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Abstract. We present a family of stable rectangular mixed finite elements for plane elas-
ticity. Each member of the family consists of a space of piecewise polynomials discretizing
the space of symmetric tensors in which the stress field is sought, and another to discretize
the space of vector fields in which the displacement is sought. These may be viewed as
analogues in the case of rectangular meshes of mixed finite elements recently proposed for
triangular meshes. As for the triangular case the elements are closely related to a discrete
version of the elasticity differential complex.

1. Introduction

Let Ω be a simply connected polygonal domain of R2, occupied by a linearly elastic body
which is clamped on ∂Ω and let H(div, Ω, S) be the space of square-integrable fields taking
values in S, the space of symmetric tensors, and which have square integrable divergence.
We denote as usual by L2(Ω, R2) the space of square integrable vector fields with values in
R2 and Hk(R,X) the space of functions with domain R ⊂ R2, taking values in the finite
dimensional space X, and with all derivatives of order at most k square integrable. For our
purposes, X will be either S, R2, or R, and in the later case, we will simply write Hk(R). The
norms in Hk(R,X) and Hk(R) are denoted respectively ‖ · ‖Hk and ‖ · ‖k. We also denote by
Pk1,k2(R,X) the space of polynomials on R of degree at most k1 in x and of degree at most
k2 in y. We write Pk1,k2 for Pk1,k2(R, R). For a vector field v : Ω → R2, grad v is the matrix
field with rows the gradient of each component, and ε(v) = [(grad v) + (grad v)T ]/2. For a
matrix field τ , div τ is the vector obtained by applying the divergence operator row-wise and

σ : τ =
2∑

i,j=1

σijτij.

The solution (σ, u) ∈ H(div, Ω, S)×L2(Ω, R2) of the elasticity problem can be characterized
as the unique critical point of the Hellinger-Reissner functional

J (σ, v) =

∫
Ω

(1
2
Aτ : τ + div τ · v − f · v

)
dx.

The compliance tensor A = A(x) : S → S is given, bounded, and symmetric positive definite
uniformly with respect to x ∈ Ω, and the body force f is also given. The unknowns, σ and
u, represent the the stress and displacement fields, respectively.

A mixed finite element method determines approximate stress field and approximate ve-
locity field (σh, uh) as the unique critical point of the Hellinger–Reissner functional in a finite
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element space Σh× Vh ⊂ H(div, Ω, S)×L2(Ω, R2), where h denotes the mesh size. It can be
shown that for a stable approximation, the following two conditions are sufficient:2

• div Σh ⊂ Vh.
• There exists a linear operator Πh : H1(Ω, S) → Σh, bounded in L(H1, L2) uniformly

with respect to h, and such that div Πhσ = Ph div σ for all σ ∈ H1(Ω, S), where
Ph : L2(Ω, R2) → Vh denotes the L2−projection.

In recent work of Arnold and Winther,2 a family of finite element spaces based on triangular
meshes was proposed and shown to satisfy these two conditions. In this paper, we will derive
an analogous family of finite element spaces based on rectangular meshes and show that they
satisfy these two stability conditions.

A key ingredient in the design of mixed finite element methods is the use of differential
complexes.1,2 In two dimensions, the elasticity complex is

0 −→ P1(Ω)
⊂−→ C∞(Ω)

J−→ C∞(Ω, S)
div−−→ C∞(Ω, R2) −→ 0,

where Pk(Ω) is the space of polynomials in two variables of total degree k and J , the Airy
stress operator defined by

Jq :=

(
∂2q
∂y2 − ∂2q

∂x∂y

− ∂2q
∂x∂y

∂2q
∂x2

)
An analoguous sequence with less smoothness is

(1.1) 0 −→ P1(Ω)
⊂−→ H2(Ω)

J−→ H(div, Ω, S)
div−−→ L2(Ω, R2) −→ 0.

We denote by (
Pk1,k2 Pk3,k4

Pk3,k4 Pk5,k6

)
S

the space of symmetric matrix fields σ =

(
σ11 σ12

σ21 σ22

)
such that σ11 ∈ Pk1,k2 , σ12 = σ2,1 ∈

Pk3,k4 and σ22 ∈ Pk5,k6 . Similarly, we sometimes write

(
Pk1,k2

Pk3,k4

)
at the place of Pk1,k2×Pk3,k4 .

