sufficiently small.

Discrete coercivity:

||F ′h(vh)(p)|| ≥
m

C2
1

||p||1,∀p ∈ V h
0 and vh ∈ Xh.

Generalized Lipschitz continuity:

(2.20) ||F ′h(vh)(ψ)− F ′h(wh)(ψ)|| ≤ C2h
−1−n

2 ||vh − wh||1||ψ||1,

for vh, wh ∈ Xh and ψ ∈ V h, η ∈ V h
0 and with C2 = C||u||2,∞.
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Proof. By (2.19) ||F ′h(v)(p)|| = supψ 6=0|〈F ′h(v)(p), ψ〉|/||ψ||1 ≥ m/C2
1 ||p||1, which proves

the discrete coercivity condition.

For vh, wh ∈ Xh, ψ ∈ V h, η ∈ V h
0 , we have

〈F ′h(vh)(ψ), η〉 − 〈F ′h(wh)(ψ), η〉 =

∫
Ω

(div(cofD2vh)Dψ)η dx

−
∫

Ω

(div(cofD2wh)Dψ)η dx

= −
∫

Ω

[(cofD2vh)Dψ] ·Dη dx

+

∫
Ω

[(cofD2wh)Dψ] ·Dη dx

=

∫
Ω

[(cofD2wh − cofD2vh)Dψ] ·Dη dx.

(2.21)

By (2.10) and an inverse estimate

|〈F ′h(vh)(ψ), η〉 − 〈F ′h(wh)(ψ), η〉| ≤ n(n− 1)2(||vh||2,∞
+ ||wh||2,∞)n−2||vh − wh||2,∞||ψ||1||η||1

||F ′h(vh)(ψ)− F ′h(wh)(ψ)|| ≤ n(n− 1)2(||vh||2,∞
+ ||wh||2,∞)n−2||vh − wh||2,∞||ψ||1

≤ n(n− 1)2C0(||vh||2,∞ + ||wh||2,∞)n−2

||vh − wh||1||ψ||1.

In the case n = 3 we have by an inverse estimate, the definition of Xh and the
assumption on δ (2.16)

||vh||2,∞ + ||wh||2,∞ ≤ ||vh −Qhu||2,∞ + ||wh −Qhu||2,∞ + 2||Qhu||2,∞
≤ C0h

−1− 3
2 (||vh −Qhu||1 + ||wh −Qhu||1)

+ C||u||2,∞

≤ C0δ

2
+ C||u||2,∞

≤ C0

2
+ C||u||2,∞.

We conclude that (2.20) holds. �

We define

Y h = { vh ∈ V h, vh = gh on ∂Ω, ||vh − uh||1 <
δh1+n

2

4
}.

Remark 2.9. For vh ∈ Y h, ||vh −Qhu||1 ≤ ||vh − uh||1 + ||Qhu− uh||1 < δh1+n/2/2
and hence Y h ⊂ Xh.

We will make the abuse of notation of denoting by both uk the solution of the iterative
methods at both the continuous and discrete level. In the remainder of this paper,
only discrete solutions are considered. This alleviates the notation.
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Finally we note that we have the freedom to choose δ given by (2.16) smaller. In-
deed this will be necessary for the convergence of the pseudo transient continuation
methods.

We make the assumption that (2.8) has a unique strictly convex solution. Recall
from Remark 2.7 that this holds for example when (1.1) has a smooth strictly convex
solution and for h sufficiently small.

3. Convergence of the pseudo transient continuation methods

We now prove the convergence of the iterative methods (1.2). The discretization
of (1.2) depends on the choice of L: Given ν > 0 and a suitable initial guess, find
uk+1 ∈ V h, uk+1 = gh on ∂Ω such that we have for all ψh ∈ V h

0 , when L is the Laplace
operator

−ν
∫

Ω

(Duk+1 −Duk) ·Dψh dx+ 〈F ′h(uk)(uk+1 − uk), ψh〉

= 〈−(Fh(uk)− f), ψh〉,
(3.1)

and when L is the negative of the identity,

−ν
∫

Ω

(uk+1 − uk)ψh dx+ 〈F ′h(uk)(uk+1 − uk), ψh〉

= 〈−(Fh(uk)− f), ψh〉.
(3.2)

We define

(3.3) Ch =
m

C2
1

+
νh2

C2
0

,

and require h < min{
√

2C0, C0/C1}. Thus since h2 < 2C2
0 we have 2−h2/C2

0 > 0 and
if we require

(3.4) 0 < ν <
m

C2
1(2− h2

C2
0
)
,

we have

(3.5) 0 < ν <
Ch
2
.

