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Abstract. We prove the convergence of a hybrid discretization to the viscosity solution of
the elliptic Monge-Ampère equation. The hybrid discretization uses a standard finite difference
discretization in parts of the computational domain where the solution is expected to be smooth and
a monotone scheme elsewhere. A motivation for the hybrid discretization is the lack of an appropriate
Newton solver for the standard finite difference discretization on the whole domain.
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1. Introduction. In this paper, we prove the convergence of a hybrid discretiza-
tion to the viscosity solution of the elliptic Monge-Ampère equation. The discretiza-
tion we analyze was proposed by Froese and Oberman in [22]. The elliptic Monge-
Ampère equation is a fully nonlinear equation, i.e. nonlinear in the highest order
derivatives. Unless the domain is smooth and strictly convex and the data are smooth,
the solution is not expected to be smooth. By elliptic regularity, upon regularization
of the data, the solution is smooth on any relatively compact subset. Since compu-
ters ”do not see” the difference between the domain and an arbitrarily close subdo-
main, several methods provenly convergent for smooth solutions remain effective for
non smooth solutions [3, 4]. Indeed, numerical experiments [10, 3] indicate that the
discrete equations obtained through standard finite difference discretizations have a
discrete convex solution in the sense that a certain discrete Hessian is positive. The
solution can be retrieved through appropriate iterative methods. We note that the
standard finite difference discretization is commonly used in science and engineering
[28, 16, 15]. However it is not known whether an appropriate Newton solver can be
developed for the standard finite difference discretization. On the other hand numeri-
cal experiments reported in [22] indicate that Newton’s method can be applied to the
nonlinear system resulting from a hybrid discretization. We do not reproduce them
in this paper.

The hybrid discretization proposed in [22] uses a consistent, monotone and stable
scheme in parts of the domain where the solution is not expected to be smooth and
a standard discretization in parts of the domain where the solution is smooth. We
will often refer to a consistent, monotone and stable scheme simply as a monotone
scheme. The monotone discretization is known to converge to the viscosity solution
when used on the whole domain with a convergent Newton’s method solver [21, 34, 1].
As pointed out in [23] the convergence of the hybrid discretization introduced in [22] is
still an open problem and results with the hybrid discretization of [22] are comparable
with the ones obtained with the filtered approach in [23].

In this paper, we combine the analysis of the standard finite difference discretiza-
tion given in [5], the classical framework for convergence of monotone schemes to vis-
cosity solutions and an argument first given in [1] for the boundary values of uniform
limits of discrete convex functions, to obtain the convergence to the viscosity solution
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of the hybrid discretization. We assume in this paper that the discrete problem has
a solution which is close to the interpolant in the subdomain where the solution is
smooth.

With a monotone discretization one can transfer to the discrete level arguments
for viscosity solutions for partial differential equations. But it does not allow to
give, in general, results for the standard finite difference discretization for smooth
solutions. In fact, the quadratic convergence rate of the latter was only known as “
formally second-order accurate” [10]. Moreover, the theory of Barles and Souganidis
[9] cannot be applied directly to a hybrid discretization. The Banach fixed point
theorem, which is ubiquitous in the finite element analysis of nonlinear problems, has
been adapted to the Monge-Ampère equation in [11, 20, 13]. It was combined in [5]
with the continuity of the eigenvalues of a matrix as a function of its entries to give
an analysis of the standard finite difference discretization for smooth solutions of the
equation. A consequence of the continuity of the eigenvalues of a matrix is that, in
the context of the standard finite difference discretization, the discrete Hessian of a
mesh function is positive definite near a strictly convex smooth solution. The impact
of the results of this paper goes beyond the particular application considered. For
example, the techniques used here may equally be applied to a hybrid scheme for the
convex envelope presented in [35].

