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Abstract We present a technique for proving convergence to the Aleksandrov
solution of the Monge-Ampère equation of a stable and consistent finite diffe-
rence scheme. We also require a notion of discrete convexity with a stability
property and a local equicontinuity property for bounded sequences.
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1 Introduction

Given an orthogonal lattice with mesh length h on a convex bounded domain
Ω ⊂ Rd with boundary ∂Ω, we are interested in convergent finite difference
approximations of the problem: find a convex function u ∈ C(Ω) such that

detD2u = ν inΩ

u = g on ∂Ω,
(1)

where ν is a finite Borel measure and g ∈ C(∂Ω) can be extended to a convex
function g̃ ∈ C(Ω). When u ∈ C2(Ω), detD2u is the determinant of the
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Hessian matrix D2u =

(
∂2u

∂xi∂xj

)
i,j=1,...,d

. In the general case, the expression

detD2u denotes the Monge-Ampère measure associated with u, c.f. section
2.1.

Let Ωh denote the computational domain and ∂Ωh its boundary. Let fh ≥
0 be a family of mesh functions. In section 2.2 we associate to fh a Borel
measure which is also denoted by fh, c.f. (3). Assume that fh converges to ν
as measures (c.f. section 2.2). We consider the problem with unknown a mesh
convex function uh

hdMh[uh] = hdfh inΩh

uh = g on ∂Ωh.
(2)

Here Mh[vh] denotes a stable and consistent discretization of detD2v for a
smooth convex function v. There are several notions of discrete convexity. We
require that the uniform limit on compact subsets of mesh convex functions
is a convex function and that a locally bounded sequence of such functions
is locally equicontinuous. Of course we also require (2) to have a solution. A
sufficient condition is degenerate ellipticity and Lipschitz continuity as defined
by Oberman [17]. We show that a family of solutions uh of (2) converges
uniformly on compact subsets to the unique Aleksandrov solution of (1), c.f.
Definition 2 for the notion of Aleksandrov solution.

The Monge-Ampère equation (1) is a fully nonlinear equation which arises
in several applications of great importance, e.g. optimal transportation and re-
flector design. Problems in affine geometry motivated the study of the Dirich-
let problem. This paper is therefore relevant to readers interested in numerical
analysis, optimal transportation and affine geometry.

The equation detD2u = ν with ν a sum of Dirac masses, and with Dirich-
let boundary condition was solved by Pogorelov [20]. For the so-called second
boundary condition we refer to [19, Chapter V section 3]. When the measure
ν is absolutely continuous with respect to the Lebesgue measure, with density
f ≥ 0 and f ∈ C(Ω), the convergence of a scheme of the type (2) was proved
in [11] using the notion of viscosity solution. In this paper, we use the notion
of Aleksandrov solution, the consistency of the discretization (2) and approxi-
mation by smooth functions to handle the Monge-Ampère measure. In [3] the
notion of Aleksandrov solution was also used along with a different procedure
for approximation by smooth functions.

We note that the method introduced in [8] is not known to be consistent.
Our requirements for convergence are stability, consistency and solvability of
(1), as well as stability under uniform convergence on compact subsets of dis-
crete convex mesh functions along with local equicontinuity of locally bounded
sequences of such functions. All of these requirements, except stability in the
general case where ν is a linear combination of Dirac masses, are met by the
finite difference scheme introduced in [11]. Our numerical results indicate that
a very good initial guess is required for an iterative method for solving the
nonlinear problem (2) if one uses the discretization proposed in [11]. In our
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numerical experiments, the discrete problem (2) is solved with a time marching
method which has also been used in [2]. The difficulty of capturing singular
solutions may be related to the choice of the method for solving the non-
linear equation (2). The numerical results obtained may be explained with
the approach taken in [3]. For additional numerical evidence of the stability
of the discretization proposed in [11] in the general case where ν is a linear
combination of Dirac masses, we refer to [6].

If ν has density f ≥ 0 and f ∈ C(Ω), under our assumptions, uh converges
uniformly on compact subsets to the unique viscosity solution of (1) if the
latter is known to have a unique viscosity solution. This follows from the
equivalence of the notion of viscosity and Aleksandrov solutions, the proof of
which we outline. If f > 0 and f ∈ C(Ω), a continuous viscosity solution of
(1) is also an Aleksandrov solution of (1) [13, Proposition 1.7.1]. The result is
also valid for f ≥ 0 and f ∈ C(Ω). Indeed, consider the problems detD2uε =
f + ε, ε > 0. By [15, Lemma 5.1 ], uε converges uniformly on compact subsets
to u. One then uses the equivalence of the notion of viscosity and Aleksandrov
solutions in the non degenerate case [13, Propositions 1.7.1 and 1.3.4] and the
stability of the notion of Aleksandrov and viscosity solutions under uniform
convergence on compact subsets [13, Lemma 1.2.3] and [7, Theorem 2.3].

