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Abstract. We prove the convergence of a damped Newton’s method for the non-
linear system resulting from a discretization of the second boundary value problem
for the Monge-Ampère equation. The boundary condition is enforced through the
use of the notion of asymptotic cone. The differential operator is discretized based
on a discrete analogue of the subdifferential.

1. Introduction

In this paper we prove the convergence of a damped Newton’s method for a finite
difference approximation of the second boundary value problem for Monge-Ampère
type equations introduced in [1]. Our result leads to the existence of a solution to
the discretization. The damped Newton’s method allows the use of an initial guess
which may be far from the solution of the discrete problem. We establish the global
convergence of the algorithm for the discretization proposed.

Monge-Ampère type equations with the second boundary value condition arise in geo-
metric optics and optimal transport. The approach in [1] is to interpret the boundary
condition as the prescription of the asymptotic cone of the epigraph of the convex
solution of the Monge-Ampère equation. The convergence analysis of the damped
Newton’s method given here generalizes the ones given in [7, 5].

Let Ω and Ω∗ be bounded convex polygonal domains of Rd, d ≥ 1 and let R be a
locally integrable function on Rd such that R > 0 on Ω∗ and R = 0 on Rd \ Ω∗. Let
f ≥ 0 be an integrable function on Ω. We assume that the compatibility condition

(1.1)

∫
Ω

f(x)dx =

∫
Ω∗
R(p)dp,

holds. Recall that for a function u on Ω the subdifferential of u at x ∈ Ω is defined
by

∂u(x) = { p ∈ Rd : u(y) ≥ u(x) + p · (y − x), for all y ∈ Ω }.(1.2)

We are interested in approximating a convex function u which solves

R(Du(x)) detD2u(x) = f(x) in Ω

∂u(Ω) = Ω∗.
(1.3)

The first equation in (1.3) is to be interpreted in the sense of Aleksandrov, i.e. for a
Borel set E ⊂ Ω, it is required that ω(R, u,E) :=

∫
∂u(E)

R(p)dp =
∫
E
f(x)dx, where

1
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ω(R, u, .) is the R-Monge-Ampère measure associated to u. The second equation in
(1.3) is the second boundary condition.

Let kΩ∗ denote the support function of Ω∗, i.e. for x ∈ Rd, kΩ∗(x) = supp∈Ω∗ p · x. It
is shown in [1] that if one defines for x /∈ Ω

(1.4) u(x) = inf
y∈∂Ω

u(y) + kΩ∗(x− y),

one obtains a convex extension of u to Rd. Moreover, (1.3) is equivalent to finding a
convex function u on Rd solving (1.4) such that in the sense of Aleksandrov

(1.5) R(Du(x)) detD2u(x) = f(x) in Rd.

We refer to solutions of (1.5) as Monge-Ampère functions, anticipating applications
to a more general setting [4].

Solutions of (1.5) are unique up to an additive constant. For x1 ∈ Ω, we may
require that u(x1) = 0. In view of the compatibility condition (1.1), (1.5) is formally
equivalent to finding a convex function u on Rd solving (1.4) such that in the sense
of Aleksandrov

(1.6) R(Du(x)) detD2u(x) = f(x) + w u(x1) in Rd,

where w is a constant which we assume to be non positive. For approximating solu-
tions of (1.6), it is proposed in [2] to use piecewise linear convex functions. However,
if v is a piecewise linear convex function, ∂v(Ω) is a polygon [1, Lemma 10]. We also
approximate the domain Ω∗ by a polygon Y ⊂ Ω∗.

Let h be a small positive parameter and let Zdh = a + {mh,m ∈ Zd } denote the
orthogonal lattice with mesh length h and with an offset a ∈ Zd. The offset a
may make it easier to choose the decomposition of the domain used for the discrete
Monge-Ampère equation (1.8) below. Put Ωh = Ω∩Zdh and denote by (r1, . . . , rd) the
canonical basis of Rd. Let

∂Ωh = {x ∈ Ωh such that for some i = 1, . . . , d, x+ hri /∈ Ωh or x− hri /∈ Ωh }.
We note that with our notation ∂Ωh ⊂ Ωh. For x ∈ Ωh, let V (x) be a finite subset of
Zd \ {0}. We will refer to functions defined on Zdh as mesh functions.

We consider the following discrete analogue of the subdifferential of a function. For
x ∈ Zdh we define for a mesh function vh

∂V vh(x) = { p ∈ Rd, p · (he) ≥ vh(x)− vh(x− he)∀e ∈ V (x) },
and consider the following discrete version of the R-Monge-Ampère measure

ωV (R, vh, E) :=

∫
∂V vh(E)

R(p)dp.

We are interested in mesh functions vh which are V -discrete convex in the sense that
for all x ∈ Ωh and e ∈ V (x)

∆hevh(x) := vh(x+ he)− 2vh(x) + vh(x− he) ≥ 0.

We also require a discrete analogue of (1.7), namely, for x ∈ Zdh \ Ωh

(1.7) vh(x) = min
y∈∂Ωh

vh(y) + kY (x− y),
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and we recall that Y ⊂ Ω∗ is a polygonal domain approximating Ω∗.