The best results for the hybrid discretization are obtained when the subdomain
where the solution is not smooth, the set of singular points, is known in advance. An
adaptive mesh refinement scheme could make it easier to identify the set of singular
points. As with [22], one can take a conservative approach and include a priori in the
set of singular points, points where either f(x) is not Hölder continuous, f(x) is too
small or f(x) is too large. It is very likely that the approximation will deteriorate
at points which are close to boundary points where ∂Ω is not C3 or strictly convex
and points close to boundary points where g(x) cannot be extended to a C3 function.
They may be included in the set of singular points as well. The motivation to consider
these points as singular points comes from the regularity theory of the Monge-Ampère
equation. See for example [38, Theorem 1.1].

A standard finite difference discretization of the Dirichlet problem for the Monge-
Ampère equation was introduced in [18]. Finite element discretizations have also been
proposed, e.g. [24, 11, 20, 13, 31, 17, 14]. As explained above, the performance of
these methods can be explained with elliptic regularity. For other provably convergent
schemes for the Monge-Ampère equation, we refer to [32, 19, 34].

This paper is organized as follows. In the second section, we recall the notion of
viscosity solution and present the hybrid discretization. We also define our notion of
discrete convex function in the second section and the main notation of the paper.
In the third section we rely on results on the analysis of discretizations of smooth
solutions to motivate our assumptions on the existence of a discrete solution. In the
fourth section we use the now classical arguments of [9] and recent arguments given
in [5, 1] to prove the convergence of the hybrid discretization to the viscosity solution.

2. Viscosity solutions of the elliptic Monge-Ampère equation and the
hybrid discretization. To avoid difficulties with a curved boundary, we assume in
this paper that the domain Ω is rectangular. We further make the assumption that
Ω = (0, 1)2 ⊂ R2. For given f > 0 continuous on Ω and g continuous on ∂Ω, with a
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convex extension g̃ ∈ C(Ω), we consider the Monge-Ampère equation

detD2u = f in Ω

u = g on ∂Ω.
(2.1)

Let 0 < h ≤ 1 denote the mesh size. We assume without loss of generality that
1/h ∈ Z. Put

Zh = {x = (x1, x2)T ∈ R2 : xi/h ∈ Z}
Ωh0 = Ω ∩ Zh,Ωh = Ω ∩ Zh, ∂Ωh = ∂Ω ∩ Zh = Ωh \ Ωh0 .

For x ∈ R2, we denote the maximum norm of x by |x| = maxi=1,2 |xi|. The norm |.|
is extended canonically to matrices. For an integer j, |v|j,Ω = sup|β|=jsupΩ|Dβv(x)|
for a multi-index β. Let M(Ωh) denote the set of real valued functions defined on
Ωh, i.e. the set of mesh functions. For a subset Th of Ωh, and vh ∈M(Ωh) we define

|vh|Th
= max
x∈Th

|vh(x)|.

The norm |.|Th
is extended canonically to matrix fields. Let v be a continuous function

on Ω and let rh(v) denote the unique element of M(Ωh) defined by

rh(v)(x) = v(x), x ∈ Ωh.

We extend the restriction operator rh canonically to vector fields and matrix fields.
For a function g defined on ∂Ω, rh(g) defines the analogous restriction on ∂Ωh. We
make the usual convention of denoting constants by C but will occasionally index
some constants.

2.1. Viscosity solutions. A convex function u ∈ C(Ω) is a viscosity solution
of (2.1) if u = g on ∂Ω and for all φ ∈ C2(Ω) the following holds

- at each local maximum point x0 of u− φ, f(x0) ≤ detD2φ(x0)
- at each local minimum point x0 of u−φ, f(x0) ≥ detD2φ(x0), if D2φ(x0) ≥ 0,

i.e. D2φ(x0) has positive eigenvalues.
As explained in [29], the requirement D2φ(x0) ≥ 0 in the second condition above is
natural for the two dimensional case we consider. The space of test functions in the
definition above can be restricted to the space of strictly convex quadratic polynomials
[25, Remark 1.3.3].