We now require that

(3.6) δ < min

{
1,

m′

2nC0

,
2Ch
C2

}
.

Theorem 3.1. Let Ω be convex with a Lipschitz continuous boundary and assume that
the spaces V h = S1

d(T ) have the optimal approximation property (2.2) and satisfy the
inverse estimates (2.4). A sequence defined by either (3.1) or (3.2) with a suitable
initial guess and for ν, h sufficiently small converges to the unique strictly convex
solution of (2.8). Moreover the convergence rate is linear.
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Proof. Define Mi : V h
0 → (V h

0 )′, i = 1, 2 for v, ψh ∈ V h
0 by

〈M1(v), ψh〉 =

∫
Ω

Dv ·Dψh dx, 〈M2(v), ψh〉 =

∫
Ω

vψh dx.

We note that

||Mi(v)|| ≤ ||v||1, v ∈ V h
0 , i = 1, 2.(3.7)

Next, for p ∈ V h
0 , by (2.19) and Poincare’s inequality we have

−(M + ν)||p||21 ≤ 〈F ′h(vh)(p), p〉 − ν|p|21 ≤ −
1

C2
1

(m+ ν)||p||21.

Thus

(3.8) |〈F ′h(vh)(p), p〉 − ν|p|21| = −〈F ′h(vh)(p), p〉+ ν|p|21 ≥
1

C2
1

(m+ ν)||p||21.

We have

|| − νM1(p) + F ′h(vh)(p)|| = supψh 6=0

| − νM1(p)(ψh) + F ′h(vh)(p)(ψh)|
||ψh||1

≥ | − νM1(p)(p) + F ′h(vh)(p)(p)|
||p||1

=
| − ν|p|21 + F ′h(vh)(p)(p)|

||p||1

≥ 1

C2
1

(m+ ν)||p||1.

Similarly, since C−2
0 h2||p||21 ≤ ||p||20 ≤ ||p||21

−(M + ν)||p||21 ≤ 〈F ′h(vh)(p), p〉 − ν||p||20 ≤ −(
m

C2
1

+
νh2

C2
0

)||p||21.

And again

|| − νM2(p) + F ′h(vh)(p)|| ≥
| − ν||p||20 + F ′h(vh)(p)(p)|

||p||1

≥ (
m

C2
1

+
νh2

C2
0

)||p||1.

For h sufficiently small, i.e. h ≤ C0/C1, we have 1/C2
1 ≥ h2/C2

0 and we therefore have

||p||1 ≤
1

m
C2

1
+ νh2

C2
0

|| − νMi(p) + F ′h(vh)(p)||, p ∈ V h
0 , i = 1, 2.(3.9)
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We can now determine under which conditions when uk ∈ Y h we have uk+1 ∈ Y h as
well. Using (3.1), (3.2), Fh(uh) = f and the Mean Value Theorem,

−νMi(uk+1 − uh) + F ′h(uk)(uk+1 − uh) = −νMi(uk − uh) + F ′h(uk)(uk − uh)
− (Fh(uk)− f)

= −νMi(uk − uh) + F ′h(uk)(uk − uh)

−
∫ 1

0

F ′h(uh + θ(uk − uh))(uk − uh) dθ

=

∫ 1

0

[F ′h(uk)− F ′h(uh + θ(uk − uh))](uk − uh)

− νMi(uk − uh) dθ,
Using (3.3), (3.9), (3.7) and the generalized Lipschitz continuity property of F ′h, we
get

Ch||uk+1 − uh||1 ≤ ν||uk − uh||1 + C2h
−1−n

2 ||uk − uh||21,
and thus

||uk+1 − uh||1 ≤
ν

Ch
||uk − uh||1 +

C2h
−1−n

2

Ch
||uk − uh||21,(3.10)

By the definition of Y h and the choice of δ, we have

C2h
−1−n

2

Ch
||uk − uh||1 ≤

δC2

4Ch
<

1

2
.

