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Abstract Given an orthogonal lattice with mesh length h on a bounded two-
dimensional convex domain Ω, we propose to approximate the Aleksandrov
solution of the Monge-Ampère equation by regularizing the data and discreti-
zing the equation in a subdomain using the standard finite difference method.
The Dirichlet data is used to approximate the solution in the remaining part
of the domain. We prove the uniform convergence on compact subsets of the
solution of the discrete problems to an approximate problem on the subdo-
main. The result explains the behavior of methods based on the standard
finite difference method and designed to numerically converge to non-smooth
solutions.
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1 Introduction

Let Ω be a bounded convex domain of R2 and let g ∈ C(∂Ω), f ∈ C(Ω) with
0 < c0 ≤ f ≤ c1 for constants c0, c1 ∈ R. We assume that g ∈ C(∂Ω) can be
extended to a function g̃ ∈ C(Ω) which is convex in Ω. We are interested in
the finite difference approximation of the Aleksandrov solution of the Monge-
Ampère equation

detD2u = f inΩ, u = g on ∂Ω. (1)
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To a convex function u, one associates a measure M [u] and (1) is said to have
an Aleksandrov solution if the density of M [u] with respect to the Lebesgue
measure is f . If u ∈ C2(Ω), M [u] is a measure with density detD2u, where

D2u =

(
(∂2u)/(∂xi∂xj)

)
i,j=1,2

is the Hessian of u. There are several equi-

valent definitions of the Monge-Ampère measure in the general case and the
simplest approach is to use an analytic definition based on approximation by
smooth functions. See section 3.1 and [32] for the equivalent definitions.

We propose to approximate the Aleksandrov solution of (1) by regularizing
the data and discretizing the equation in a subdomain. We use a standard finite
difference method in the sense that the scheme may not satisfy a discrete
maximum principle. The Dirichlet data is used to approximate the solution
in the remaining part of the domain. We prove the uniform convergence on
compact subsets of the solution of the discrete problems to an approximate
problem on the subdomain.

We introduce a compatible discretization in the sense that the divergence of
the transpose of the cofactor matrix of the discrete Hessian vanishes, a feature
of the continuous problem. Existence, convergence rate and local uniqueness
of a solution can be proven using Schauder estimates as for the central fi-
nite difference discretization [2]. Existence of a solution can be combined with
the strict contraction approach in [4] to give a convergence result for a time
marching method but in a ball of size O(h3) in a H1 like norm. However
the compatible discretization is only first order accurate and thus we do not
give details about that approach in this paper. The time marching method ap-
pears faster than Newton’s method for smooth solutions and on fine meshes. In
some cases 3 times faster. It is shown to be numerically robust for non smooth
solutions of the Monge-Ampère equation with right hand side absolutely con-
tinuous with respect to the Lebesgue measure. The compatible discretization
could be more efficient than the central finite difference discretization, c.f.
Table 2.

1.1 Methodology for non smooth solutions

In [5], in an effort to get insight into why standard finite elements exhibit
numerical convergence to viscosity solutions, we regularized the exact solution
and study the behaviour of the approximation of the resulting problem as the
mesh size tends to 0. The approach does not give any insight for the finite
difference method. Here we use a different approach, also used in [3], which
gives better results.

We regularize the data by considering functions fm, gm ∈ C∞(Ω) such
that 0 < c2 ≤ fm ≤ c3, fm converges uniformly to f on Ω and gm converges
uniformly to g̃ on Ω. See [5] for an example. The second key idea of this paper
is to consider a sequence of smooth uniformly convex subdomains Ωs which
converges to Ω [8].
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We consider in this paper ”interior” discretizations. By this, we mean that
we prove convergence of the discretization in an interior domain. Values at
mesh points closest to the boundary are approximated using the boundary
values. Let δ > 0 be a small parameter. We will need a theoretical computa-
tional domain Ω̃ chosen as a subdomain of Ω. We require that

Ω̃ ⊂ Ωs, for all s.

It is known, c.f. [3] or [34, Proposition 2.4 ], that the Aleksandrov solution
of

detD2um = fm inΩ, um = gm on ∂Ω, (2)

converges uniformly on compact subsets of Ω to the Aleksandrov solution u
of (1).

We choose m̃ such that |f(x)− fm̃(x)| < δ, |g(x)− gm̃(x)| < δ and |u(x)−
um̃(x)| < δ for all x ∈ Ω.