An upper semi-continuous convex function u is said to be a viscosity sub solution
of detD2u(x) = f(x) if the first condition holds and a lower semi-continuous convex
function is said to be a viscosity super solution when the second holds. A viscosity
solution of (2.1) is a continuous function which satisfies the boundary condition and
is both a viscosity sub solution and a viscosity super solution.

Note that the notion of viscosity solution is a pointwise notion. It is not very
difficult to prove that if u is C2 at x0, then u is a viscosity solution at the point x0 of
detD2u = f .

For further reference, we recall the comparison principle of sub and super solu-
tions, [29, Theorem V. 2]. Let u and v be respectively sub and super solutions of
detD2u(x) = f(x) in Ω and put

u∗ = lim sup
y→x,y∈Ω

u(y) and v∗ = lim inf
y→x,y∈Ω

v(y).
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Then if supx∈∂Ω max(u∗(x)− v∗(x), 0) = M , then u(x)− v(x) ≤M in Ω.

There are very few references which give an existence and uniqueness result for
(2.1) in the degenerate case f ≥ 0. In [29] it is required that one can find a sub
solution and a super solution. The difficulty is that the Monge-Ampère equation is
not often studied in convex but not necessarily strictly convex domains. Thus we
assume in addition that f > 0. Since f ∈ C(Ω) it follows that there exists a constant
c0 > 0 such that

f ≥ c0 > 0.

We also assume that g can be extended to a convex function g̃ ∈ C(Ω). Then by [27,
Theorem 1.1], (2.1) has a unique Aleksandrov solution. The existence and uniqueness
of a viscosity solution to (2.1) in C(Ω) then follows from the equivalence of viscosity
and Aleksandrov solutions [25, Propositions 1.3.4 and 1.7.1], under these assumptions.

2.2. A reformulation of convexity. We recall that a function φ ∈ C2(Ω) is
convex on Ω if the Hessian matrix D2φ is positive semidefinite or λ1[φ] ≥ 0 where
λ1[φ] denotes the smallest eigenvalue of D2φ. This notion was extended to continuous
functions in [35]. See also the remarks on [37, p. 226 ]. An upper semi-continuous
function u is convex in the viscosity sense if and only if it is a viscosity solution of
−λ1[u] ≤ 0, that is, for all φ ∈ C2(Ω), whenever x0 is a local maximum point of u−φ,
−λ1[φ] ≤ 0. This can also be written max(−λ1[u], 0) = 0 in Ω, c.f. [35].

The Dirichlet problem for the Monge-Ampère equation (2.1) can then be written

−detD2u+ f = 0 in Ω

max(−λ1[u], 0) = 0 in Ω,
(2.2)

with boundary condition u = g on ∂Ω. We write (2.2) as F (u) = 0 and note that the
form of the equation is chosen to be consistent with the definition of ellipticity used
for example in [29].

Since we have now rewritten in (2.2) convexity as an additional equation, sub
solutions and super solutions of −detD2u+f = 0 do not need to be convex. We have
the following comparison principle for (2.2) [8, Example 2.1 and Corollary 7.1]: let u∗

be an upper semi-continuous sub solution of −detD2u+f = 0 which is convex in the
viscosity sense and let u∗ be a lower semi-continuous super solution of −detD2u+f =
0 (which is not necessarily convex). Then

(2.3) sup
Ω

(u∗ − u∗) ≤ max
∂Ω

(u∗ − v∗).

A viscosity solution of (2.2) is also a viscosity solution as defined in section 2.1, since
an upper semi-continuous function which is convex in the viscosity sense is also convex
[8, Example 2.1 and Theorem 3.1].

2.3. Standard finite difference discretization. Let Ωr be a bounded convex
domain of R2 with piecewise linear boundary. Put

Ωhr = Ωr ∩ Zh.
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Let ei, i = 1, 2 denote the i-th unit vector. We define first order difference operators
acting on functions defined on Zh. For x ∈ Zh

∂i+v
h(x) :=

vh(x+ hei)− vh(x)

h

∂i−v
h(x) :=

vh(x)− vh(x− hei)
h

∂ihv
h(x) :=

vh(x+ hei)− vh(x− hei)
2h

.