This gives by (3.5) and (3.10)

(3.11) ||uk+1 − uh||1 < ||uk − uh||1,
and we have proved that uk+1 ∈ Y h when uk ∈ Y h.

We now assume that u0 is chosen in Y h. We have for i = 1, 2

〈Fh(uk+1)− f, ψh〉 = 〈Fh(uk+1)− Fh(uk) + Fh(uk)− f, ψh〉
= 〈Fh(uk+1)− Fh(uk), ψh〉 − 〈νMi(uk+1 − uk), ψh〉

− 〈F ′h(uk)(uk+1 − uk), ψh〉

= 〈
∫ 1

0

[F ′h(uk + t(uk+1 − uk))− F ′h(uk)](uk+1 − uk) dt

− 〈νMi(uk+1 − uk), ψh〉.
We conclude from the general Lipschitz continuity property with vh = uk, an inverse
estimate and (3.7),

||Fh(uk+1)− f || ≤ C2h
−1−n

2 ||uk+1 − uk||21 + ν||uk+1 − uk||1.

Finally, by (3.9) and the definition of the iterative methods (3.1) and (3.2),

||uk+1 − uk||1 ≤
1

Ch
||Fh(uk)− f ||.

We conclude that

||Fh(uk+1)− f || ≤ c1(h)||Fh(uk)− f ||2 + c0(h)||Fh(uk)− f ||,
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for constants c0(h) = ν/Ch and c1(h) which depends on h. By the assumption (3.5)
on ν, we have c0(h) < 1/2.

Let q = ||Fh(u0) − f || and assume that u0 is chosen so that c1(h)q < 1 − c0(h). We
then have

s ≡ c1(h)q + c0(h) < 1.

It follows that

||Fh(u1)− f || ≤ c1(h)||Fh(u0)− f ||2 + c0(h)||Fh(u0)− f || = sq,

and since s < 1,

||Fh(u2)− f || ≤ c1(h)||Fh(u1)− f ||2 + c0(h)||Fh(u1)− f ||
= ||Fh(u1)− f ||(c1(h)||Fh(u1)− f || + c0(h))

≤ ||Fh(u1)− f ||(c1(h)sq + c0(h))

≤ ||Fh(u1)− f ||s ≤ s2q.

We conclude that ||Fh(uk) − f || ≤ skq. Using Fh(uh) = f and the Mean Value
Theorem

〈Fh(uk)− f, uk − uh〉 = 〈Fh(uk)− Fh(uh), uk − uh〉

= 〈
∫ 1

0

F ′h(tuk + (1− t)uh)(uk − uh) dt, uk − uh〉

= 〈
∫ 1

0

F ′h(tuk + (1− t)uh)(uk − uh), uk − uh〉 dt.

Thus integrating (2.19) with respect to t we obtain

m

C2
1

||uk − uh||21 ≤
∣∣∣∣ ∫ 1

0

〈F ′h(tuk + (1− t)uh)(uk − uh), uk − uh〉 dt
∣∣∣∣

= |〈Fh(uk)− f, uk − uh〉|
≤ ||Fh(uk)− f || ||uk − uh||1.

We conclude that

||uk − uh||1 ≤ C||Fh(uk)− f || ≤ Cqsk,

from which the convergence follows. The convergence rate is given by (3.11). �

Remark 3.2. The proof of convergence of the pseudo transient continuation methods
also gives the convergence of Newton’s method when ν = 0. In particular (3.10)
gives the quadratic convergence rate of Newton’s method when ν = 0. The quadratic
convergence rate of Newton’s method was also proved in a more general context in [9]
where it is shown that the rate of convergence is independent of h, [9] Theorem 9.1.
The independence of the rate in terms of the mesh size is known as mesh independence
principle.