We show in this paper that given a mesh on Ω, an ”interior” discretization
(c.f. (9) below) of the problem

detD2um̃s = fm̃ in Ω̃, um̃s = um̃ on ∂Ω̃, (3)

has a unique local solution um̃s,h which is a discrete convex function, c.f.
Definition 2. We discretize each component of the Hessian using a scheme
which is at least first order accurate. We show that the solution uh of the
resulting discrete problem, is the limit of a subsequence in s of um̃s,h where
um̃s,h is the finite difference approximation of the solution um̃s of (3). We

prove that uh converges uniformly on compact subsets of Ω̃ to the solution ũ
of

detD2ũ = fm̃ in Ω̃, ũ = um̃ on ∂Ω̃. (4)

The solution u of (1) can then be approximated within a prescribed accuracy
by first choosing m̃ and then h sufficiently small. We emphasize that the
solution ũ of (4) is not necessarily smooth.

A technical aspect of the proof is that we use interior second order deriva-
tive estimates of the solution ums as the latter may blow up on the boundary
∂Ω if the domain is not strictly convex. As a consequence of the interior
Schauder estimates, we obtain stability on compact subsets of Ω̃ of the dis-
cretization. This is one of the main contributions of the paper and is treated
in section 3.2.

The lack of a maximum principle for the discretizations analyzed in this
paper is related to the difficulty of proving stability of the discretization for
smooth solutions without assuming a bound on a high order norm of the
solution. It is for that reason that we introduced the theoretical computational
domain Ω̃ and fix the parameter m̃ in the regularization of the data.

For simplicity, the dependence of ũ on m̃ is not indicated. By unicity of the
Aleksandrov solution um of (2), we have ũ = um̃ in Ω̃ and hence as Ω̃ → Ω,
um̃|∂Ω̃ → g|∂Ω . Thus, from a practical point of view, for the implementation,

we see that one can take Ω̃ = Ω, fm = f with uh = g on ∂Ω. It is in that
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sense that the results of this paper explains the behavior of methods based on
the standard finite difference method and designed to numerically converge to
non-smooth solutions.

1.2 Significance of the results in relation with other work

A proven convergence proof for Aleksandrov solutions was given for the two
dimensional problem for the discretization proposed in [31]. The approach
through the so-called viscosity solutions was considered in [21] in the context
of monotone finite difference schemes. Existence of a solution to the discrete
problem for the monotone schemes is still an open problem. We refer to [6]
where the Lipschitz continuity of the scheme is reduced to the Lipschitz con-
tinuity of a multilinear map. But the latter is only Lipschitz continuous on a
bounded set. And it is not clear how to prove that a fixed point mapping maps
the bounded set into itself when the solution of (1) is not smooth. Thus the
usual argument of existence of a solution to degenerate elliptic schemes based
on [30, Theorem 7] does not apply to the Monge-Ampère equation. It follows
from the general approach taken in this paper that the monotone schemes
introduced in [21,22], and with convergence rate for smooth solutions given in
[6], are solvable in an interior domain, and converge to both viscosity solutions
and Aleksandrov solutions in the sense described above. For right hand sides
which approximate a combination of Dirac masses, a very good initial guess
is necessary for these methods.

The distinguished feature of the methods discussed in this paper, like the
ones discussed in [7], is to preserve weakly convexity in the iterations, c.f. Re-
mark 1. In the iterations, the positivity of the discrete Laplacian is preserved.
This feature allows the processes to avoid spurious solutions. Thus the results
of this paper do not contradict the observations made in [19, Section 1].

Our result is important for optimal transportation problems where one has
to extend the data, resulting in a discontinuous right hand side f . In that case
the continuous viscosity solution approach is no longer valid.

This paper provides a blueprint which can be used to analyze the discretiza-
tions proposed in [16,29]. The main task is to understand how these schemes
perform for smooth solutions. The convergence of the discretization for non
smooth solutions then follows from the general approach taken in this paper.
We note that the results of this paper extend immediately to the central finite
difference discretization [7,2].

A standard finite difference discretization of the Dirichlet problem for the
Monge-Ampère equation was introduced in [17]. Finite element discretizations
have also been proposed, e.g. [23,9,20,10,28,15,11].