Note that

∂i+∂
i
−v

h(x) =
vh(x+ hei)− 2vh(x) + vh(x− hei)

h2
(2.4)

∂ih∂
j
hv
h(x) =

1

4h2

{
vh(x+ hei + hej) + vh(x− hei − hej)

− vh(x+ hei − hej)− vh(x− hei + hej)

}
, i 6= j.

(2.5)

The discrete Hessian is defined by

Hd(vh) := (Hd(vh))i,j=1,2, (Hd(vh))ii = ∂i+∂
i
−v

h and (Hd(vh))ij = ∂ih∂
j
hv
h, i 6= j.

Put

Ωhr,0 = {x ∈ Ωhr ,Hd(vh)(x) is defined for vh ∈M(Ωh) } and ∂Ωhr = Ωhr \ Ωhr,0.

We define

Mr[v
h] := detHd(vh).

The discrete version of (2.1) on Ωr takes the form

−Mr[u
h
r ] + rh(f) = 0 in Ωhr,0, u

h
r = rh(u) on ∂Ωhr .(2.6)

Higher order finite difference operators are obtained by combining the above dif-
ference operators. For a multi-index β = (β1, β2) ∈ N2, we define

∂β+v
h := ∂β1

+ ∂β2

+ vh.

The operators ∂β− and ∂βh are defined similarly. For a matrix A, we recall that the

cofactor matrix cof A is defined by (cof A)ij = (−1)i+jd(A)ji where d(A)ji is the de-
terminant of the matrix obtained from A by deleting the ith row and the jth column.
LetM(Ωhr ) denote the set of real valued functions defined on Ωhr and let Lh denote a
discrete uniformly elliptic linear operator

Lhv
h(x) =

2∑
i,j=1

aij(x)∂i−∂
j
+v

h(x), x ∈ Ωhr,0,

i.e. the matrix (aij(x))i,j=1,2 is uniformly positive definite. We now define discrete
analogues of the Hölder norms and semi-norms following [30]. Let [ξ, η] denote the set
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of points ζ ∈ Ωhr such that ξj ≤ ζj ≤ ηj , j = 1, 2. Then for vh ∈ M(Ωhr ), 0 < α < 1,
we define

|vh|j,Ωh
r,0

= max { |∂β+vh(ξ)|, |β| = j, [ξ, ξ + β] ⊂ Ωhr }

[vh]j,α,Ωh
r,0

= max

{
|∂β+vh(ξ)− ∂β+vh(η)|

(|ξ − η|)α
, |β| = j, ξ 6= η, [ξ, ξ + β] ∪ [η, η + β] ⊂ Ωhr

}
||vh||p,Ωh

r,0
= maxj≤p |vh|j,Ωh

r,0
and ||vh||p,α,Ωh

r,0
= ||vh||p,Ωh

r,0
+ [vh]p,α,Ωh

r,0
.

The above norms are extended canonically to vector fields and matrix fields by taking
the maximum over all components. For j = 0, we have discrete analogues of the
maximum and C0,α norms and in the former case, we will also use |vh|Ωh

r,0
at the

place of |vh|0,Ωh
r,0

. We have [36, Lemma 3.4]

Theorem 2.1. Assume 0 < α < 1 and vh = 0 on ∂Ωhr . Then there are constants
C and h0 such that for vh ∈M(Ωhr ), h ≤ h0

||vh||2,α,Ωh
r,0
≤ C||Lh vh||0,α,Ωh

r,0
,(2.7)

with the constant C independent of h.

It can be shown that the constant h0 depends only on c0 and m such that c0 ≤
f ≤ m/2.