In this paper we provide the convergence proof of a time marching method
for solving the nonlinear problem (2). The main contribution of this paper is
the method of proof for convergence of finite difference schemes satisfying our
assumptions. The numerical results indicate that such schemes may not lead
to an effective numerical algorithm. Our results clarify the nature of efficient
discretizations for (1). Another consequence of our results is the equivalence
of the notions of viscosity and Aleksandrov solutions for f ≥ 0 and f ∈
C(Ω)∩L∞(Ω). Indeed as we show in section 4.2, uh obtained through (2) and
the discretization proposed in [11] converges to the Aleksandrov solution. It is
also known to converge to the unique viscosity solution of (1) when the latter
exists. Hence the result.

The paper is organized as follows: in the next section we give some no-
tations, recall key results on the Aleksandrov solution and finite difference
schemes. In section 3 we prove the claimed convergence result. We conclude
with a proof of convergence of the time marching method and numerical ex-
periments.

2 Preliminaries

In this section, we recall key results on the Aleksandrov solution of the Monge-
Ampère equation. We then associate discrete measures to mesh functions. For
a smooth solution of (1) we immediately get a discretization of the Monge-
Ampère measure. Finally, we introduce finite difference schemes.
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2.1 The Monge-Ampère measure

In this paper, we take the analytic approach to the Monge-Ampère measure
[21]. Let K(Ω) denote the cone of convex functions on Ω and let M(Ω) denote
the set of Borel measures on Ω. We will consider only values of measures on
the Borel sets, i.e. for a Borel measure ν, the ν-measurable sets are the Borel
sets.

For v ∈ C2(Ω) ∩K(Ω), we define a Borel measure M[v] by

M[v](B) =

∫
B

detD2v(x) dx,

where B is a Borel set.
The topology on M(Ω) is induced by the weak convergence of measures.

Definition 1 A sequence νn ∈ M(Ω) converges to ν ∈ M(Ω) if and only if
for all continuous functions φ with compact support in Ω,∫

Ω

φdνn →
∫
Ω

φdν.

The above definition of convergence of a sequence of measures extends imme-
diately to a family of measures, i.e. a family νh ∈M(Ω) converges to ν if and
only if for all sequences hn → 0, νhn converges to ν.

We note that there are several equivalent definitions of weak convergence
of measures which can be found for example in [9, Theorem 1, section 1.9] for
measures on Rd or [1, Theorem 4.5.1] for a weaker notion of convergence. We
have

Lemma 1 Let νn, ν ∈ M(Ω) and νn(B) → ν(B) for any Borel set B ⊂ Ω
with ν(∂B) = 0 and B ⊂ Ω. Then νn converges to ν.

Proof The proof is analogous to the one in [1, Theorem 4.5.1], so we omit it.

Proposition 1 [21, Proposition 3.1] The mapping M maps C(Ω)-bounded
subsets of C2(Ω) ∩K(Ω) into bounded subsets of M(Ω). Moroever M has a
unique extension to a continuous operator on K(Ω).

For a convex function v, we will refer toM[v] as the Monge-Ampère mea-
sure associated with v. It can be shown that it coincides with the notion of
Monge-Ampère measure obtained through the normal mapping [21, Proposi-
tion 3.4].

Definition 2 Given a Borel measure ν on Ω, a convex function u ∈ C(Ω) is
an Aleksandrov solution of

detD2u = ν,

if and only if M[u] = ν.

We recall an existence and uniqueness result for the solution of (1).
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Proposition 2 ([15] Theorem 1.1) Let Ω be a bounded convex domain of
Rd. Assume ν is a finite Borel measure and g ∈ C(∂Ω) can be extended to a
function g̃ ∈ C(Ω) which is convex in Ω. Then the Monge-Ampère equation
(1) has a unique Aleksandrov solution in K(Ω) ∩ C(Ω).

Throughout this paper, we will follow the convention of denoting by p a
measure ν which is absolutely continuous with respect to the Lebesgue measure
and with density p.