1.3 Organization of the paper

We organize the paper as follows. In the next section we introduce our com-
patible discretization of the Monge-Ampère equation. In section 3 we recall
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key results on the Aleksandrov theory of the Monge-Ampère equation and
give a general framework of convergence of standard discretizations to the
Aleksandrov solution. The last section is devoted to a discussion of numerical
results.

2 Standard finite difference discretizations of the Monge-Ampère
equation

We recall that Ω is a bounded convex domain of R2. For 0 < h < 1, we define

Zh = {x = (x1, x2)T ∈ R2 : xi/h ∈ Z}, Ωh = Ω ∩ Zh.

Let M(Ωh) denote the space of grid functions, i.e. mappings from Ωh to R.
We denote by ei, i = 1, 2 the i-th unit vector of R2 and consider first order
difference operators defined on Zh by

∂i+vh(x) :=
vh(x+ hei)− vh(x)

h
, ∂i−vh(x) :=

vh(x)− vh(x− hei)
h

.

We have for x ∈ Zh

∂j−∂
i
+vh(x) =

vh(x+ hei)− vh(x)− vh(x+ hei − hej) + vh(x− hej)
h2

. (5)

We will also need the central second order accurate first order operator defined
for i = 1, 2 by

∂ihvh(x) :=
vh(x+ hei)− vh(x− hei)

2h
.

We use the notation A = (aij)i,j=1,2 to denote the matrix A with entries
aij . Several discrete analogues of the Hessian D2v of a C2 function v can be
defined for x ∈ Zh and a grid function vh. One possibility is to define the
discrete Hessian as the non symmetric matrix field Hd(vh) with components

(Hd(vh)(x))ij = ∂j−∂
i
+vh(x), i, j = 1, 2.

Definition 1 A 2 × 2 matrix A is said to be positive definite if and only if
zTAz > 0 for z ∈ R2, z 6= 0. The matrix A is said to be positive if and only if
zTAz ≥ 0 for z ∈ R2.

Decomposing a matrix A into its symmetric and skew symmetric part, i.e.
A = (A + AT )/2 + (A − AT )/2, one concludes that A is (positive) definite if
and only if its symmetric part is (positive) definite. We will use the notation
symA to denote the symmetric part of A.

Another discretization of the Hessian matrix which has been used in pre-
vious work [7,27,14,13] is to consider for a grid function vh, the matrix field
Hd(vh) with components

(Hd(vh)(x))ii = ∂i+∂
i
−vh(x), i, j = 1, 2

(Hd(vh)(x))ij = ∂ih∂
j
hvh(x), i, j = 1, 2, i 6= j.



6 Gerard Awanou

We denote by Ω0
h the subset of Ωh consisting of grid points x for which x ±

hei ± hej ∈ Ω for i, j = 1, 2 and put ∂Ωh = Ωh \Ω0
h.

For the study of the convergence of numerical methods for non smooth
solutions, we will consider the set of interior mesh points

Ω00
h = {x ∈ Ω̃ ∩ Zh, x± 2hei ± 2hej ∈ Ω, for i, j = 1, 2 },

and define ∂Ω0
h = (Ω̃ ∩ Zh) \Ω00

h .

The restriction map is defined as a mapping

rh : C(Ω)→M(Ωh), rh(v)(x) = v(x), x ∈ Ωh,

and is extended canonically to vector fields and matrix fields. The restriction
to a subset of Ω is defined analogously.

For a vector valued grid function vh with components vh,i, i = 1, 2, the

divergence of vh is defined as the grid function divh vh =
∑2
i=1 ∂

i
−vh,i. The

operator divh is extended to matrix fields by taking the divergence of each
row. We define two discrete versions of the gradient: Dhvh and Dhvh as:

Dhvh := (∂i+vh)i=1,2, Dhvh := (∂i−vh)i=1,2.

If vh = (vh,i)i=1,2 is a vector field, we define Dhvh as the matrix field

obtained by applying Dh to each row, i.e. Dhvh = (∂j−vh,i)i,j=1,2. Thus for

a scalar field vh DhDhvh = Hd(vh). The discrete Laplacian ∆h is defined

as ∆hvh :=
∑2
i=1 ∂

i
+∂

i
−vh. With the above definitions, we have divhDhvh =

∆hvh.