We recall from [5] that if v is a strictly convex function and D2v has smallest
eigenvalue uniformly bounded below by a constant a > 0, then for η = a/4, we have
w strictly convex, whenever ||w − v||C2(Ω) < η. Moreover the smallest eigenvalue of
D2w is uniformly bounded below by 3a/2. Since for v ∈ C4(Ω),

|rh(D2v)−Hd(rh(v))|Ωh
r,0
≤ Ch2|v|4,Ω,(2.8)

there exists 0 < h0 ≤ h1 such that h ≤ h1, Hd(rh(u)) has smallest eigenvalue uni-
formly bounded below by 3a/2.

We now summarize the approach in [5] for the solvability of (2.6). Define

(2.9) Bρ(u) = {vh ∈M(Ωh), ||vh − rh(u)||2,α,Ωh
r,0
≤ ρ},

and the operator Rh :M(Ωh)→M(Ωh) by(
cof(Hd rhu)

)
: Hd(vh −Rhvh) = det(Hd vh)− f in Ωhr,0

Rh(vh) = rh(u) on ∂Ωhr ,

It is proved in [5], using the discrete Schauder estimates of Theorem 2.1 and the
above continuity of the eigenvalues of a matrix, that for ρ =O(h2) and h sufficiently
small, Rh maps Bρ(u) into itself and is a strict contraction in Bρ(u).

2.4. Monotone schemes. Let us denote by Fh(vh) ≡ F̂h(vh(x), vh(y)|y 6=x) a
discretization of F (v). We recall the elements of the convergence theory of Barles and
Souganidis [9] and how its conditions were met by the discretization introduced in [21].
Let Ωhs denote a subset of Ωh and let ∂Ωhs denote its boundary, i.e. ∂Ωhs = Ωh \ Ωhs .

The scheme Fh(vh) = 0 is said to be monotone if for zh and wh in M(Ωhs ),
zh(y) ≥ wh(y), y 6= x implies F̂h(zh(x), zh(y)|y 6=x) ≥ F̂h(zh(x), wh(y)|y 6=x). Here we
use the partial ordering of R2, (a1, b1) ≥ (a2, b2) if and only if a1 ≥ a2 and b1 ≥ b2.
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The scheme is said to be consistent if for all C2 functions φ, and a sequence
xh → x ∈ Ω, limh→0 Fh(rh(φ))(xh) = F (φ)(x).

Finally the scheme is said to be stable if Fh(vh) = 0 has a solution vh which is
bounded independently of h.

It follows from [9, 34, 1] that a consistent, stable and monotone scheme has
a solution vh which converges locally uniformly to the unique viscosity solution of
(2.2). Note that the convexity assumption on the exact solution is enforced through
the definition of F (v).

We recall the expression of the consistent, monotone and stable discretization of
λ1[z] introduced in [35]. For simplicity we consider only wide stencils. We have at an
interior grid point x

(2.10) λh1 [vh](x) = min
αh∈R2

vh(x+ αh)− 2vh(x) + vh(x− αh)

|αh|2
,

where by αh ∈ R2 we mean vectors αh for which the above expression is well defined
for grid points.

We also recall the expression Ms[v
h] of the discretization of detD2v used in [21].

For x ∈ Ωhs we denote by Wh(x) the set of orthogonal bases of R2 such that for
(α1, α2) ∈Wh(x) x± αi ∈ Ωh,∀i. We have

(2.11) Ms[v
h](x) = inf

(α1,α2)∈Wh(x)

2∏
i=1

vh(x+ αi)− 2vh(x) + vh(x− αi)
|αi|2

.

The monotone discretization of (2.2) can then be written

−Ms[u
h
s ](x) + rh(f)(x) = 0, x ∈ Ωhs

max(−λh1 [uhs ](x), 0) = 0, x ∈ Ωhs

uhs (x) = rh(u)(x) on ∂Ωhs .