We denote by CY,Vh the set of V -discrete convex mesh functions which satisfy (1.7).
We can now describe the discretization of the second boundary value problem we
consider in this paper: find uh ∈ CY,Vh such that

ωV (R, uh, {x }) =

∫
Cx

f(t)dt+ w uh(x
1), x ∈ Ωh,(1.8)

where x1 ∈ Ωh and (Cx)x∈Ωh
form a partition of Ω, i.e. Cx∩Ωh = {x },∪x∈Ωh

Cx = Ω,
and Cx ∩ Cy is a set of measure 0 for x 6= y. In the interior of Ω one may choose as
Cx = x + [−h/2, h/2]d the cube centered at x with Cx ∩ Ωh = {x }. We make an
abuse of notation by not making explicit the dependence of x1 on h. The requirement
that the sets Cx form a partition is essential for the discretization of the measure with
density f .

The unknowns in (1.8) are the mesh values uh(x), x ∈ Ωh. For z /∈ Ωh, the value
uh(z) needed for the evaluation of ∂V vh(x) is obtained from the discrete extension
formula (1.7).

We show that a subsequence of the damped Newton iterations converges to a solution
of (1.8) for w < 0. This gives existence of a solution to (1.8). Taking limits of solutions

to (1.8) as w → 0, we obtain existence of a solution to the problem: find uh ∈ CY,Vh

such that

ωV (R, uh, {x }) =

∫
Cx

f(t)dt, x ∈ Ωh.(1.9)

While adding a constant to a solution of (1.9) results in another solution, this is not
the case for (1.8).

We organize the paper as follows. In the next section, we give additional preliminaries.
The damped Newton’s method is introduced in section 3 in a general setting. In
section 4 we give its convergence analysis for (1.8) and discuss the extension to (1.9).

2. Preliminaries

We will use the notation C for a generic constant and || · || for the Euclidean norm.
We first describe the extended mesh needed for the evaluation of ∂V vh(x) in (1.8). A
stencil V is a set valued mapping from Ωh to the set of finite subsets of Zd\{0}. Recall
that a subset W of Zd is symmetric with respect to the origin if ∀y ∈ W,−y ∈ W .
We define Vmin to be a finite subset of Zd \ {0} which is symmetric with respect to
the origin, contains the elements of the canonical basis of Rd, and contains a vector
parallel to a normal to each facet of the polygonal domain Y . Put

Ωext = Ωh ∪ {x+ he : x ∈ Ωh, e ∈ Vmin }.
Vmax(x) = { e ∈ Zd \ {0},∃y ∈ Ωext, y = x+ he }.

We assume that
Vmin ⊂ V (x) ⊂ Vmax(x), x ∈ Ωh,

and V (x) ⊂ Zd \ { 0 } is symmetric with respect to the origin for x ∈ Ωh. We
furthermore assume that if e and f are in V (x), e = rf for a scalar r if and only if
r = −1.
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We will need below the following results from [1].

Lemma 2.1. [1, Theorem 4] There exists a unique solution to (1.8) for V = Vmax
and for which uh(x

1) = 0.

The above theorem asserts the existence and uniqueness of a solution to (1.8) when
the stencil V is maximal. We prove below that a solution exists when V is not
necessarily equal to Vmax.

Lemma 2.2. [1, Lemma 2] There exists a constant C independent of vh ∈ CY,Vh and
h such that for all x, y ∈ Ωh

|vh(x)− vh(y)| ≤ C||x− y||.

Using Vmin ⊂ V (x), x ∈ Ωh, the next lemma follows from [1, Lemma 2].

Lemma 2.3. Let vh ∈ CY,Vh . Then for x ∈ Ωh, ∂V vh(x) ⊂ Y ⊂ Ω∗.

3. The damped Newton’s method

We first give a general convergence result, the assumptions of which are then verified
in the next section for our discretization. Let U denote an open subset of RM . In
section 4 we will identify a mesh function with a vector consisting in its values at grid
points. Here, we then denote by vh a generic element of U.

We are interested in the zeros of a mappingG : U → RM withG(vh) = (Gl(vh))l=1,...,M .
We recall that ||.|| denotes the Euclidean norm in RM and put

Uε = { vh ∈ U, Gl(vh) > −ε, l = 1, . . . ,M },
for a parameter ε > 0. This allows us to study the differentiability of G on an open
set. We assume that G ∈ C1(Uε,RM) for all ε > 0. The current iterate of the damped
Newton’s method is denoted vkh and the following iterate is sought along the path

pk(τ) = vkh − τ
(
G′(vkh)− νI

)−1
G(vkh),

where ν is a non negative constant and I the M × M identity matrix. The term
−νI is introduced to deal with situations where G′(vkh) is not known to be invertible
but G′(vkh) − νI can be shown to be invertible. When the term −νI is used in the
computations, it is desirable to choose ν small, as suggested by the rate in Theorem
3.1 below. For the general setting considered in this section, we make the assumption
that when vkh ∈ U, there exists τk ∈ (0, 1] such that pk(τ) ∈ U for all τ ∈ [0, τk]. Let
δ ∈ (0, 1) and choose ρ ∈ (0, 1), e.g. ρ = 1/2.

Algorithm 1 A damped Newton’s method

1: Choose v0
h ∈ Uε and set k = 0

2: If G(vkh) = 0 stop
3: Let ik be the smallest non-negative integer i such that pk(ρi) ∈ Uε and

||G(pk(ρi))|| ≤ (1− δρi)||G(vkh)||.
Set vk+1

h = pk(ρik)
4: k ← k + 1 and go to 2
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The general convergence result for damped Newton’s methods is analogous to [5,
Proposition 6.1] where maps with probability measures as values are considered.
Therein, the map G is assumed to be in C1,α, 0 < α ≤ 1. For G to be merely
C1, as in certain geometric optics problems, and with detG′(x) 6= 0 for all x ∈ U,
one has convergence [3]. For completeness we adapt the proof of [3] to the case where
the domain of the mapping G is an open set of RM . As with [7, Proposition 2.10] we
will assume that the mapping G is proper, i.e. the preimage of any compact set is a
compact set.