Remark 3.3. The introduction of the constant Ch is motivated by our desire to have
a unified analysis in (3.9) for both types of pseudo transient continuation methods.
Since

||p||1 ≤ C|| − νM1(p) + F ′h(vh)(p)||, p ∈ V h
0 ,
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we get for ν = 0 from (3.10)

||uk+1 − uh||1 ≤ Ch−1−n
2 ||uk − uh||21,

for a constant C independent of h.

Remark 3.4. The analysis above does not indicate whether (3.1) should be preferred
over (3.2). We view (3.1) as a preconditioned version of (3.2). Moreover, the numeri-
cal results indicate that the use of the Laplacian preconditioner improves the convexity
property of the numerical solution.

4. Convergence of the time marching methods

We now turn to the proof of one of the main results of this paper, the convergence
analysis of the iterative method (1.3) for the Monge-Ampère equation.

Let ν = (M +m)/2 and define a mapping T1 : Y h → (V h
0 )′ by

(4.1) 〈T1(vh), ψh〉 =

∫
Ω

Dvh ·Dψh dx+
1

ν

∫
Ω

(detD2vh − f)ψh dx,

for vh ∈ Y h, ψh ∈ V h
0 . The following lemma will make it possible to show that T1 is

a strict contraction.

Lemma 4.1. For vh ∈ Y h,

||T ′1(vh)||∗ ≡ sup
ψh∈V h

0 ,ψh 6=0

||T ′1(vh)(ψh)||
|ψh|1

≤ sup
ψh∈V h

0 ,ψh 6=0

|T ′1(vh)(ψh)(ψh)|
|ψh|21

≤ M −m
M +m

.

Proof. Let α = supψh∈V h
0 ,ψh 6=0

|T ′
1(vh)(ψh)(ψh)|
|ψh|21

. We have

(4.2) |T ′1(vh)(ψh)(ψh)| ≤ α|ψh|21, ψh ∈ V h
0 .

Since for µh ∈ V h
0 , ||T ′1(vh)(µh)|| = supηh∈V h

0 ,ηh 6=0|T ′1(vh)(µh)(ηh)|/|ηh|1, we obtain

||T ′1(vh)||∗ = supµh,ηh∈V h
0 ,µh,ηh 6=0

|T ′1(vh)(µh)(ηh)|
|µh|1|ηh|1

.

But

T ′1(vh)(µh)(ηh) =

∫
Ω

Dµh ·Dηh dx−
1

ν

∫
Ω

[(cofD2vh)Dµh] ·Dηh dx

=

∫
Ω

[(I − 1

ν
(cofD2vh))Dµh] ·Dηh dx,

where I denotes the n× n identity matrix. Hence

T ′1(vh)(µh)(ηh)

|µh|1|ηh|1
=

∫
Ω

[(I − 1

ν
(cofD2vh))D

µh
|µh|1

] ·D ηh
|ηh|1

dx.
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Next, we note that for fixed vh ∈ Y h, we can define a bilinear form on V h
0 by the

formula

(p, q) =

∫
Ω

[(I − 1

ν
(cofD2vh))Dp] ·Dq dx.

Then since

(p, q) =
1

4
((p+ q, p+ q)− (p− q, p− q)),

we obtain

||T ′1(vh)||∗ = sup
µh,ηh∈V h

0 ,µh,ηh 6=0

1

4

∣∣∣∣ ∫
Ω

[(I − 1

ν
cofD2vh)

D(
µh
|µh|1

+
ηh
|ηh|1

] ·D(
µh
|µh|1

+
ηh
|ηh|1

) dx

−
∫

Ω

[(I − 1

ν
cofD2vh)D(

µh
|µh|1

− ηh
|ηh|1

] ·D(
µh
|µh|1

− ηh
|ηh|1

) dx

∣∣∣∣
≤α

4

(∣∣∣∣ µh|µh|1 +
ηh
|ηh|1

∣∣∣∣2
1

+

∣∣∣∣ µh|µh|1 − ηh
|ηh|1

∣∣∣∣2
1

)
= α.