(2.12)

As with [21], the first two equations of (2.12) are combined in a single equation. Recall
that x+ = max(x, 0) and define

M+
s [vh](x) = inf

(α1,α2)∈Wh(x)

2∏
i=1

max

(
vh(x+ αi)− 2vh(x) + vh(x− αi)

|αi|2
, 0

)
.

Then (2.12) can be written

−M+
s [uhs ](x) + rh(f)(x) = 0, x ∈ Ωhs

uhs (x) = rh(u)(x) on ∂Ωhs .
(2.13)

It is known [6, 26, 34] that (2.13) has a solution.
Finally we recall the following discrete comparison principle, the proof of which

follows from arguments given in [34]. If M+
s [vh] ≤ M+

s [wh] in Ωhs and vh ≥ wh on
∂Ωhs , then vh ≥ wh on Ωhs .

Remark 2.2. We note that for the implementation of (2.13), linear interpolation
near the boundary can be used. Since the operator M+

s is pointwise consistent and
convergence to viscosity solution is point by point, we do not discuss linear interpo-
lation. It can be shown that for smooth solutions [2], it leads to a convergence rate
O(h+ dθ) where dθ is called directional resolution and dθ → 0 as h→ 0.
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2.5. The hybrid discretization. Definition 2.3. We call a point x ∈ Ω a
regular point if the solution u of (2.1) is C2 in a neighborhood of x. A point which is
not a regular point is called a singular point.

The above definition is natural if one considers the one dimensional Monge-
Ampère equation −u′′(x) = f and a standard finite difference approximation. In
particular, at a regular point x, by a Taylor series expansion,

lim
h→0

max
i,j=1,...,n

|∂2v(x)/(∂xi∂xj)− ∂j−∂i+(rhv)(x)| = 0.(2.14)

Next, for v ∈ C4(Ω), and x ∈ Ω

max
i,j=1,2

|∂2v(x)/(∂xi∂xj)− ∂j−∂i+(rhv)(x)| ≤ Ch2|v|4,Ω.(2.15)

Let Ωr denote an open (rectangular) subset of Ω such that at every point x of Ωr
the exact solution u is C2 in a neighborhood of x. Using the notation of section 2.3
we define

Ωhs = Ωh0 \ Ωhr,0.

Definition 2.4. By a discrete convex function, we mean a mesh function vh

such that

λh1 [vh] ≥ 0 in Ωhs

Hd vh ≥ 0 in Ωhr,0.
(2.16)

Strictly discrete convex functions are defined analogously.

We note that a discrete convex function in the sense of the above definition is not
necessarily convex on Ωh0 . See [35] for the case Ωhs = Ωh0 and [33] for a counterexample
showing that the discrete Hessian Hd vh can be positive without the mesh function
vh being convex in the usual sense. The minor abuse of terminology we make is
justified by Theorem 4.5 below which says in particular that the uniform limit of
mesh functions which satisfy (2.16) and solve the discrete Monge-Ampère equation
(2.18) below, is convex.

For a subset Th of Ωh, we denote by Ch(Th) the cone of discrete convex functions
on Th and by Ch0 (Th) the cone of strictly discrete convex functions on Th. We define
on Ωh0 for a mesh function vh, Fh(vh) by

Fh(vh)(x) = −M+
s [vh](x) + rh(f)(x), x ∈ Ωhs

Fh(vh)(x) = −Mr[v
h](x) + rh(f)(x), x ∈ Ωhr,0.

(2.17)

Put Ch = Ch(Ωh0 ). The hybrid discretization of (2.2) can then be written: find uh ∈ Ch

Fh(uh)(x) = 0 in Ωh0 , u
h(x) = rh(g)(x) on ∂Ωh.(2.18)

In [22], the authors use a weight function to write the hybrid discretization as a
combination of the monotone scheme and the standard finite difference discretization.
We omit it in this paper as it plays no role in our analysis.
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3. Assumptions on the existence of a discrete convex solution. Were
the solution known on ∂Ωhr , we could use the arguments of section 2.3 to find the
solution uh of the hybrid discretization in the smooth domain. We could then use
the arguments of section 2.4 to get the solution in the domain where the solution is
not smooth. However, in this approach the discrete problem would not be satisfied
at mesh points of ∂Ωhr which are interior points. This suggests that Problem (2.17)
has a solution uh in the ball