Theorem 3.1. Let G ∈ C1(U,RM) be a proper map with det(G′(x) − νI) 6= 0 for
some ν ≥ 0 and for all x ∈ U. Assume that when vkh ∈ U, there exists τk in (0, 1]
such that for all 0 < τ ≤ τk, pk(τ) ∈ U. With an initial guess v0

h in Uε, the iterates
vkh of the damped Newton’s method are well defined and there is a subsequence kl such

that vklh converges to a zero uh of G. For kl ≥ k0 and k0 sufficiently large, if ikl = 0
in step 3 of Algorithm 1

||vkl+1
h − uh|| ≤ ν||vklh − uh||+ C||vklh − uh|| ||ψ(vklh − uh)||,

where ψ : RM → RM with ||ψ(vklh −uh)|| → 0 when ||vklh −uh|| → 0. If G has a unique
zero uh in Uε, the whole sequence converges to uh.

Proof. The proof is divided into three parts. In the first part, we show that given an
iterate vkh in the admissible set Uε, one can find a path from vkh which is contained
in Uε, provided vkh is not a zero of G. We show by a contradiction argument that G
decreases in norm along such a path at the rate given in the algorithm. In the second
part, we show that there exists a subsequence of the iterates converging to a zero of
G. Finally in the third part, we give the convergence rate.

Part 1: The damped Newton’s method is well defined. Assume that vkh ∈ U. We first
note that it follows from the definitions that for all τ ∈ [0, 1] we have

(3.1) G(vkh) +
(
G′(vkh)− νI

)
(pk(τ)− vkh) = (1− τ)G(vkh).

Assume that G(vkh) 6= 0. We claim that there exists τ ′k ∈ (0, 1] such that

||G(pk(τ))|| ≤ (1− δτ)||G(vkh)||, ∀τ ∈ [0, τ ′k].

If such a τ ′k does not exist, there would exist a sequence τl converging to 0 such that

(3.2) ||G(pk(τl))|| > (1− δτl)||G(vkh)||, ∀k.
Since G is C1 by assumption, we have

G(pk(τl)) = G(vkh) +G′(vkh)(pk(τl)− vkh) + ||pk(τl)− vkh||ψ(pk(τl)− vkh),

for a function ψ : RM → RM such that ||ψ(pk(τl)− vkh)|| → 0 as ||pk(τl)− vkh|| → 0 or
equivalently τl → 0. Thus, by (3.1), we have

(3.3) G(pk(τl)) = (1− τl)G(vkh) + ν||pk(τl)− vkh||+ ||pk(τl)− vkh||ψ(pk(τl)− vkh),

and thus by (3.2)

(1− δτl)||G(vkh)|| < ||G(pk(τl))|| ≤ (1− τl)||G(vkh)||+ ν||pk(τl)− vkh||
+ ||pk(τl)− vkh|| ||ψ(pk(τl)− vkh)||.
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This implies that τl(1− δ)||G(vkh)|| < ν||pk(τl)− vkh||+ ||pk(τl)− vkh|| ||ψ(pk(τl)− vkh)||
which gives using the definition of pk(τl)

(1− δ)||G(vkh)|| < ν||pk(τl)− vkh||+ ||G′(vkh)−1G(vkh)|| ||ψ(pk(τl)− vkh)||.

Taking the limit as ||pk(τl)− vkh|| → 0, i.e. τl → 0, we obtain (1− δ)||G(vkh)|| ≤ 0, a
contradiction as G(vkh) 6= 0 by assumption.

We now show that there exists τ k ≤ min{ τ ′k, τk }, with τ k > 0 such that for all
τ ∈ [0, τ k], p

k(τ) ∈ Uε when vkh ∈ Uε.

If pk(τ) /∈ Uε for some τ ≤ min{ τ ′k, τk } it must be that at some time τ k ≤ τ, pk(τ k) ∈
∂Uε. Thus for some ik ∈ { 1, . . . ,M } we have Gik(p(τ k)) = −ε. Let us assume that
τ k is chosen so that Gi(p

k(τ)) > −ε for all τ ∈ [0, τ k) and all i ∈ { 1, . . . ,M }.
We have

(3.4) ||G(pk(τ k))−G(vkh)|| ≥ |Gik(pk(τ k))−Gik(vkh)| = | − ε−Gik(vkh)| > 0,

since Gik(vkh) > −ε as vkh = pk(0) ∈ Uε by assumption. We conclude that τ k > 0.
Otherwise pk(τ k)) = pk(0) = vkh which contradicts (3.4) as the first term on the left
in (3.4) is equal to 0. By construction of τ k, p

k(τ) ∈ Uε for all τ ∈ [0, τ k).

Part 2: The sequence vkh has a subsequence converging to a zero uh of G. Let

K = { v ∈ Uε, ||G(v)|| ≤ ||G(v0
h)|| }.