Let k ≥ −2 be an integer. The following sequence is exact

0 −→ P1(Ω)
⊂−→ Pk+4,k+4(Ω)

J−→
(
Pk+4,k+2 Pk+3,k+3

Pk+3,k+3 Pk+2,k+4

)
S

div−−→
(
Pk+3,k+2

Pk+2,k+3

)
−→ 0.

To verify the surjectivity of the last map, one can notice that the alternating sum of the
dimensions of the spaces in the sequence is zero.

The paper is organized as follows. In the next section, we present our rectangular element
in the lowest order case and then show the relation to the elasticity differential complex
in the third section. The error estimates are given in the fourth section. In Section 5, we
present the higher order elements. Finally we describe a simplified element of low order in
the last section.
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2. The Elements in the Lowest Order Case

Let Th denote a conforming partition of Ω into rectangles of diameter bounded by h, which
is quasi-uniform in the sense that the aspect ratio of the rectangles is bounded by a fixed
constant.

In this section, we define our finite element spaces Σh ⊂ H(div, S) and Vh ⊂ L2(Ω, R) and
a bounded operator Πh : H1(Ω, S) → Σh satisfying the commutativity condition

(2.1) div Πhτ = Ph div τ, τ ∈ H1(Ω, S)

and the bound

(2.2) ‖Πhτ‖0 ≤ C‖τ‖1, τ ∈ H1(Ω, S),

with c independent of h. It follows easily that our pair of elements is stable.2

We first describe our elements on a single rectangle R. We will denote by n the outward
normal to an edge of R and define

VR =

(
P2,1

P1,2

)
, ΣR =

{
τ ∈

(
P5,3 P4,4

P4,4 P3,5

)
S
| div τ ∈ VR

}
The dimension of VR is 12 and the degrees of freedom are given by the values of each
component at 6 interior nodes of R. The dimension of ΣR is at least 45. To see this, notice

that the dimension of the space of matrices with values in

(
P5,3 P4,4

P4,4 P3,5

)
S

is 73 and for those

matrix fields, div τ ∈ P4,3×P3,4. Since dimP4,3 = dimP4,3 = 20 and dimP1,2 = dimP2,1 = 6,
the condition div τ ∈ VR imposes 28 constraints. We will exhibit 45 degrees of freedom after
a few preliminaries. This will establish that the dimension of ΣR is 45. (This could also be
done with a dimension counting argument.)

The kernel of ε is the space of infinitesimal rigid motions so

dim ε(VR) = 12− 3 = 9.

Define

M1(R) :=

{
τ ∈

(
P5,3 P4,4

P4,4 P3,5

)
S
| div τ = 0 and τn = 0 on ∂R

}
.

The following lemma characterizes M1(R).

Lemma 2.1. Let Li, i = 1, . . . , 4 be linear functions which define the edges ei, i = 1, . . . , 4,
of R and define bR = L1L2L3L4. We have J(b2

RP1,1) = M1(R), and so the dimension of
M1(R) is 4.

Proof. First we note that J(b2
RP1,1) ⊂ M1. Indeed for q ∈ P1,1, b2

Rq ∈ P5,5 and τ = J(b2
Rq) ∈(

P5,3 P4,4

P4,4 P3,5

)
S

with div τ = 0. It remains to show that τn = 0 on ∂R. This follows from the

identities

(2.3) J(q)n · n =
∂2q

∂s2
, J(q)n · t =

∂2q

∂s∂n
.

Next, let vi, i = 1, . . . , 4, be the vertices of R so that the edge ei is the segment from vi to
vi+1 with v5 ≡ v1. Let also τ ∈ M1. Since div τ = 0, there exists q ∈ P5,5(Ω) such that
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τ = J(q). Using the identities (2.3) and the vanishing of τn, we infer that implies that q is
linear on each edge and ∂q/∂n is constant on each edge.

By adding a linear function to q, we may assume that q ≡ 0 on the edges e1 and e4 meeting
at v1. It follows that q and ∇q vanish at v1 and so q and ∂q/∂n vanish on e1. This implies
that L2

1 divides q. Similarly L2
2, L2

3, and L2
4 divide q. Thus q = b2

Rq̃ for some q̃ in P1,1. �

We can now give the degrees of freedom for ΣR.