B(rh(u)) = { vh ∈M(Ωh), |vh − rh(u)|Ωh
r
≤ Ch2, vh = rh(g) on ∂Ωh},

for a constant C and for h sufficiently small.
We note that uniqueness of a discrete solution is important for the use of Newton’s

method, but not necessary for the proof of convergence of the discretization.

4. Convergence to the viscosity solution of the hybrid discretization.
We recall that we follow the usual convention of denoting constants by C but will
occasionally index some constants.

We first prove the stability of the hybrid discretization (2.18). Then we prove
that the half-relaxed limits

u∗(x) = lim sup
y→x,h→0

uh(y) = lim
δ→0

sup{uh(y), y ∈ Ωh0 , |y − x| ≤ δ, 0 < h ≤ δ }

u∗(x) = lim inf
y→x,h→0

uh(y) = lim
δ→0

inf{uh(y), y ∈ Ωh0 , |y − x| ≤ δ, 0 < h ≤ δ },

are respectively sub and super solutions of (2.2). In addition we show that on ∂Ω
u∗ ≤ g ≤ u∗ using a result given in [1].

4.1. Stability on the set of regular points. Since uh ∈ B(rh(u)) we have for
h sufficiently small,

|uh|Ωh
r
≤ |uh − rh(u)|Ωh

r
+ |rh(u)|Ωh

r
≤ Ch2 + |rh(u)|Ωh

r
≤ C,(4.1)

since by definition u ∈ C(Ω).

4.2. Stability on the set of singular points. It follows from our definition
of Ωhs in section 2.5 that ∂Ωhs ∩ ∂Ωh 6= ∅ and ∂Ωhs ∩ ∂Ωhr 6= ∅. Since uh = g on ∂Ωh

and uh bounded on ∂Ωhr by (4.1), we conclude that uh is bounded on ∂Ωhs .
Since Ω is bounded, there exists A > 0 such that |x| ≤ A for x ∈ Ω. Assume that

0 ≤ f ≤ m. We compare uh with um =
√
m/2|x|2−

√
m/2A2−C for a large positive

constant C such that uh ≥ um on ∂Ωhs . We have M+
s [um] = m and

M+
s [uh] = f ≤ m = M+

s [um].

By the discrete comparison principle, we obtain uh ≥ um ≥ −
√
m/2A2 − C. By

discrete convexity, see for example [1], we have

uh ≤ max
x∈∂Ωh

s

uh(x).

This proves that

|uh|Ωh
s
≤ C.(4.2)

Inequalities (4.2) and (4.1) allow us to state the following theorem
Theorem 4.1. There is a constant C > 0 independent of h such that for h

sufficiently small, the solution uh of (2.18) satisfies |uh|Ωh ≤ C.
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4.3. Sub and super solution property of the half-relaxed limits . Theo-
rem 4.1 implies that the half-relaxed limits are well defined. We have

Theorem 4.2. The upper half-relaxed limit u∗ is a viscosity sub solution of
detD2u(x) = f(x) and the lower half-relaxed limit u∗ is a viscosity super solution of
detD2u(x) = f(x) at every point of Ω \ Ωr. In addition, u∗ is a viscosity solution of
−λ1[u](x) ≤ 0 at every point of Ω \ Ωr.

Proof. The result follows from the results of [9] and the stability, consistency
and monotonicity of the scheme used in the ”singular” part of the domain. For the
convenience of the reader, we give a proof following [12].

We show that u∗ is a viscosity super solution of detD2u(x) = f(x) at every point
of Ω \ Ωr.