Definition 2 A mesh function vh is said to be discrete convex if Hd(vh)(x) is
a positive matrix for all x ∈ Ω0

h. The function vh is said to be discrete strictly
convex if Hd(vh)(x) is a positive definite matrix for all x ∈ Ω0

h.

We recall that the cofactor matrix cof A of the matrixA is defined by (cof A)ij =

(−1)i+j det(A)ji where det(A)ji is the determinant of the matrix obtained from
A by deleting the ith row and the jth column.

We are interested in the following discretization of (1) which is a standard
compatible discretization in the sense that the divergence of the transpose of
the cofactor matrix of the discrete Hessian vanishes

1

2
divh[(cofHduh)Dhuh] = rh(f) inΩ0

h, uh = rh(g) on ∂Ωh. (6)

The discrete analogue of the maximum norm is given by

|vh|0,∞,h = max{ |vh(x)|, x ∈ Ω0
h }. (7)

We have under smoothness assumptions of the solution u of (1)
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Proposition 1 Problem (6) has a unique local solution uh with λ1(Hd(uh)) ≥
c > 0 for a constant c independent of h and

|uh − rhu|0,∞,h ≤ Ch,

with a constant C which can be taken as a multiple of ||u||C4(Ω). Thus uh
converges uniformly on Ω to the unique smooth convex solution of (1).

The above result can be proven using the continuity of the eigenvalues of the
Hessian as a function of its entries and Schauder estimates as for the central
finite difference discretization [2]. That can then be combined with the strict
contraction approach in [4] to give a convergence result for the time marching
method

−ν∆hu
k+1
h = −ν∆hu

k
h +

1

2
divh[(cofHdukh)Dhu

k
h]− rh(f) inΩ0

h

uk+1
h = rh(g) on ∂Ωh,

(8)

for ν > 0 sufficiently large and an initial guess u0h in a ball of size O(h3) in a
H1 like norm.

Remark 1 If one takes ν large in (8), one gets that the left hand side is negative,
i.e. discrete subharmonicity is preserved in the iterations.

For the situation where (1) does not have a smooth solution, we consider
the related problem

1

2
divh[(cofHduh)Dhuh] = rh(fm̃) inΩ00

h , uh = rh(um̃) on ∂Ω0
h, (9)

with corresponding time marching method

−ν∆hu
k+1
h = −ν∆hu

k
h +

1

2
divh[(cofHdukh)Dhu

k
h]− rh(fm̃) inΩ00

h

uk+1
h = rh(um̃) on ∂Ω0

h.

We recall that the parameter m̃ was defined in section 1.1. Intuitively Prob-
lem (9) discretizes the Monge-Ampère equation in the interior of the domain
where the non smooth solution can be approximated by smooth functions
which solve related Monge-Ampère equations. It is clear that since (9) is very
close to (6), and with the choice of the small parameter δ introduced in section
1.1, numerical experiments with the latter would indicate convergence for non
smooth solutions.

The following lemma is essential to our methodology

Lemma 1 A sequence of (discrete) convex functions which is locally uniformly
bounded has a subsequence which converges uniformly on compact subsets to a
(discrete) convex function.
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Proof We consider separately the cases of a sequence um of convex functions,
a sequence (umh)m of discrete convex functions and a sequence uhl

of discrete
convex functions.

A sequence um of convex functions is locally equicontinuous by [24, Lemma
3.2.1], c.f. [3] for details. If the sequence is also locally uniformly bounded, the
result follows from the Arzela-Ascoli theorem [33, p. 179].

If we consider a sequence (umh)m of discrete convex functions, for fixed h
the number of grid points is finite and the result follows from the Bolzano-
Weierstrass theorem.

If the sequence uhl
is a sequence of discrete convex mesh functions in

the sense that Hd(uhl
)(x) is a positive matrix for all x ∈ Ω0

h, the result is
given by [1, Corollary 4.8] and the Arzela-Ascoli theorem (which requires only
local uniform boundedness). Since Hd(uhl

)(x) and Hd(uhl
)(x) have the same

diagonal elements, the discrete analogue of local equicontinuity [1, (2.2) and
p. 22] also holds when one requires that Hd(uhl

)(x) is a positive matrix for all
x ∈ Ω0

h, that is the result also holds in that case.

We make the usual abuse of notation of denoting by C a generic constant
which does not depend on h.