By Lemma 2.6 we have

(1− M

ν
)|w|21 ≤

∫
Ω

[(I − 1

ν
(cofD2vh))Dw] ·Dw dx ≤ (1− m

ν
)|w|21, w ∈ H1

0 (Ω).

Since ν = (M+m)/2, 1−M/ν = −(M−m)/(M+m) and 1−m/ν = (M−m)/(M+m),
we conclude that α ≤ (M −m)/(M +m). �

We can now prove the following lemma

Lemma 4.2. The mapping T1 is a strict contraction in Y h with contraction constant
(M −m)/(M +m) for ν = (M +m)/2.

Proof. Let vh and wh ∈ Y h. Then, using the Mean Value Theorem

||T1(wh)− T1(vh)|| = ||
∫ 1

0

T ′1(vh + t(wh − vh))(wh − vh) dt||

≤
∫ 1

0

||T ′1(vh + t(wh − vh))(wh − vh)|| dt.

Since wh − vh ∈ V h
0 and vh + t(wh − vh) ∈ Y h, t ∈ [0, 1], we obtain by Lemma 4.1,

||T1(wh)− T1(vh)|| ≤
∫ 1

0

M −m
M +m

|wh − vh|1 dt =
M −m
M +m

|wh − vh|1.

�

Remark 4.3. For the operator T1 to be a strict contraction, it is enough to have
ν sufficiently large, i.e. ν > M . In our computations, the value of ν is chosen
”adaptively”, i.e. we start with the value ν = 50 and if necessary we reduce or
increase it for better accuracy. The situation is similar to the setting of adaptive
mesh refinements where it is not known in advance where to do a local refinement
and decisions are made based on computed results.
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Remark 4.4. By the inverse inequality, we have

C3h
2|wh|21 ≤ ||wh||20 ≤ C2

1 |wh|21, wh ∈ V h
0 .

We may assume that C1 ≤ 1 by assuming that the domain is contained in a cube of
side length at most 1. It follows that for wh ∈ V h

0

(C3h
2 − M

ν
)|wh|21 ≤

∫
Ω

w2
h dx−

∫
Ω

[
1

ν
(cof D2vh)Dwh] ·Dwh dx ≤ (1− m

ν
)|wh|21.

As in the proofs of Lemmas 4.1 and 4.2, we conclude that for ν > M/(C3h
2), the

mapping T2 : Y h → (V h
0 )′ defined by

(4.3) < T2(vh), ψh〉 =

∫
Ω

vhψh dx+
1

ν

∫
Ω

(detD2vh − f)ψh dx,

for vh ∈ Y h, ψh ∈ V h
0 is a strict contraction.

We can now claim our main result, which is the convergence to uh of the sequence
defined by uk+1 ∈ V h, uk+1 = gh on ∂Ω and

(4.4) ν

∫
Ω

Duk+1 ·Dψh dx = ν

∫
Ω

Duk ·Dψh dx+

∫
Ω

(detD2uk − f)ψh dx,

for ψh ∈ V h
0 .

Theorem 4.5. Let Ω be convex with a Lipschitz continuous boundary and assume
that the spaces V h = Srd(T ) have the optimal approximation property (2.2) and satisfy
the inverse estimates (2.4). The sequence defined by (4.4) converges to the unique
strictly convex solution uh of (2.8) for any initial guess u0 in Y h and a suitable ν > 0
with a linear convergence rate.

Proof. The proof parallels Theorem 5.4 in [18]. Let us assume first that uk ∈ Y h. We
have using (2.8), or equivalently detD2uh = f in (V h

0 )′,∫
Ω

D(uk+1 − uh) ·Dψh dx =

∫
Ω

D(uk − uh) ·Dψh dx+
1

ν

∫
Ω

detD2uk ψh dx

− 1

ν

∫
Ω

detD2uh ψh dx

= 〈T1(uk)− T1(uh), ψh〉.