Since G is proper, K is compact. By construction ||G(vk+1
h )|| < ||G(vkh)|| and vkh ∈ Uε

for all k. We therefore have vkh ∈ K for all k. Thus up to a subsequence, the
sequence vkh converges to an element uh ∈ Uε and since the sequence ||G(vkh)|| is
strictly decreasing, there exists η ≥ 0 such that ||G(vkh)|| → η.

If η = 0, then G(uh) = 0 and the subsequence converges to a zero of G. Now we show
that it is not possible to have η 6= 0.

Assume that η > 0. If the sequence ik of Step 3 of the algorithm were bounded,
there would exist a constant ξ > 0 such that ρik ≥ ξ for all k. This would imply that
1 − δρik ≤ 1 − δξ and thus ||G(vk+1

h )|| ≤ (1 − δρik)||G(vkh)|| ≤ (1 − δξ)||G(vkh)||. It
follows that η ≤ (1 − δξ)η. Thus η = 0 which is a contradiction. We therefore have
limk→∞ ik =∞ and consequently limk→∞ ρ

ik−1 = 0. Put

τ̂k = ρik−1.

By definition of ik and (3.3), we have

(1− δτ̂k)||G(vkh)|| < ||G(p(τ̂k))|| ≤ (1− τ̂k)||G(vkh)||+ ν||pk(τ̂k)− vkh||
+ ||pk(τ̂k)− vkh|| ||ψ(pk(τ̂k)− vkh)||,

and thus

(1− δ)||G(vkh)|| < ν||pk(τ̂k)− vkh||+ ||pk(τ̂k)− vkh|| ||ψ(pk(τ̂k)− vkh)||.

Recall that the sequence ||G(vkh)|| is bounded. Moreover uh ∈ Uε and thus det
(
G′(uh)−

νI
)
6= 0. Since G ∈ C1(Uε,RM) it follows that for k sufficiently large ||

(
G′(vkh) −
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νI
)−1|| ≤ C for a constant C, c.f. [8, $ 2.3.3]. Therefore ||pk(τ̂k) − vkh|| ≤ Cτ̂k for a

constant C. We conclude that

(1− δ)||G(vkh)|| < Cντ̂k + Cτ̂k||ψ(pk(τ̂k)− vkh)||.
Since τ̂k → 0, we obtain η = 0, a contradiction.

Part 3: We first prove that for the subsequence kl obtained in Part 2, we have the
rate ||vkl+1

h −uh|| ≤ ν||vklh −uh||+C||vklh −uh|| ||ψ(vklh −uh)||, when ik = 0, for kl ≥ k0

and k0 sufficiently large, and where ||ψ(vklh − uh)|| → 0 as vklh − uh → 0.

For convenience, we denote the subsequence vklh by vkh below. We have with τ̃k = ρik ,

vk+1
h = vkh − τ̃k

(
G′(vkh)− νI

)−1
G(vkh) and(

G′(vkh)− νI
)
(vk+1
h − uh) =

(
G′(vkh)− νI

)(
vkh − uh − τ̃k

(
G′(vkh)− νI

)−1
G(vkh)

)
=
(
G′(vkh)− νI

)
(vkh − uh)− τ̃kG(vkh).

Moreover 0 = G(uh) = G(vkh)−G′(vkh)(vkh−uh)+ ||vkh−uh||ψ(vkh−uh). Thus
(
G′(vkh)−

νI
)
(vk+1
h −uh) = (1− τ̃k)G(vkh)−ν(vkh−uh)+ ||vkh−uh||ψ(vkh−uh). If ik = 0, we have

τ̃k = 1 and in that case
(
G′(vkh)−νI

)
(vk+1
h −uh) = −ν(vkh−uh)+ ||vkh−uh||ψ(vkh−uh).

Since
(
G′(vkh)− νI

)−1
is uniformly bounded for k sufficiently large, the claim follows

when τ̃k = 1.

The proof of the last statement is standard. �

4. Convergence of the damped Newton’s method for the
discretization

Let M denote the cardinality of Ωh and denote the points of Ωh by xi, i = 1, . . . ,M .

The set of mesh functions on Ωh is identified with RM . We note that mesh functions
on Ωh are naturally extended to Zdh using (1.7). Mesh functions which are extended
to Zdh using (1.7) and for which ∆hevh(x) > 0 for all x ∈ Ωh and e ∈ V (x), form

the subset of CY,Vh of strictly V -discrete convex mesh functions. The latter subset is
identified with an open subset U of RM by mapping vh to (vh(xi))i=1,...,M .

With an abuse of notation, we consider a map G : U→ RM defined by

Gi(vh) = ωV (R, vh, {xi })−
∫
Cxi

f(t)dt− w vh(x1) for i = 1, . . . ,M,(4.1)

and we recall that w < 0 is a constant. We now make the assumption that f > 0 in Ω.
Define as in the previous section for ε > 0, Uε = { vh ∈ U, Gi(vh) > −ε, i = 1, . . . ,M }.

Lemma 4.1. The set Uε is non empty.

Proof. Let u0
h denote the solution of (1.8) for V = Vmax and for which uh(x

1) = 0,
c.f. Lemma 2.1. We have for i = 1, . . . ,M ,

Gi(u
0
h) = ωV (R, u0

h, {xi })−
∫
Cxi

f(t)dt ≥ ωVmax(R, u0
h, {xi })−

∫
Cxi

f(t)dt = 0 > −ε.