3 General framework for convergence of standard discretizations to
the Aleksandrov solution

3.1 The Aleksandrov solution

Let K(Ω) denote the cone of convex functions on Ω and let us denote by B(Ω)
the space of Borel measures on Ω. We define the mapping

M : C2(Ω) ∩K(Ω)→ B(Ω),M [v](B) =

∫
B

detD2v(x) dx,

where B is a Borel set.
The topology on K(Ω) is the topology of compact convergence, i.e. for

vm, v ∈ K(Ω), vm converges to v if and only if vm converges to v uniformly
on compact subsets of Ω. The topology on B(Ω) is induced by the weak
convergence of measures.

Definition 3 A sequence µm of Borel measures converges weakly to a Borel
measure µ if and only if ∫

Ω

p(x) dµm →
∫
Ω

p(x) dµ,

for every continuous function p with compact support in Ω.

If the measures µm have density am, and µ has density a, we have
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Definition 4 Let am, a ≥ 0. The sequence am converges weakly to a as mea-
sures if and only if ∫

Ω

amp dx→
∫
Ω

ap dx,

for all continuous functions p with compact support in Ω.

The mapping M extends uniquely to a continuous operator on K(Ω), [32,
Proposition 3.1]. This notion of Monge-Ampère measure can be shown to be
equivalent to the one used in [24,26]. The proof is given by [32, Proposition
3.4]. We have

Lemma 2 (Lemma 1.2.3 [24]) Let vm be a sequence of convex functions in
Ω such that vm → v uniformly on compact subsets of Ω. Then the associated
Monge-Ampère measures M [vm] tend to M [v] weakly.

Definition 5 A convex function u ∈ C(Ω) is said to be an Aleksandrov solu-
tion of (1) if u = g on ∂Ω and M [u] has density f .

We have

Theorem 1 (Theorem 1.1 [26] ) Let Ω be a bounded convex domain of R2

and assume that g can be extended to a function g̃ ∈ C(Ω) which is convex in
Ω. Then if f ∈ L1(Ω), (1) has a unique convex Aleksandrov solution in C(Ω)
which assumes the boundary condition in the classical sense.

3.2 Convergence of the discretization

Let Ωs denote a sequence of smooth uniformly convex domains increasing to
Ω, i.e. Ωs ⊂ Ωs+1 ⊂ Ω and d(∂Ωs, ∂Ω) → 0 as s → ∞. Here d(∂Ωs, ∂Ω)
denotes the distance between ∂Ωs and ∂Ω. For the special case Ω = (0, 1)2, a
construction was done in [35]. A general construction follows from the approach
in [8].

We recall that fm and gm are C∞(Ω) functions such that 0 < c2 ≤ fm ≤
c3, fm → f and gm → g̃ uniformly on Ω. The sequences fm and gm can be
constructed by a standard mollification.

Recall from section 1.1 that we choose m̃ such that |u(x)− um̃(x)| < δ for
all x ∈ Ω, where δ is a small parameter. And we are interested in convergence
of the discretization to the solution um̃ of (4).

By [12], the problem (3) has a unique convex solution um̃s ∈ C∞(Ωs). As

s→∞, the sequence um̃s converges uniformly on compact subsets of Ω̃ to the

unique convex solution um̃ ∈ C(Ω̃) of the problem (4) [3].

We have by the interior Schauder estimates, [18, Theorem 4] and [3] for
details,

||um̃s||C2(K) ≤ Cm̃, (10)
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where the constant Cm̃ depends on m̃, c2, Ω̃, d(K, ∂Ω), fm̃ and maxx∈Ω |um̃s(x)|.
Moreover, by a bootstrapping argument we have

||um̃s||C4(K) ≤ Cm̃, (11)

as well. Let us use the notationMh[vh] for the discrete Monge-Ampère operator
applied to the grid function vh, i.e.

Mh[vh] =
1

2
divh[(cofHdvh)Dhvh]. (12)

We can now prove the main result of this paper

Theorem 2 The problem (9) has a unique local discrete convex solution uh
which converges uniformly on compact subsets of Ω̃ to the unique convex so-
lution ũ of (4) as h→ 0.

Proof Recall that

Ω00
h ⊂ Ω̃ ∩ Zh ⊂ Ωs and ∂Ω0

h ⊂ Ω̃ ∩ Zh ⊂ Ωs.