2.2 Discrete measures associated with mesh functions

Let h be a small positive parameter and let

Zdh = {mh,m ∈ Zd },

denote the regular uniform grid of Rd. By a mesh function we mean a real-
valued function defined on Zdh.

The computational domain is defined as Ωh = Ω ∩Zdh and its boundary is
simply ∂Ωh = {x ∈ Ω ∩ Zdh, x /∈ Ωh }. We denote by Ch the cone of discrete
convex mesh functions. We recall that there are several possibilities for defining
a discrete convex function. For example, we may require that a mesh function
vh is discrete convex if and only if vh(x + e) − 2vh(x) + vh(x − e) ≥ 0 for all
x ∈ Ωh and e ∈ Zdh for which x± e ∈ Ωh. We prove in section 4.2 that for that
notion of discrete convex mesh functions, the assumptions of this paper hold.

Let vh be a mesh function such that vh ≥ 0 on Ωh. We associate to vh a
Borel measure which we denote here by vh and defined by

vh(B) = hd
∑

x∈Ωh∩B
vh(x), (3)

for any Borel set B.
Given a continuous function v on Ω, we use the notation rh(v) to denote

its restriction to Ωh. If v ≥ 0 is a continuous function on Ω, we have

lim
h→0

rh(v)(B) =

∫
B

v(x) dx.

for any B ⊂ Ω satisfying |∂B| = 0. In other words, the measures vh converge
weakly to v.

Definition 3 Let vh ∈ Ch for each h > 0. We say that vh converges to a
convex function v ∈ C(Ω) uniformly on compact subsets of Ω if and only if
for each compact set K ⊂ Ω, each sequence hk → 0 and for all ε > 0, there
exists h−1 > 0 such that for all hk, 0 < hk < h−1, we have

max
x∈K∩Zd

h

|vhk
(x)− v(x)| < ε.
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2.3 Finite difference schemes

Let fh ≥ 0 be a family of mesh functions which converge to ν as measures and
let Mh[rhv] denotes a discretization of detD2v for a smooth convex function
v. We are interested in the discrete Monge-Ampère equation (2).

The discretizationMh[rhv] is said to be consistent if for all C2 convex func-
tions v, and a sequence xh ∈ Ωh such that xh → x ∈ Ω, limh→0Mh[rhv](xh) =
detD2v(x).

We denote by Mh[vh] the discretization of the determinant which reduces
to Mh[rhv] for a smooth function v. The discretization is said to be stable if
the problemMh[vh] = fh has a solution vh which is bounded independently of
h. We give in section 4.2 an example of a discretizationMh[vh] which is stable
when the functions fh are uniformly bounded. The example of discretization
Mh[vh] analyzed in [4] is stable under the assumption of this paper that fh
converges to ν as measures. However, the one analyzed there is not known to
be consistent.

3 Convergence

We recall that our assumptions are that the nonlinear equation (2) is solvable
with the discretization stable and consistent. We also require that the uniform
limit on compact subsets of mesh convex functions is a convex function and
that a locally bounded sequence of such functions is locally equicontinuous.

Lemma 2 There exists a constant C0 such that for all Borel sets B ⊂ Ω

|Mh[wh](B)−Mh[vh](B)| ≤ C0 max
x∈B∩Zd

h

|wh(x)− vh(x)|.

Proof We have by (3)

|Mh[wh](B)−Mh[vh](B)| = hd
∣∣∣∣ ∑
x∈B∩Ωh

wh(x)−
∑

x∈B∩Ωh

vh(x)

∣∣∣∣
≤

∑
x∈B∩Ωh

hd|wh(x)− vh(x)|

≤ max
x∈B∩Zd

h

|wh(x)− vh(x)|
∑

x∈B∩Ωh

hd

≤ C max
x∈B∩Zd

h

|wh(x)− vh(x)|,

with a constant C bounded by a multiple of the measure of Ω.

The constant C0 in Lemma 2 satisfies∑
x∈Ωh

hd ≤ C0. (4)
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Lemma 3 For v ∈ K(Ω) ∩ C2(Ω), hdMh[rhv] converges weakly to detD2v.

Proof By definition of the Monge-Ampère measure and of discretization of the
integral, we have for a Borel set B with M[v](∂B) = 0 and B ⊂ Ω∫

B

detD2v(x) dx = lim
h→0

hd
∑

x∈B∩Ωh

detD2v(x).