Taking ψh = uk+1 − uh, we obtain

|uk+1 − uh|21 ≤ ||T1(uk)− T1(uh)|| |uk+1 − uh|1 ≤
M −m
M +m

|uk − uh|1|uk+1 − uh|1,

where for simplicity, we assume that the finite dimensional V h
0 is equipped with the

|.|1 norm of H1
0 (Ω). We conclude that

|uk+1 − uh|1 ≤
M −m
M +m

|uk − uh|1.

This also shows that if uk ∈ Y h, then uk+1 ∈ Y h and concludes the proof. �
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Remark 4.6. It follows from the above result and Remark 4.4 that for a suitable
initial guess and a suitable ν > 0, the sequence defined by

(4.5) ν

∫
Ω

uk+1ψh dx = ν

∫
Ω

ukψh dx+

∫
Ω

(detD2uk − f)ψh dx, ψh ∈ V h
0 ,

with uk+1 ∈ V h, uk+1 = gh on ∂Ω also converges to the unique strictly convex solution
of 2.8. Obviously the convergence properties of (4.4) and (4.5) depend on the contrac-
tion constants of T1 and T2 respectively. Thus (4.4) is more robust than (4.5) in the
sense that the choice of ν for (4.4) is less dependent on the discretization parameter
h. As suggested in [23] in the context of monotone schemes, the use of the Laplacian
preconditioner results in a more efficient algorithm.

5. Numerical Results

The numerical results are obtained with the spline element method which we first
review. We conclude the section with some heuristics about why our methods appear
to enforce convexity.

5.1. Spline element discretization. We refer to [1, 4, 5, 7, 25, 2] for a description
of the spline element method. We describe the method for linear problems and recall
that the problems (1.3) are linear problems. Let u ∈ V = Hm

0 (Ω),m ≥ 1 solve a
variational problem a(u, v) = f(v) with the conditions of the Lax-Milgram lemma
satisfied. Take Vh as the spline space Srd(T ) of smoothness r and degree d, (2.1). For
r = 0 and d = 1 we have the space of piecewise linear continuous functions.

First, start with a representation of a piecewise discontinuous polynomial as a vector
in RN , for some integer N > 0. Then express boundary conditions and constraints
including global continuity or smoothness conditions as linear relations. In our work,
we use the Bernstein basis representation, [1, 2] which is very convenient to express
smoothness conditions and very popular in computer aided geometric design. Hence
the term “spline” in the name of the method. We can therefore identify the space Vh
with {c ∈ RN , Rc = G} for some integer N , matrix R and vector G. The discrete
problem consists in finding c ∈ Vh, cTKd = F Td for all d ∈ Vh for a suitable stiffness
matrix K and a load vector F . Introducing a Lagrange multiplier λ, the functional

K(c)d− LTd+ λTRd,

vanishes identically on Vh. The stronger condition

K(c) + λTR = LT ,

along with the side condition Rc = G are the discrete equations to be solved. We are
lead to saddle point problems(

K RT

R 0

)(
c
λ

)
=

[
F
G

]
.

The ellipticity condition assures uniqueness of the component c and the saddle point
problems are solved by a version of the augmented Lagrangian algorithm

(5.1) (K +
1

µ
RTR)c(l+1) = KT c(l) +

1

µ
RTG, l = 1, 2, . . .
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h nit L2 norm rate H1 norm rate H2 norm rate
1/21 236 4.1569 10−6 6.5142 10−5 1.9364 10−3

1/22 233 1.1504 10−7 5.17 2.3915 10−6 4.77 1.3444 10−4 3.85
1/23 233 3.2406 10−9 5.15 8.4120 10−8 4.83 8.9366 10−6 3.92
1/24 233 4.5857 10−10 2.82 4.7246 10−9 4.15 6.0706 10−7 3.88

Table 1. Time marching method for Test 1, S1
5 , ν = 50

d nit L2 norm H1 norm H2 norm
3 1 1.2338 10−2 7.6984 10−2 4.4411 10−1

4 270 1.6289 10−3 1.4719 10−2 1.3983 10−1

5 135 1.5333 10−3 8.7312 10−3 6.0412 10−2

6 424 1.2491 10−4 9.7458 10−4 1.0473 10−2

Rate 0.18 0.25d−1 4.57 0.25d 60.85 0.3d+1

Table 2. Time marching method for Test 2 (3D) on I1, ν = 50

The convergence properties of the iterative method were given in [6]. Extensive
implementation details can be found in [1, 5].