Lemma 2.2. A matrix field τ ∈ ΣR is uniquely determined by the following degrees of
freedom

(i) the values of each component of τ(x) at the vertices of R (12 degrees of freedom)
(ii) the first two moments of (τn) · n on each edge (8 degrees of freedom)
(iii) the first three moments of (τn) · t on each edge (12 degrees of freedom)
(iv) the values of

∫
R

τ : φ for all φ in ε(VR) (9 degrees of freedom)
(v) the values of

∫
R

τ : φ for all φ in M1(R) (4 degrees of freedom)

Proof. We assume that all listed degrees of freedom in the lemma vanish and show that
τ = 0. Notice that τn · n ∈ P3 and τn · t ∈ P4 on each edge. Since τ = 0 at the vertices,
the second and third set of degrees of freedom imply that τn = 0 on ∂R. Recall that for
v ∈ H1(Ω, R2) and τ ∈ H(div, Ω, S),

(2.4)

∫
R

(div τ)v dx = −
∫

R

τ : ε(v) dx +

∫
∂R

τn · v ds.

Since for τ ∈ ΣR, div τ ∈ VR, using (2.4) for v ∈ VR, we get div τ = 0, i.e., τ ∈ M1(R).
Finally, using the last set of degrees of freedom, we get τ = 0. �

We now describe the finite elements on the triangulation Th. We denote by Vh the space
of vector fields which belong to VR for each R ∈ Th and Σh the space of matrix fields which
belong piecewise to ΣR, are continuous at mesh vertices, and have normal components which
are continuous across mesh edges.

It remains to define the interpolation operator described at the beginning of this section
and to verify the properties (2.1) and (2.2). Because of vertex degrees of freedom, the
canonical interpolation operator for Σh is not bounded on H1(Ω, S), so as in the triangular
case,2 we consider a family of bounded linear operators Ex

h : H1(Ω, S) → S for each vertex x
of the triangulation, and define the interpolation operator Πh : H1(Ω, S) → Σh by

Πhτ(x) = Ex
hτ for all vertices x,(2.5) ∫

e

(τ − Πhτ)n · n v ds = 0 for all edges e and all v ∈ P1(e),(2.6) ∫
e

(τ − Πhτ)n · t v ds = 0 for all edges e and all v ∈ P2(e),(2.7) ∫
R

(τ − Πhτ) : φ dx = 0 for all rectangles R and φ ∈ ε(VR),(2.8) ∫
R

(τ − Πhτ) : φ dx = 0 for all rectangles R and φ ∈ M1(R).(2.9)
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For τ ∈ H1(Ω, S), R ∈ Th and v ∈ VR, we have∫
R

(div Πhτ − div τ) · v dx = −
∫

R

(Πhτ − τ) : ε(v) dx +

∫
∂R

(Πhτ − τ)n · v ds.

The first term on the right vanishes because of (2.8). On the other hand, for v ∈ VR, v ·t ∈ P2

and v · n ∈ P1 and so the second term also vanishes by (2.6) and (2.7). We conclude that
the commutativity condition (2.1) holds. (Note that the proof of (2.1) depended only on
the properties (2.6)–(2.8). We need to verify the boundedness condition (2.2). For this, let

R̂ = [0, 1] × [0, 1] be the reference rectangle and let F : R̂ → R be an affine mapping onto
R, F (x̂) = Bx̂ + b, with b = (b1, b2) and

B =

(
h1 0
0 h2

)
.

Although B is symmetric we will write BT so as not to disguise the analogy to more general
situations. Given a matrix field τ̂ : R̂ → S, define τ : R → S by the matrix Piola transform

τ(x) = Bτ̂(x̂)BT .