Using (4)∣∣∣∣hd ∑
x∈B∩Ωh

detD2v(x)− hdMh[rhv](B)

∣∣∣∣ =

∣∣∣∣ ∑
x∈B∩Ωh

hd
(
detD2v(x)−Mh[rhv](x)

) ∣∣∣∣
≤ C0 max

x∈B∩Ωh

|detD2v(x)−Mh[rhv](x)|,

We claim that by the consistency assumption, as h→ 0, maxx∈B∩Ωh
|detD2v(x)−

Mh[rhv](x)| → 0. Suppose

lim
h→0

max
x∈B∩Ωh

|detD2v(x)−Mh[rhv](x)| 6= 0.

One can then find ε > 0 and a sequence {hk}∞k=1 converging to 0 such that for
all k, one has

max
x∈B∩Ωhk

|detD2v(x)−Mhk
[rhk

v](x)| ≥ ε.

That is for all k, there exists xk ∈ B ∩Ωhk
such that

|detD2v(xk)−Mhk
[rhk

v](xk)| ≥ ε. (5)

Using a subsequence if necessary, {xk}∞k=1 converges to some x̄ ∈ B̄ ⊂ Ω. Then
detD2v(xk) → detD2v(x̄) by continuity of detD2v and by the consistency
assumption

detD2v(x̄)−Mhk
[rhk

v](xk)→ 0.

A contradiction. Therefore

lim
h→0

max
x∈B∩Ωh

|detD2v(x)−Mh[rhv](x)| = 0.

By Lemma 1 the result follows.

We have the following weak convergence result for discrete Monge-Ampère
measures

Theorem 1 Let vh ∈ Ch converge uniformly on compact subsets to v ∈
K(Ω) ∩ C(Ω) in the sense of Definition 3. Then hdMh[vh] converges weakly
to M[v].
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Proof Let vε ∈ K(Ω) ∩ C∞(Ω) converge uniformly to v on Ω. The existence
of vε may be proven as in [5] by mollifications of dilations of v. Let B be a
Borel set with M[v](∂B) = 0 and B ⊂ Ω. Given δ > 0, we seek h0 > 0 such
that |hdMh[vh](B)−M[v](B)| < δ for all 0 < h < h0.

By Proposition 1, ∃ ε0 > 0 such that |M[vε0 ](B) −M[v](B)| < δ/3. By
Lemma 3, ∃h0 > 0 such that for all 0 < h < h0, |hdMh[(rh(vε0)](B) −
M[vε0 ](B)| < δ/3.

We may assume that maxx∈B |vε0(x)− v(x)| < δ/(6C0) and since vh con-

verges to v on B, we may assume that for h < h0, maxx∈B∩Zd
h
|v(x)−vh(x)| <

δ/(6C0). Thus we have maxx∈B∩Zd
h
|vε0(x) − vh(x)| < δ/(3C0). By Lemma 2,

|Mh[rh(vε0)](B)−Mh[vh](B)| < δ/3. This concludes the proof by Lemma 1.

We can now prove the main result of this paper.

Theorem 2 The mesh function uh defined by (2) converges uniformly on
compact subsets to the Aleksandrov solution u of (1).

Proof By the stability assumption, the family uh is uniformly bounded and by
our assumption on the discretization, locally equicontinuous. By the Arzela-
Ascoli theorem, there exists a subsequence uhk

which converges uniformly on
compact subsets to a function v. Since uh ∈ Ch the function v is convex by our
assumptions on discrete convex functions. Since uh is uniformly bounded, v is
convex and bounded on Ω, hence continuous on Ω. Arguing as in the proof of
[4, Theorem 4.3] one proves that v ∈ C(Ω). Since hdMh[vh] converges weakly
to M[v] and uh = g on ∂Ω, the function v is an Aleksandrov solution of (1).
By uniqueness, v = u and hence the whole family uh converges uniformly on
compact subsets to u.

4 Convergence of a time marching iterative method

Let us denote by M(Ωh) the set of mesh functions, i.e. the set of real valued
functions defined on Ωh. Since Ωh is a finite set, there is a canonical identifica-
tion ofM(Ωh) with RN for some integer N . We will now also use the restric-

tion operator rh for vector and matrix fields. For x ∈ RN , |x| = (
∑N
i=1 x

2
i )

1
2

denotes the Euclidean norm of x and |x|∞ = maxi=1,...,N |xi| denotes its ma-
ximum norm.