5.2. Numerical results. For n = 2, the computational domain is the unit square
[0, 1]2 which is first divided into squares of side length h. Then each square is divided
into two triangles by the diagonal with negative slope. For n = 3, the initial tetrahe-
dral partition I1 consists in six tetrahedra. Each tetrahedron is then uniformly refined
into 8 subtetrahedra forming I2. In the tables, nit denotes the number of iterations.
We refer to [1, 5] for implementation details of the method. All numerical experiments
are with the versions of the iterative methods with Laplacian preconditioner.

In general we did not try to choose the value of ν that would give the smallest number
of iterations except in Tables 4 and 5 where we compare the performance of the two
methods.

We use some standard test cases for numerical evidence for convergence to non smooth
solutions of the elliptic Monge-Ampere equation.

Test 1: u(x, y) = e(x2+y2)/2 so that f(x, y) = (1 + x2 + y2)e(x2+y2) and g(x, y) =

e(x2+y2)/2 on ∂Ω.

Test 2: u(x, y, z) = e(x2+y2+z2)/3 so that f(x, y, z) = 8/81(3+2(x2 +y2 +z2)e(x2+y2+z2)

and g(x, y, z) = e(x2+y2+z2)/3 on ∂Ω.

Barring roundoff errors, the methods introduced in this paper capture smooth solu-
tions. For the two dimensional test function, Test 1, we give numerical results for
successive refinements and for the three dimensional test function, we give numerical
results for increasing values of the degree d on two successive refinements.

In the context of approximations by finite dimensional spaces, many finite element
methods proposed, [15, 21], fail to fully capture the convexity of the solution on the
test case



21

d nit L2 norm H1 norm H2 norm
3 1 3.1739 10−3 2.3005 10−2 2.4496 10−1

4 651 3.2385 10−4 3.5599 10−3 5.2262 10−2

5 744 2.2730 10−5 3.8977 10−4 8.8978 10−3

6 652 1.1956 10−6 2.2056 10−5 6.0437 10−4

Rate 0.72 0.072d−1 29.44 0.1d 861.43 0.14d+1

Table 3. Time marching method for Test 2 (3D) on I2, ν = 50

h ν nit time L2 norm rate
1/21 0 6 3.032810+0 2.195410−2

1/22 0 5 8.136510+0 3.609710−3 2.60
1/23 0 6 3.823010+1 1.068510−3 1.76
1/24 3 56 1.597910+3 3.766610−4 1.50

Table 4. Pseudo-transient method Test 4 r = 1, d = 3

h ν nit time L2 norm rate
1/21 2 35 6.2191 10+0 2.072110−2

1/22 2 89 6.0553 10+1 1.857910−3 3.48
1/23 4.5 64 1.6849 10+2 5.043810−4 1.88
1/24 11.5 151 1.703810+3 2.113210−4 1.25

Table 5. Time marching method Test 4 r = 1, d = 3

Test 3: g(x, y) = 0 and f(x, y) = 1.

In Figure 1 we give a plot of the graph of the solution as well as a section of the graph
along the line y = x.

For the same test case, there is a concave solution. The concavity property of the
concave solution obtained with the time marching method are better than the one
obtained by the vanishing moment methodology, [21]. This is illustrated in Figure 4.

We now discuss how the two methods compare. First, we are solving the same discrete
equations (2.8) by different iterative methods. Second, we noticed that the smaller
ν, the smaller the number of iterations. Thus for a smooth solution, the correct
value of ν to take in the pseudo transient method is ν = 0 which is exactly Newton’s
method. In fact, Newton’s method has been shown to have a quadratic convergence
rate while the pseudo transient methods and time marching methods are shown in
Theorems 3.1 and 4.5 to have a linear convergence rate. Moreover the numerical
errors of Tables 1, 2 and 3 are essentially the ones obtained with Newton’s method
as expected. We compare the performance of the methods on a non-smooth solution
with known solution.