We first define an interpolation operator Π0
h which is local with respect to the triangulation

so that its norm can be estimated by scaling arguments. We let Π0
R̂

: H1(R̂, S) → ΣR̂ by

Π0
R̂
τ̂(x̂) = 0 for all vertices x̂ of R̂∫

ê

(τ̂ − Π0
R̂
τ̂)n · n v ds = 0 for all edges ê of R̂ and all v ∈ P1(ê)∫

ê

(τ̂ − Π0
R̂
τ̂)n · t v ds = 0 for all edges ê of R̂ and all v ∈ P2(ê)∫

R̂

(τ̂ − Π0
R̂
τ̂) : φ dx = 0 for all φ ∈ ε

(
P2,1

P1,2

)
∫

R̂

(τ̂ − Π0
R̂
τ̂) : φ dx = 0 for all φ ∈ M1(R̂).

In view of Lemma 2.2, Π0
R̂

is well defined and is easily seen to be bounded. Next define

Π0
R : H1(R, S) → ΣR by

Π0
Rτ(x) = BΠ0

R̂
τ̂(x̂)BT ,

for each rectangle R of Th and define Π0
h : H1(Ω, S) → Σh by

(Π0
hτ)|R = Π0

Rτ.

Note that Π0
h is bounded on H1(Ω, S). At the end of this section, we will verify the com-

mutativity property (2.1) with Πh replaced by Π0
h. Moreover a standard scaling argument

gives

(2.10) ‖Π0
hτ‖0 ≤ c(‖τ‖0 + h‖τ‖1)

where c does not depend on h.
Next, let Rh be a Clement interpolation operator,3,4 which maps L2(Ω, R) into

{ θh ∈ C0(Ω̄) | θh|R ∈ P1,1,∀R ∈ Th }
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and denote as well by Rh the corresponding operator which maps L2(Ω, S) into the subspace
of Σh of continuous matrix fields whose components are piecewise in P1,1. We have

(2.11) ‖Rhτ − τ‖j ≤ chm−j‖τ‖m, 0 ≤ j ≤ 1, j ≤ m ≤ 2,

with c independent of h. We define our interpolation operator Πh by

(2.12) Πh = Π0
h(I −Rh) + Rh.

Then using (2.10) and (2.11), we obtain

(2.13) ‖Π0
h(I −Rh)τ‖0 ≤ c(‖(I −Rh)τ‖0 + h‖(I −Rh)τ‖1) ≤ chm‖τ‖m,

for 1 ≤ m ≤ 2. It follows that

‖Πhτ‖0 ≤ ‖Π0
h(I −Rh)τ‖0 + ‖Rhτ‖0 ≤ c‖τ‖1,

i.e., (2.2) holds. Finally, we check the commutativity property (2.1). We have

div Πh = div Π0
h(I −Rh)τ + div Rh

= div Π0
h + div Rh − div Π0

hRh

= Ph div +(I − Ph) div Rh

= Ph div,

where we have used the commutativity property for Π0
h (which we are about to prove) and

Rhτ ∈ Σh.
It remains to establish the commutativity property of Π0

h. For this it is sufficient to verify

(2.6)–(2.8) with Πh replaced by Π0
h. Notice that for an edge ê of R̂, and the corresponding

edge e of R, nê is equal to ne. Similarly, t̂ = t. Also BT ne = ‖BT ne‖nê as Bt̂ ⊥ ne. Let
v ∈ P1(e) and let v̂(x̂) = v(x), so v̂ ∈ P1(ê). Since, |ê| = 1, we have∫

e

Π0
Rτ(x)ne · nev(x) ds = |e|

∫
ê

BΠ0
R̂
τ̂(x̂)BT nê · nêv̂(x̂) dŝ,

= |e|B
∫

ê

Π0
R̂
τ̂(x̂)BT nê · nêv̂(x̂) dŝ

= |e|‖BT ne‖B
∫

ê

Π0
R̂
τ̂(x̂)nê · nêv̂(x̂) dŝ

= |e|‖BT ne‖B
∫

ê

τ̂(x̂)nê · nêv̂(x̂) dŝ

= |e|
∫

ê

Bτ̂(x̂)BT nê · nêv̂(x̂) dŝ

=

∫
e

τ(x)ne · nev(x) ds,

verifying (2.6). Similarly, for v ∈ P2(e),∫
e

Π0
Rτ(x)ne · tev(x) ds =

∫
e

τ(x)ne · tev(x) ds,
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verifying (2.7). To verify (2.8), we infer from (2.6) and (2.7) that

(2.14)