We make the assumption that the mapping Mh is Lipschitz continuous
with Lipschitz constant K > 0 i.e.

|Mh[vh]−Mh[wh]|∞ ≤ K|vh − wh|∞, vh, wh ∈ RN .

Here we make the abuse of notation of identifying a mesh function with its
vector representation. We also make the assumption that problem (2) has a
unique solution uh which can be computed by a time marching method

uk+1
h = ukh +

1

µ
Mh[ukh] inΩh

uh = rh(g) on ∂Ωh,

(6)
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for µ ≥ µ0 where µ0 > 0 and u0h is a suitable initial guess. Such assumptions are
satisfied by proper Lipschitz continuous degenerate elliptic schemes as defined
by Oberman [17]. We were not able to get numerical evidence of convergence
for the above iterative method for the discretization proposed in [11] even if
we use the exact solution as initial guess. Similar results for Newton’s method
were reported in [8].

Let us denote by ∆h the standard finite difference discretization of the
Laplace operator and let ei denote the ith vector of the canonical basis of Rd.
For x ∈ Ωh and vh ∈M(Ωh), we have

∆hvh(x) =

d∑
i=1

vh(x+ hei)− 2vh(x) + vh(x− hei)
h2

.

When the measure ν is a combination of Dirac masses we obtained better
numerical results with the preconditioned iterative method

−∆hu
k+1
h = −∆hu

k
h +

1

µ
Mh[ukh] inΩh

uh = rh(g) on ∂Ωh,

(7)

for µ ≥ µ1 for a positive real number µ1 under the above assumptions. More-
over numerical experiments indicate that the method (7) converges faster than
(6). The idea to use the Laplacian for faster iterative methods has a long story
in various contexts [10, p. 58], and a remark in that direction for proper Lips-
chitz continuous degenerate elliptic schemes was made in [12]. See also [18]. We
use the terminology preconditioned iterative method for (7) by analogy with
preconditioned techniques for linear equations. An advantage of the precondi-
tioned iterative method (7) is that fast Poisson solvers and standard multigrid
methods can be used at each step.

The proof of convergence of the iterative method (7) does not follow the
approach in [17] for proving convergence of the basic iterative method (6).
The proof of the latter does not seem to extend to the preconditioned version
(7). We take a different approach which consists in using the fact that (6)
converges to the discrete solution of (2) and properties of the inverse of the
operator ∆h.

4.1 Convergence of the preconditioned iterative method

It can be shown [14, Theorem 4.4.1], that for f ∈ C(Ω) the problem

∆h[zh] = rh(f) inΩh

zh = 0 on ∂Ωh,

has a unique solution. We denote by ∆−1h the inverse of the operator ∆h with
homogeneous boundary conditions. Let ||∆−1h || denote the operator norm of
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∆−1h , i.e.

||∆−1h || = sup
|vh|∞ 6=0

|∆−1h vh|∞
|vh|∞

.

By [14, Theorem 4.4.1], ||∆−1h || is bounded independently of h. We note that
[14, Theorem 4.4.1] is proven for dimension n = 2 but the proof extends
immediately to arbitrary dimension.

The main result of this section is the following theorem.

Theorem 3 Let Mh denote a Lipschitz continuous finite difference scheme
such that the mapping T1 :M(Ωh)→M(Ωh) defined by

T1[vh] = vh +
1

µ
Mh[vh],

is a strict contraction for µ ≥ µ0 > 0. Then for some µ1 > 0, the mapping
T2 :M(Ωh)→M(Ωh) defined by

T2[vh] = vh −
1

µ
∆−1h Mh[vh],

is also a strict contraction for µ ≥ µ1.

Proof By assumption, there exists a constant C1 such that 0 < C1 < 1 and

|T1[vh]− T1[wh]|∞ ≤ C1|vh − wh|∞,

for all vh, wh ∈M(Ωh). One may decompose T2[vh]− T2[wh] as

T2[vh]− T2[wh] = T2[vh]− T1[vh] + T1[vh]− T1[wh] + T1[wh]− T2[wh]

= (T1[vh]− T1[wh]) + (T2[vh]− T1[vh])− (T2[wh]− T1[wh]).

Moreover

T1[vh]− T2[vh] =
1

µ

(
Mh[vh] +∆−1h Mh[vh]

)
=

1

µ

(
I +∆−1h

)
Mh[vh],

where I denotes the identity operator on M(Ωh). We then get

(T2[vh]− T1[vh])− (T2[wh]− T1[wh]) = − 1

µ

(
I +∆−1h

)
(Mh[vh]−Mh[wh]).