This completes the proof. �
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The goal of this section is to verify the assumptions of Theorem 3.1 for the equation
G(vh) = 0 with G given by (4.1). We will prove the following theorem

Theorem 4.2. Assume that w < 0. Given an initial guess v0
h ∈ Uε, the iterate vkh

of the damped Newton’s method is well defined, and there is a subsequence vklh which
converges to a solution uh of (1.8).

The proof of Theorem 4.2 proceeds in several steps. The path condition in Theorem
3.1 is proved in Theorem 4.3 under the assumption that the mapping G is differ-
entiable with G′(v) − νI invertible, for ν ≥ 0 and I the identity matrix. The C1

continuity of G is established in Theorem 4.6 and the invertibility assumption in
Theorem 4.8 under the assumption ν > −w. Finally, in Theorem 4.9, we prove that
the mapping G is proper for w < 0. We are then in a position to give the proof of
Theorem 4.2.

Theorem 4.3. Assume that G is differentiable at v ∈ U and G′(v)− νI is invertible
for ν ≥ 0 and I the identity matrix. There exists τ̌ in (0, 1] such that for all 0 < τ ≤
τ̌ , p(τ) = v − τ

(
G′(v)− νI

)−1
G(v) ∈ U.

Proof. Since v ∈ U, ∆hev(xi) > 0 for all i = 1, . . . ,M and e ∈ V (x). Let c0 =
min{∆hevh(x

i), i = 1, . . . ,M, e ∈ V (x) } and let ζ = c0/8.

We claim that if |w − v|∞ := max{ |w(x) − v(x)|, x ∈ Ωh } ≤ ζ, then ∆hew(xi) >
0, i = 1, . . . ,M, e ∈ V (x).

Indeed, for x ∈ Ωh, when x± e ∈ Ωh

∆hew(x) = w(x+ he)− 2w(x) + w(x− he)
= ∆hev(x) +

(
(w − v)(x+ he)− 2(w − v)(x) + (w − v)(x− he)

)
≥ ∆hev(x)− 4ζ ≥ c0 − 4ζ =

c0

2
> 0,

where we used |w − v|∞ ≤ ζ.

If x+ e /∈ Ωh, using (1.7), we have w(x+ e) = w(y) + (x+ e− y) · q for some q ∈ Y
and y ∈ ∂Ωh. We have v(x+ e) ≤ v(y) + (x+ e− y) · q and thus

w(x+ e)− v(x+ e) ≥ w(y)− v(y) ≥ −ζ.

Similarly, when x − e /∈ Ωh, we have w(x − e) − v(x − e) ≥ −ζ. Thus, arguing as
above, for all e ∈ V (x), ∆hew(x) > c0/2 > 0, which proves the claim.

Since |w − v|∞ ≤ C||w − v|| and

||p(τ)− v|| ≤ τ ||
(
G′(v)− νI

)−1|| ||G(v)||,

we have

|p(τ)− v|∞ ≤ C||p(τ)− v|| ≤ Cτ ||
(
G′(v)− νI

)−1|| ||G(v)|| ≤ ζ,

for τ sufficiently small. Here, since v is fixed, ||
(
G′(v)− νI

)−1|| ||G(v)|| is a constant
independent of τ . It follows that p(τ) ∈ U for τ sufficiently small. The proof is
complete. �
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Let #W denote the cardinality of the set W . Given λ ∈ R#W , we write λ = (λa)a∈W
by an abuse of notation, instead of the more familiar notation λ = (λj)j=1,...,#W .

We fix i in { 1, . . . ,M } and for λ ∈ R#V (xi), let

Q(λ) = { p ∈ Rd, p · e ≤ λe, ∀e ∈ V (xi) },
where for simplicity we do not mention the dependence of Q(λ) on the index i.

Consider the mapping S defined by S(λ) :=
∫
Q(λ)

R(p)dp. For a given index j we are

interested in the variations of Gi(v) with respect to v(xj), i.e. the derivative at v(xj)
of the application which is the composite of S and the mapping

r 7→ λ =

(
w(xi + ha)− w(xi)

h

)
a∈V (xi)

,

where w is the mesh function defined by

w(x) = v(x), x 6= xj, w(xj) = r.

Let zi, i = 1, . . . , N ∈ Rd. Let (r1, . . . , rN) denote the canonical basis of RN . Given
λ ∈ RN , define

Q̃(λ) := {x ∈ Rd, x · zi ≤ λi, i = 1, . . . , N }.
Assume that the vectors zi are chosen such that the polytope Q̂(λ) is bounded. We
will need the following lemma [6, Lemma 16].

Lemma 4.4. Let ρ : Rd → R be a continuous function. Define

S̃(λ) :=

∫
Q̃(λ)

ρ(p)dp

(1) If zi 6= 0 for all i, S̃ is continuous on Rd.
(2) ∀R ≥ 0, ∃QR ⊂ Rd compact such that ∀λ′ ∈ RN , maxi |λ′ − λ| ≤ R implies

Q̃(λ′) ⊆ QR.
(3) There exists a function ηR : R+ → R+ satisfying lims→0 ηR(s) = 0 such that

for all x, y ∈ QR, |ρ(x)− ρ(y)| ≤ ηR(||x− y||).
(4) Let i0 ∈ { 1, . . . , N }, λ ∈ RN and t ≥ 0. We have

1

t
(S̃(λ+ tri0)− S̃(λ)) =

1

t

∫ t

0

gi0(λ+ sri0)ds,

where gi0(λ) := 1/||zi0||
∫
Q̃(λ)∩{x∈Rd,x·zi0=λi0 }

ρ(p)dp.