∫
∂R

Π0
Rτ(x)n · v(x) ds =

∫
∂R

τ(x)n · v(x) ds

for all v ∈ P2,1 × P1,2. Next notice that since Π0
R̂

satisfies (2.6)–(2.8), we have for v̂ ∈
P2,1 × P1,2,

(2.15)

∫
R̂

div τ̂ v̂(x̂) dx̂ = −
∫

R̂

τ̂ : ε(v̂) dx̂ +

∫
∂R̂

τ̂ n̂ · v̂ dŝ

= −
∫

R̂

Π0
R̂
τ̂ : ε(v̂) dx̂ +

∫
∂R̂

Π0
R̂
τ̂ n̂ · v̂ dŝ

=

∫
R̂

div Π0
R̂
τ̂ v̂(x̂) dx̂.

Next, a direct computation shows that for τ(x) = Bτ̂(x̂)BT ,

div τ = B div τ̂ .

We therefore have

(2.16)

∫
R

(div τ − div Π0
hτ) · v dx = (det B)B

∫
R̂

div(τ̂ − Π0
R̂
τ̂) · v̂ dx̂

= (det B)

∫
R̂

div(τ̂ − Π0
R̂
τ̂) · (BT v̂) dx̂ = 0,

where we have noted that BT v̂ ∈ P2,1 × P1,2 and applied (2.15) at the last step. Now, for
v ∈ P2,1 × P1,2,∫

R

Π0
hτ(x) : ε(v)(x) dx = −

∫
R

div Π0
hτ(x) · v(x) dx +

∫
∂R

Π0
hτ(x)n · v(x) ds

= −
∫

R

div Π0
hτ(x) · v(x) dx +

∫
∂R

τ(x)n · v(x) ds,

=

∫
R

τ(x) : ε(v(x)) dx +

∫
R

div τ(x) · v(x) dx−
∫

R

div Π0
hτ(x) · v(x) dx

=

∫
R

τ(x) : ε(v)(x) dx,

where we have used (2.14) in the second step and (2.16) in the last. This completes the
proof.

3. Discrete Version of the Elasticity Sequence

The element described in this paper was discovered by looking for a discrete version of
(1.1). The starting point is the construction of an H2 element which we now describe first
on a single rectangle.

We take QR = P5,5(R) with the following 36 degrees of freedom

(i) derivatives up to order 2 at each vertex (6× 4 = 24 degrees of freedom)
(ii) moments of degree 0 and 1 of ∂q/∂n on each edge (2× 4 = 8 degrees of freedom)
(iii)

∫
R

J(q) : φ dx for all φ ∈ M1 (4 degrees of freedom)
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We next show that we have described a unisolvent set of degrees of freedom. For this
we assume that all degrees of freedom of QR vanish. On each edge, q is a polynomial of
degree 5 with triple roots at each vertex. Therefore q ≡ 0 on each edge and we can write
q = q̄L1L2L3L4, with q̄ ∈ P3,3. We have

∂q

∂n1

|e1 = q̄
∂L1

∂n1

L2L3L4

so that q1 := ∂q/∂n1 ∈ P5(e1) on the edge e1; (this can also be seen easily on the reference
rectangle). Clearly, q1 and ∂q1/∂s are zero at the vertices of e1, so using the second set of
degrees of freedom

0 =

∫
e1

q1
∂4q1

∂s4
= −

∫
e1

∂q1

∂s

∂3q1

∂s3
=

∫
e1

∂2q1

∂s2

∂2q1

∂s2
.

We conclude that ∂2q1/∂s2 = 0 on e1, so that q1 = 0 on e1 and therefore q̄ = 0 on e1. Since a
similar argument show that q̄ vanishes on each edge, we have q = q̃b2

R with q̃ ∈ P1,1. Taking
φ = J(b2

Rq̃) in the last set of degrees of freedom, we get q = 0, since the kernel of J is P1(R).
The finite element Qh ⊂ H2(Ω) is assembled the usual way and we define an interpolation

operator Ih : C∞(Ω) → Qh by requiring at each vertex x

Ihq(x) = q(x),(3.1)

(∇Ihq)(x) = (∇q)(x),(3.2)