It follows from the definitions that u∗ is lower semi-continuous. Let x0 ∈ Ω and
φ ∈ C2(Ω) with D2φ(x0) ≥ 0 such that u∗ − φ has a local minimum at x0 with
(u∗ − φ)(x0) = 0. Without loss of generality, we may assume that x0 is a strict local
minimum.

Let B0 denote a closed ball contained in Ω and containing x0 in its interior. We
let xl be a sequence in B0 such that xl → x0 and uhl(xl) → u∗(x0) and let x′l be
defined by

cl := (uhl − φ)(x′l) = min
B0

uhl − φ.

Since the sequence x′l is bounded, it converges to some x1 after possibly passing to a
subsequence. Since (uhl − φ)(x′l) ≤ (uhl − φ)(xl) we have

(u∗ − φ)(x0) = lim
l→∞

(uhl − φ)(xl) ≥ lim inf
l→∞

(uhl − φ)(x′l) ≥ (u∗ − φ)(x1).

Since x0 is a strict minimizer of the difference u∗ − φ, we conclude that x0 = x1 and
cl → 0 as l→∞.

By definition

uh(x) ≥ φ(x) + cl,∀x ∈ B0,

and thus, by the monotonicity of the scheme

0 = F̂h(uh(x0), uh(y)|y 6=x0) ≥ F̂h(uh(x0), (φ(y)+cl)|y 6=x0) = F̂h(φ(x0), (φ(y)+cl)|y 6=x0),

which gives by the consistency of the scheme detD2φ(x0)− f(x0) ≤ 0.
Similarly one shows that if φ ∈ C2(Ω) and u∗ − φ has a local maximum at x0

with (u∗ − φ)(x0) = 0, we have detD2φ(x0)− f(x0) ≥ 0 and −λ1[φ](x0) ≤ 0.
For the behavior at regular points, we have
Theorem 4.3. At every regular point x ∈ Ω,

u∗(x) = u∗(x) = u(x).

And thus u∗ and u∗ are viscosity solutions of (2.2) at x ∈ Ωr.
Proof. Since uh ∈ B(rh(u)) by assumption, uh converges to u uniformly on

compact subsets of Ωr. The result then follows since u is C2 at x ∈ Ωr and hence a
viscosity solution at x ∈ Ωr.

Theorem 4.4. On ∂Ω u∗ ≤ g ≤ u∗.
Proof. We make an essential use of [1, Theorem 4.1]. First, since by assumption

uh ∈ B(rh(u)) we have on Ωr ∩∂Ω, u = u∗ = u∗ = g. Next, we note that Ωhs ∪∂Ωhs =
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Ω \ Ωr

)
∩ Zh. And uh is uniformly bounded on Ωhs and discrete convex. By [1,

Theorem 4.1], there exists a subsequence uhk which converges uniformly on compact
subsets of Ω \ Ωr to a convex function v which satisfies v = g on (Ω \ Ωr) ∩ ∂Ω and
which is continuous up to the boundary. By definition, we have v = u∗ = u∗ on Ω
and hence for ζ ∈ ∂Ω, limx→ζ u∗(x) ≥ g(ζ) and limx→ζ u

∗(x) ≤ g(ζ).
We close this section by stating the main result of this paper
Theorem 4.5. The solution uh of (2.18) converges uniformly on compact subsets

to the unique solution of (2.2).
Proof. Using the definitions we have u∗ ≤ u∗ on Ω. By Theorem 4.4 u∗ ≤ g ≤ u∗

on ∂Ω. We recall that u∗ is convex in the viscosity sense and hence convex. By
the comparison principle (2.3) and Theorems 4.2 and 4.3, we have u∗ ≥ u∗ on Ω.
Hence u∗ = u∗ on Ω and both u∗ and u∗ are thus continuous on Ω. We conclude
that u∗ = u∗ is the unique viscosity solution of (2.2). By uniqueness of the viscosity
solution u∗ = u∗ = u and hence uh converges uniformly on compact subsets to u by
[7, Lemma 1.9 p. 290].
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