(5) Let Πi0 denote the orthogonal projection onto the hyperplane orthogonal to zi0.
Put Pi0(λ) = Π

(
Q̃(λ) ∩ {x ∈ Rd, x · zi0 = λi0 }

)
. We have

Pi0(λ) = { y ∈ Rd, y · zi0 = 0 and y · Πi0(zi) ≤ λi − λi0zi · zi0/||zi0 ||2, i 6= i0 }.
(6) Define ρλ(y) = ρ(y + λi0zi0/||zi0 ||2). We have ||zi0 || |gi0(λ)− gi0(λ′)| ≤ |A1|+
|A2|, where

A1 :=

∫
Pi0

(λ)

(ρλ(y)− ρλ′(y))dy

A2 :=

∫
Pi0

(λ)

ρλ′(y))dy −
∫
Pi0

(λ′)

ρλ′(y))dy.
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(7) As λ′ → λ, |A1| → 0 by (3) above and if the vectors Πi0(zi) are non zero,
|A2| → 0 using (1) above, giving the C1 continuity of S̃.

Lemma 4.5. Let W be a set of non zero vectors which contains the canonical basis
of Rd with the property that for e and f in V , e = rf for a scalar r if and only if
r = −1. Assume furthermore that W is symmetric with respect to the origin. Let R
be continuous on Ω∗ and assume that for λ ∈ R#W , Q(λ) ⊂ Ω∗. Then the mapping

λ 7→ S(λ) :=

∫
Q(λ)

R(p)dp,

is C1 continuous on {λ ∈ R#W , λ−a + λa > 0,∀a ∈ W } with

∂S

∂λa
=

1

||a||

∫
Q(λ)∩{ p∈Rd,p·a=λa }

R(p)dp.

Proof. Since W contains the canonical basis of Rd, the polytope Q(λ) is bounded.
Let e, a ∈ W such that e 6= a. Let Πa denote the orthogonal projection onto the
hyperplane orthogonal to a. By Lemma 4.4 we have

Πa

(
Q(λ) ∩ {x ∈ Rd, x · a = λa }

)
=

{ y ∈ Rd, y · a = 0 and y · Πa(e) ≤ λe − λa e · a/||a||2, e 6= a }.

If e = −a λ−a − λa (−a) · a/||a||2 = λ−a + λa > 0 by assumption. We then have
trivially y · Πa(−a) = 0 < λ−a + λa. Thus

Πa

(
Q(λ) ∩ {x ∈ Rd, x · a = λa }

)
=

{ y ∈ Rd, y · a = 0 and y · Πa(e) ≤ λe − λa e · a/||a||2, e /∈ { a,−a } }.

If e /∈ { a,−a }, e and a are independent which implies Πa(e) 6= 0. The C1 continuity
of S follows as for Lemma 4.4 �

Recall that for x ∈ Ωh, V (x) satisfies the assumptions on W in Lemma 4.5. Define
for v ∈ U

λha(v)(x) =
v(x+ ha)− v(x)

h
.

Recall that ∂V v(x) = { p ∈ Rd, p · (he) ≤ λhe(v)(x),∀e ∈ V (x) }. Thus, if we put
λ ≡ (λhe(v)(x))e∈V (x) we have

∂V v(x) = Q(λ).

We omit the dependence of λ on x as it will be clear from the context.

Theorem 4.6. The mapping G is C1 continuous on U for R continuous on Ω∗.

Proof. By Lemma 2.3, for v ∈ U, ∂V v(x) ⊂ Ω∗ for all x ∈ Ωh. Since elements of U
are strictly discrete convex, we have for v ∈ U, λha(v)(x) + λ−ha(v)(x) > 0 for all
x ∈ Ωh. We note that the mapping vh 7→ vh(x

1) is C1 continuous. On the other
hand, the mapping vh 7→ ωV (R, vh, {xi }) is the composite of S and the mapping

vh 7→
(
vh(xi+ha)−vh(xi)

h

)
a∈V (xi)

. By Lemma 4.5 the functional G is C1 continuous on

U. �
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For x ∈ Ωh and e ∈ V (x) such that x+ he /∈ Ωh, we define

Γ(x+ he) = argmin
y∈∂Ωh

vh(y) + kY (x− y).

A priori, Γ(x+he) is multi-valued. We assume that for the implementation a unique
choice is made for pairs (x, e) such that x + he /∈ Ωh. If x + he ∈ Ωh, we put
Γ(x+ he) = x+ he.

Given i ∈ { 1, . . . ,M }, ∂V v(xi) and hence ωV (R, v, {xi }) depends on xi, xi + he, e ∈
V (xi) when xi + he ∈ Ωh and on Γ(xi + he) when xi + he /∈ Ωh. We have for
i, j ∈ { 1, . . . ,M }

(4.2) if xj /∈ {xi + he, e ∈ V (xi)}, xj /∈ ∂Ωh and j 6= i,

∂ωV (R, v, {xi })/∂v(xj) = 0.

(4.3) If xj /∈ {xi + he, e ∈ V (xi)}, xj ∈ ∂Ωh and j 6= i,

∂ωV (R, v, {xi })
∂v(xj)

=
∑

e′∈V (xi)

xi+he′ /∈Ωh,Γ(xi+he′)=xj

1

h||e′||

∫
Q(λ)∩{ p∈Rd,p·(he′)=λhe′ }

R(p)dp.