Test 4: u(x, y) = −
√

2− x2 − y2 with corresponding f and g.
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Figure 1. Pseudo transient Test 3, convex solution: h = 1/24, d =
5, ν = 7.5.

The time listed is in seconds and obtained on an imac running Mac OS 10.6.8 with a
2.4 Ghz intel core 2 duo and 4 GB of SDRAM memory. While for small values of h the
time marching method appears to take significantly more time, it is also significantly
more accurate. For h = 1/24 the time took by the two methods is almost the same
with the time marching method giving a more accurate solution.

Next we consider a non square domain.

Test 5: we consider the unit circle discretized with a Delanauy triangulation with 824
triangles and u(x, y) = x2 + y2 − 1 which vanishes on the boundary, Figure 3.

We conclude this section with a test problem for a degenerate Monge-Ampère equation

Test 6: g(x, y) = |x− 1/2| and f(x, y) = 0.

The graph of the function, Figure 4 is singular along the line x = 1/2. The appro-
ximations been C1 do appear to capture the singularity but not the convexity of the
solution. Somewhat better results are obtained with another iterative method dis-
cussed in an unpublished report available at http://arxiv.org/ abs/1012.1775. When
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Figure 2. Time marching, Test 3, concave solution: h = 1/24, d =
5, ν = 50.

Figure 3. u(x, y) = x2 + y2 − 1 on a non square domain with pseudo
transient ν = 0, r = 1, d = 3
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Figure 4. f(x, y) = 0 and g(x, y) = |x − 1/2| with time marching
ν = 50, r = 1, d = 5, h = 1/24

the time marching method is discretized by the standard finite difference method the
singularity is captured correctly. We wish to discuss these results in separate works.

5.3. Heuristics on convexity preservation. When (1.1) has a smooth strictly con-
vex solution, Theorem 2.2 establishes that the approximate solution is automatically
convex. The numerical experiments indicate that in the non smooth case, discrete
solutions are also convex. The result can be easily explained at the continuous level
(for a smooth solution).

Assume that f > c0 > 0 and that the sequence uk defined by

ν∆uk+1 + (cof D2uk) : D2uk+1 = ν∆uk + (cof D2uk) : D2uk

− detD2uk + f.
(5.2)

has been shown to converge to u in the Hölder space C2,β(Ω) for some β in (0, 1).
From the arithmetic-geometric inequality, we have

(∆uk)
n

nn
≥ detD2uk.

By the continuity of the eigenvalues, (2.13), ∆v is bounded in a neighborhood of u in
which all uk belong for k large enough. Choose ν such that ν ≥ (n− 1)(∆uk)

n−1/nn

for all k and note that the right hand of (5.2) is equal to ν∆uk +(n−1) detD2uk +f .
By the assumption on ν, we get ν∆uk+1 + (cof D2uk) : D2uk+1 ≥ 0. In the limit, we
obtain ν∆u+(cof D2u) : D2u ≥ 0. Since detD2u ≥ 0 by assumption, we get ∆u ≥ 0.

As for the time marching method

−ν∆uk+1 = −ν∆uk + detD2uk − f, uk+1 = g on ∂Ω,

assume now again that f > c0 > 0 and that the sequence uk has been shown to
converge to u in C2,β(Ω) for some β in (0, 1). Choose ν such that ν ≥ (∆uk)

n−1/nn.
It follows from the arithmetic-geometric inequality that

ν∆uk ≥
(∆uk)

n

nn
≥ detD2uk.

and so −ν∆uk + detD2uk ≤ 0 and it follows that the time marching method also
preserves the positivity of the Laplacian.
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In two dimensions ∆u ≥ 0 and detD2u = f ≥ 0 imply that D2u is positive.
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