We recall that Mh is Lipchitz continuous, i.e.

|Mh[vh]−Mh[wh]|∞ ≤ K|vh − wh|∞, ∀vh, wh ∈M(Ωh).

One deduces that

|T2[vh]− T2[wh]|∞ ≤ |T1[vh]− T1[wh]|∞ + | 1
µ

(
I +∆−1h

)
(Mh[vh]−Mh[wh])|∞

≤ C1|vh − wh|∞ +
K

µ
||I +∆−1h || |vh − wh|∞

≤
(
C1 +

K

µ
|I +∆−1h ‖

)
|vh − wh|∞.
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Since ‖I+∆−1d ‖ ≤ ‖I‖+‖∆
−1
h ‖ is bounded independently of the discretization

step h and 0 < C1 < 1, one may choose µ big enough such that

C1 +
K

µ
‖I +∆−1h ‖ < 1,

making T2 a strict contraction mapping. This concludes the proof.

Under the assumption of the above theorem, both the iterative methods (6)
and (7) converge linearly to the unique solution uh of (2).

4.2 A numerical example

In this section we consider a particular notion of discrete convexity. A mesh
function vh is discrete convex if and only if ∆evh(x) = vh(x + e) − 2vh(x) +
vh(x − e) ≥ 0 for all x ∈ Ωh and e ∈ Zdh for which ∆evh(x) is defined. Then
the uniform limit of discrete convex mesh functions is convex [4, Lemma 2.11].
Moreover a bounded sequence of such functions is locally equicontinuous [4].

Following [11], we define

Mh[vh](x) = inf
(α1,...,αn)∈Wh(x)

d∏
i=1

max

(
vh(x+ αi)− 2vh(x) + vh(x− αi)

|αi|2
, 0

)
.

where for x ∈ Ωh, Wh(x) denotes the set of orthogonal bases of Rd such that
for (α1, . . . , αn) ∈Wh(x), x± αi ∈ Ωh, for all i.

Note that Mh[vh] ≥ 0 implies that vh is discrete convex. Hence the discrete
convexity assumption is enforced in the discretization. Moreover, as pointed
out in [4], if one considersMh[vh] = Mh[vh](x)+ε(h)vh(x) where ε(h) is taken
close to machine precision with ε(h)→ 0 as h→ 0, the discretization is proper
and hence uniqueness holds.

It is known that Mh[vh] satisfies the assumptions of degenerate ellipticity
and Lipschitz continuity as defined by Oberman [17]. The consistency of the
scheme was proved in [11] while for f ∈ C(Ω), and hence uniformly bounded,
a proof of stability can be found in [2]. The proof uses the strict contraction
property of the mapping T1 which holds for a proper, degenerate elliptic and
Lipschitz continuous scheme [17, Theorem 7]. Let u0h be a fixed mesh function
and recall that we have

|uh|∞ = |T1[uh]|∞ ≤ |T1[uh]− T1[u0h]|∞ + |T1[u0h]|∞
≤ a|uh − u0h|∞ + |T1[u0h]|∞
≤ a|uh|∞ + a|u0h|∞ + |T1[u0h]|∞,

where we denote by a the strict contraction constant of the mapping T1, 0 <
a < 1. The result follows.

As pointed out in the introduction, we do not know how to prove stability
of the discretization when the right hand side is a finite Borel measure. The
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h
µ 1/23 1/24 1/25 1/26 1/27 1/28

50 4.71 10−1 2.86 10−1 1.69 10−1 9.77 10−2 5.50 10−2 3.02 10−2

Table 1

approach taken in [3] suggests that it may be possible to prove stability in
that case as well.

For the numerical experiments, the space dimension d is taken as 2 and the
computational domain is the unit square (0, 1)2. Numerical experiments with
ν a Dirac mass was reported in earlier papers, e.g. [11]. Here we consider the
example of [8] where ν is the sum of two Dirac masses, i.e. we take

u(x, y) =

 |y −
1
2 | if 1

4 < x < 3
4

min

{√
(x− 1

4 )2 + (y − 1
2 )2,

√
(x− 3

4 )2 + (y − 1
2 )2
}

otherwise,

and ν = π/2 δ(1/4,1/2) + π/2 δ(3/4,1/2). For simplicity, we only use a 17 point
stencil. The initial guess is taken as the exact solution and the nonlinear equa-
tions solved with (7). Errors are given in the maximum norm and reported on
Table 1.
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