For e ∈ V (xi) and xi + he ∈ Ωh \ ∂Ωh

∂ωV (R, v, {xi })
∂v(xi + he)

=
1

h||e||

∫
Q(λ)∩{ p∈Rd,p·(he)=λhe }

R(p)dp,(4.4)

while for e ∈ V (xi) and xi + he ∈ ∂Ωh

∂ωV (R, v, {xi })
∂v(xi + he)

=
∑

e′∈V (xi)

Γ(xi+he′)=xi+he

1

h||e′||

∫
Q(λ)∩{ p∈Rd,p·(he′)=λhe′ }

R(p)dp,(4.5)

where we also used Γ(xi + he) = xi + he. That is, the sum in (4.5) also includes the
term on the right hand side of (4.4).

When xi /∈ ∂Ωh

∂ωV (R, v, {xi })
∂v(xi)

= −
∑

e∈V (xi)

1

h||e||

∫
Q(λ)∩{ p∈Rd,p·(he)=λhe }

R(p)dp.(4.6)

Finally when xi ∈ ∂Ωh

(4.7)
∂ωV (R, v, {xi })

∂v(xi)
= −

∑
e∈V (xi)

1

h||e||

∫
Q(λ)∩{ p∈Rd,p·(he)=λhe }

R(p)dp

+
∑

e′∈V (xi)

xi+he′ /∈Ωh,Γ(xi+he′)=xi

1

h||e′||

∫
Q(λ)∩{ p∈Rd,p·(he′)=λhe′ }

R(p)dp

= −
∑

e∈V (xi)

Γ(xi+he)6=xi

1

h||e||

∫
Q(λ)∩{ p∈Rd,p·(he)=λhe }

R(p)dp.
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Put

Le =
1

h||e||

∫
Q(λ)∩{ p∈Rd,p·(he)=λhe }

R(p)dp.

Let A = (aij)i,j=1,...,M be a M ×M matrix. A row i of A is diagonally dominant
if |aii| ≥

∑
j 6=i |aij| and strictly diagonally dominant if the strict inequality holds.

A matrix A is said to be weakly diagonally dominant if all its rows are diagonally
dominant. A matrix A is strictly diagonally dominant if all its rows are strictly
diagonally dominant.

We will prove that for v in U, G′(v)−νI is invertible as a strictly diagonally dominant
under a condition on ν and the constant w in (1.6)

Theorem 4.7. At each v in U, the matrix B with entries ∂ωV (R, v, {xi })/∂v(xj)
i, j = 1, . . . ,M , is a weakly diagonally dominant matrix with Bii ≤ 0, Bij ≥ 0, j 6= i
and |Bii| =

∑
j 6=i |Bij|, i, j = 1, . . . ,M .

Proof. Note that the entries of B are computed from (4.2)–(4.7). This also shows
that Bii ≤ 0 and Bij ≥ 0, j 6= i, i, j = 1, . . . ,M . Recall that for a given index
i = 1, . . . ,M , and e ∈ V (xi), either xi + he ∈ Ωh or xi + he /∈ Ωh and when
xi + he /∈ Ωh,Γ(xi + he) = xj for some xj ∈ ∂Ωh.

Using (4.6), we have for xi /∈ ∂Ωh, i 6= 1∣∣∣∣∂ωV (R, v, {xi })
∂v(xi)

∣∣∣∣ =

∣∣∣∣ ∑
e∈V (xi)

1

h||e||

∫
Q(λ)∩{ p∈Rd,p·(he)=λhe }

R(p)dp

∣∣∣∣
=

∑
e∈V (xi)

1

h||e||

∫
Q(λ)∩{ p∈Rd,p·(he)=λhe }

R(p)dp.

Possible non zero elements of row i correspond to those directions e′ for which xi +
he′ ∈ Ωh and the directions e

′′
for which xi + he

′′
/∈ Ωh but for which Γ(xi + he

′′
) =

xj, xj ∈ ∂Ωh, j 6= i. Note that when Γ(xi + he′) = xj, the expression (4.5) of
∂Gi(v)/∂v(xj) takes into account all directions e′ for which Γ(xi + he′) = xj. Recall
also that by assumption Γ(xi + he1) = Γ(xi + he2) only when e1 = e2.

We claim that, if xi /∈ ∂Ωh

(4.8)

∣∣∣∣∂ωV (R, v, {xi })
∂v(xi)

∣∣∣∣ =
∑
j 6=i

∣∣∣∣∂ωV (R, v, {xi })
∂v(xj)

∣∣∣∣.
Let e ∈ V (xi). If xi + he ∈ Ωh \ ∂Ωh, we have Le = ∂ωV (R, v, {xi })/∂v(xi + he) by
(4.4). If xi + he ∈ ∂Ωh, ∂ωV (R, v, {xi })/∂v(xi + he) is the sum of Le and positive
terms by (4.5). If xi + he /∈ Ωh, ∂ωV (R, v, {xi })/∂v(xj) where xj = Γ(x + he) is
also the sum of Le and positive terms by (4.5). We conclude that

∑
e∈V (xi) Le ≤∑

j 6=i ∂ωV (R, v, {xi })/∂v(xj).