(JIhq)(x) = Ex
h(Jq)(x),(3.3)

and ∫
e

∂Ihq

∂n
(s)f ds =

∫
e

∂q

∂n
(s)f ds for all edges and all f ∈ P1(e)(3.4) ∫

R

J(Ihq) : φ dx =

∫
R

J(q) : φ dx for all φ ∈ M1(3.5)

We can now describe our discrete version of the elasticity differential complex:

0 −→ P1(Ω)
⊂−→ C∞(Ω)

J−→ C∞(Ω, S)
div−−→ C∞(Ω, RN) −→ 0yid

yIh

yπh

yPh

0 −→ P1(Ω)
⊂−→ Qh

J−→ Σh
div−−→ Vh −→ 0

We only need to check the commutativity property ΠhJq = JIhq , i.e. Πhτ = σ with
τ = J(q) and σ = JIhq.

We have by definition of Ih, (JIhq)(x) = (Ex
hJq)(x). Recall that for τ = Jq, ∂2q/∂s2 =

τn · n and ∂2q/(∂s∂n) = τn · t. Now, for v ∈ P1(e), using (3.1) and (3.2) after a double
integration by parts ∫

e

(
JIhq − Jq

)
n · n v ds =

∫
e

∂2(Ihq − q)

∂s2
v ds = 0.

By (3.2) and (3.4), we also have for v ∈ P2(e)∫
e

(
JIhq − Jq

)
n · t v ds =

∫
e

∂2(Ihq − q)

∂s∂n
v ds = −

∫
e

∂(Ihq − q)

∂n

∂v

∂s
ds = 0.
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Next, for φ = ε(v) ∈ ε(VR), using (2.4)∫
R

(
JIhq − Jq

)
: φ =

∫
∂R

(
JIhq − Jq

)
n · v ds

= 0

by the above identities since for v ∈ VR, v · t ∈ P2(e) and v · n ∈ P1(e) for each edge e.
Finally, for φ ∈ M1(R), ∫

R

(
JIhq − Jq

)
: φ = 0

by (3.5).

4. Error Analysis

Since our pair of elements is stable, we have from the theory of mixed methods the following
quasioptimal estimate

‖σ − σh‖H(div) + ‖u− uh‖L2 ≤ c inf
τ∈Σh,v∈Vh

(‖σ − τ‖H(div) + ‖u− v‖L2).

This gives an O(h2) error estimate for smooth solutions. It can be refined in various ways.
For the interpolation operator Πh, c.f. (2.12), we have

I − Πh = (I −Rh)− Π0
h(I −Rh),

so using (2.11) and (2.13), we get

‖Πhτ − τ‖0 ≤ chm‖τ‖m, 1 ≤ m ≤ 2.

We also recall that the projection operator Ph satisfies the error estimate

‖Phv − v‖0 ≤ chm‖v‖m, 0 ≤ m ≤ 2,

since VR contains the vector fields with components in P1,1. We then have the following
result, whose proof is similar to the one in Arnold–Winther.2

Theorem 4.1. Let (σ, u) denote the unique critical point of the Hellinger-Reissner functional
over H(div, Ω, S)×L2(Ω, R2) and let (σh, uh) be the unique critical point over Σh×Vh. Then

‖σ − σh‖0 ≤ chm‖σ‖m, 1 ≤ m ≤ 2,

‖ div σ − div σh‖0 ≤ chm‖ div σ‖m, 0 ≤ m ≤ 2,

‖u− uh‖0 ≤ chm‖u‖m+1, 1 ≤ m ≤ 2.

5. Higher Order Elements

In this section we describe a family of stable element pairs, one for each degree k ≥ 1. The
case k = 1 is the one treated above. We first describe the elements on a single rectangle:

VR =

(
Pk+1,k

Pk,k+1

)
, ΣR =

{
τ ∈

(
Pk+4,k+2 Pk+3,k+3

Pk+3,k+3 Pk+2,k+4

)
S
| div τ ∈ VR

}
.
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We have dim VR = 2(k + 1)(k + 2) and the degrees of freedom are given by the values of
each component at (k + 1)(k + 2) interior nodes of R.

dim ΣR ≥ dk := 2 dimPk+4,k+2 + dimPk+3,k+3 − 2(dimPk+3,k+2 − dimPk+1,k)

= 2(k + 3)(k + 5) + (k + 4)2 − 2[(k + 3)(k + 4)− (k + 1)(k + 2)]

= 3k2 + 16k + 26.

As in the lowest order case, let us define

Mk(R) :=

{
τ ∈

(
Pk+4,k+2 Pk+3,k+3

Pk+3,k+3 Pk+2,k+4

)
S
| div τ = 0, τn = 0 on ∂R

}
.

Similar arguments to Lemma 2.1 show that for τ in Mk(R), τ = J(b2
Rq) for some q ∈ Pk,k

with bR = L1L2L3L4, hence dim Mk(R) = (k + 1)2. Next, the dimension of ε(VR) is
2(k + 1)(k + 2)− 3 = 2k2 + 6k + 1 and ε(VR) is orthogonal to Mk(R) by (2.4). We conclude
that the dimension of

Nk(R) = ε(VR) + Mk(R)

is 3k2+8k+2. Notice also that for τ ∈
(
Pk+4,k+2 Pk+3,k+3

Pk+3,k+3 Pk+2,k+4

)
S
, τn·n ∈ Pk+2 and τn·t ∈ Pk+3.

We can now give the degrees of freedom of ΣR:

(i) the values of each component of τ at each vertex of R, (3×4 = 12 degrees of freedom)
(ii) the moments of degree at most k of τn ·n on each edge (4(k +1) degrees of freedom)
(iii) the moments of degree at most k + 1 of τn · t on each edge (4(k + 2) degrees of

freedom)
(iv) the values of

∫
R

τ : φ for all φ ∈ Nk(R).

The proof of unisolvency is identical to the lowest order case. The corresponding error
estimates are similar to those in the triangular case.2 We recall that the Clement interpolant
which takes values into the space of continuous matrix fields with components in Pk,k satisfies
the error estimate

‖Rhv − v‖j ≤ chm−j‖v‖m, 0 ≤ j ≤ 1, j ≤ m ≤ k + 1,

and the projection operator into VR satisfies

‖P k
h v − v‖0 ≤ chm‖v‖m, 0 ≤ m ≤ k + 1.

We have

Theorem 5.1. Let (σ, u) denote the unique critical point of the Hellinger-Reissner funtional
over H(div, Ω, S)×L2(Ω, R2) and let (σh, uh) be the unique critical point over Σh×Vh. Then

‖σ − σh‖0 ≤ chm‖σ‖m, 1 ≤ m ≤ k + 1,

‖ div σ − div σh‖0 ≤ chm‖ div σ‖m, 0 ≤ m ≤ k + 1,

‖u− uh‖0 ≤ chm‖u‖m+1, 1 ≤ m ≤ k + 1.
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6. A Simplified Element of Low Order

Let RM(R) be the space of infinitesimal rigid motions on R, i.e., vector fields of the form
(a− cx2, b− cx1). We take VR = RM(R) and

ΣR =

{
τ ∈

(
P5,3 P4,4

P4,4 P3,5

)
S

and div τ ∈ RM(R)

}
.

Then, dim ΣR = 36 since the condition div τ ∈ RM(R) imposes 40− 3 = 37 conditions on
τ . We take as degrees of freedom

(i) the values of each component of τ(x) at the vertices of R (12 degrees of freedom)
(ii) the first two moments of (τn) · n on each edge (8 degrees of freedom)
(iii) the first three moments of (τn) · t on each edge (12 degrees of freedom)
(iv) the values of

∫
R

τ : φ for all φ in

M1(R) :=

{
τ ∈

(
P5,3 P4,4

P4,4 P3,5

)
S
| div τ = 0, τn = 0 on ∂R

}
(4 degrees of freedom)

The proof of unisolvency is as in the lowest order case, since for v ∈ RM(R), ε(v) = 0 and
again the error estimates are similar to those of the triangular case since ΣR contains the
matrix fields with components in P0,0 and VR contains the vector fields with components in
P0,0.

‖σ − σh‖0 ≤ ch‖σ‖1,

‖ div σ − div σh‖0 ≤ chm‖ div σ‖m, 0 ≤ m ≤ 1,

‖u− uh‖0 ≤ ch‖u‖2.
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