On the other hand, by (4.2)–(4.5), either ∂ωV (R, v, {xi })/∂v(xj) is a sum of terms
Le, e ∈ V (xi),Γ(xi + he) = xj or ∂ωV (R, v, {xi })/∂v(xj) = 0. Since Γ is one-to-one,
we obtain

∑
j 6=i ∂ωV (R, v, {xi })/∂v(xj) ≤

∑
e∈V (xi) Le. This proves (4.8).
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If xi ∈ ∂Ωh, we have using (4.7)∣∣∣∣∂ωV (R, v, {xi })
∂v(xi)

∣∣∣∣ =
∑

e∈V (xi)

Γ(xi+he)6=xi

1

h||e||

∫
Q(λ)∩{ p∈Rd,p·(he)=λhe }

R(p)dp.

If Γ(xi + he) = xj and j 6= i, then Γ(xi + he) 6= xi. The same argument as above
then shows that (4.8) holds when xi ∈ ∂Ωh. This shows that for all i, j = 1, . . . ,M ,
|Bii| =

∑
j 6=i |Bij|. �

Theorem 4.8. At each v in U the matrix G′(v)− νI is invertible for ν > −w where
w ≤ 0 is the constant in (1.6).

Proof. LetD be theM×M matrix withDij = 0, j 6= 1 andDi1 = −w, i, j = 1, . . . ,M .
Put A = G′(v)− νI. We have A = B +D− νI where B is the matrix from Theorem
4.7. Recall that Bii ≤ 0, Bij ≥ 0, j 6= i and |Bii| =

∑
j 6=i |Bij|, i, j = 1, . . . ,M .

Since w ≤ 0 and ν > −w ≥ 0 we get |A11| = |B11 − w − ν| = −B11 + w + ν =
|B11|+ w + ν =

∑
j 6=1 |B1j|+ w + ν =

∑
j 6=1 |A1j|+ w + ν >

∑
j 6=1 |A1j|.

Let 1 < i ≤ M . We have Aii = Bii − ν. Thus |Aii| = −Bii + ν. If Bi1 = 0, then
Ai1 = −w. We have∑

j 6=i

|Aij| = |Ai1|+
∑

j /∈{ i,1}

|Aij| = |w|+
∑
j 6=i

|Bij| = −w+|Bii| = −w−Bii = |Aii|−ν−w.

It follows that |Aii| −
∑

j 6=i |Aij| = w + ν > 0 since ν > −w.

If 1 < i ≤ M and Bi1 6= 0, then Ai1 = −w + Bi1. Since w ≤ 0 and Bi1 ≥ 0, we have
|Ai1| = −w+Bi1. Also, for j 6= i and j 6= 1, Aij = Bij and |Aii| = |Bii|+ ν. We have

|Aii| −
∑
j 6=i

|Aij| = |Bii|+ ν −
∑
j 6=i
j 6=1

|Aij| − |Ai1| = |Bii|+ ν −
∑
j 6=i
j 6=1

|Bij| − |Ai1|

=
∑
j 6=i

|Bij|+ν−
∑
j 6=i
j 6=1

|Bij|−|Ai1| = ν+|Bi1|−|Ai1| = ν+|Bi1|+w−Bi1 = ν+w > 0.

We conclude that G′(v) − νI is a strictly diagonally dominant matrix and is hence
invertible. This completes the proof. �

Theorem 4.9. The mapping G : Uε → RM is proper for w < 0.

Proof. Let K be a compact subset of RM . Since G is continuous by Lemma 4.6,
G−1(K) is closed. As K is bounded, there exists a constant C such that for v ∈
G−1(K) we have ||G(v)|| ≤ C. Since for i = 1, . . . ,M , Gi(v) = ωV (R, v, {xi })
−
∫
Cxi

f(t)dt− w v(x1) we obtain

|w| |v(x1)| ≤ ||G(v)||+ωV (R, v, {xi })+

∫
Cxi

f(t)dt ≤ ||G(v)||+
∫

Ω∗
R(p)dp+

∫
Ω

f(t)dt.

It follows that for v ∈ G−1(K), we have |v(x1)| ≤ C/|w| for a constant C. Using
Lemma 2.2 we obtain for x ∈ Ωh and v ∈ U, |v(x)| ≤ |v(x1)| + |v(x) − v(x1)| ≤ C.
This shows that G−1(K) is a bounded subset of Uε. We concluded that G−1(K) is
compact. �
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We can now give the proof of Theorem 4.2.

Proof of Theorem 4.2. The result follows immediately from Theorem 3.1, Theorem
4.3 and Theorems 4.6-4.9. �

Theorem 4.10. There exists a solution to (1.9).

Proof. Taking limits of solutions to (1.8) as w → 0, we obtain a solution to (1.9). �

Remark 4.11. To combine (1.5) with the unicity condition u(x1) = 0 in a single
equation as for (1.6), we need w 6= 0. That then required ν > −w > 0.

Remark 4.12. It is possible to prove convergence rates for the damped Newton’s
method better than the ones in Theorem 3.1, with further regularity assumptions on
the density R as in [5]. We wish to do that in the more general setting of generated
Jacobians.

Remark 4.13. Theorem 3.1 does not guarantee a fast decrease of the error. For a
fixed δ, it may be possible to have ik large. In fact, ik may depend on the iterate vkh.
Since G′(x)− νI is invertible for all x ∈ Ωh and ν > −w, it should be possible as in
the proof of [6, Proposition 24, step 2] to prove that ik depends continuously on vkh
and use a compactness argument to get a uniform bound on ik.
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