Part 1: Existence of a discrete convex solution uh
By Proposition 1, applied to the problem (3), there exists a unique local

solution um̃s,h to the problem

Mh[um̃s,h] = rh(fm̃) inΩ00
h , um̃s,h = rh(um̃) on ∂Ω0

h. (13)

For fixed h, the number of grid points is finite. Thus by Lemma 1, there exist
a subsequence sq such that um̃sq,h converges pointwise (and hence uniformly
on compact subsets of Ω00

h ) to a mesh function uh.
By construction ∂Ω0

h ⊂ Ωs and hence for x ∈ ∂Ω0
h, uh(x) = rh(um̃)(x). By

taking pointwise limits in (13), we get that uh solves (9).
Since fm ≥ c2 > 0, we have λ1(Hdum̃s,h(x)) ≥ c4 > 0 for all x ∈ Ω00

h for
a constant c4 independent of h and for s sufficiently large, as a consequence
of the approach taken in [2], that. But λ1(Hdum̃s,h(x)) is the solution of a
polynomial equation with coefficients which are combinations of entries of
(Hdum̃s,h(x))i,j=1,2. By continuity of the roots of a polynomial as a function of
its coefficients [25], taking a limit as sq →∞, we obtain that λ1(Hduh(x)) ≥ 0
for all x ∈ Ω00

h . That is, uh is also discrete convex. Since rh(f) ≥ c0 > 0, uh is
discrete strictly convex.

For the local uniqueness of the discrete solution uh, we note that the tech-
niques for proving local uniqueness of the discrete solution when (1) has a
strictly convex smooth solution, [2,4], also applies in the case of a discrete
strictly convex solution. We conclude that um̃s,h converges uniformly on com-
pact subsets of Ω00

h to uh as s→∞.
Part 2: Uniform convergence on compact subsets of Ω of a subsequence

uhl
to a convex function v ∈ C(Ω̃).
This is a direct consequence of the error estimates of Proposition 1, the

interior Schauder estimate ||um̃s||C4(Ω̃) ≤ Cm̃ and Lemma 1. The continuity
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of v on Ω̃ follows from its convexity, Proposition 1 and (11) which imply that
um̃s,h and uh, hence v are locally finite.

Part 3: The continuous convex function v is equal to the Aleksandrov
solution ũ of (4).

Let K be a compact subset of Ω̃ and let ε > 0. Since uhl
converges uni-

formly on K to v, ∃l0 such that ∀l ≥ l0 |uhl
(x)−v(x)| < ε/6 for all x ∈ K∩Ω00

h .
By definition uhl

is the uniform limit on K∩Ω00
h of um̃s,hl

as s→∞. Thus
∃sl such that ∀s ≥ sl |um̃s,hl

(x)− uhl
(x)| < ε/6 for all x ∈ K ∩Ω00

h .
By Proposition 1 and (11) we have on K |um̃s,hl

(x)−um̃s(x)| ≤ Chl for all
x ∈ K ∩ Ω00

h . We recall that the constant C is independent of s but depends

on m̃ and Ω̃.
By the uniform convergence of um̃s to um̃, we may assume that |um̃(x)−

um̃s(x)| < ε/6 for all x ∈ K.
We conclude that for ∀l ≥ l0, ∃sl such that ∀s ≥ sl |um̃(x) − v(x)| <

ε/2 + Chl for all x ∈ K ∩Ω00
h .

For x ∈ K, if necessary by choosing a sequence xhl
such that xhl

→ x as
l→∞, we get for all ε > 0 |um̃(x)− v(x)| < ε. We conclude that ũ = um̃ = v

on K. We have by construction ũ = v on ∂Ω̃. This proves that ũ = v.
Part 4: Finishing up.
By the unicity of the solution ũ of (4) we conclude that uh converges

uniformly on compact subsets of Ω̃ to ũ.

4 Numerical results

The computational domain is the unit square [0, 1]2. The initial guess for
the iterations was taken as the finite difference approximation of the solution
of ∆u = 2

√
f with boundary condition u = g. Numerical errors are in the

maximum norm.
The scheme (6), when solved with the time marching method (8), performs

well for the standard tests for convex solutions of the Monge-Ampère equation.
The results are given on Tables 1 (Test 1), 2 (Test 2) and Figures 1 (Test 3) and
2 (Test 4). We note the high accuracy for the non smooth solution of Table 2.
For h = 1/28, it only took 805 seconds on a 2.5 GHz MacBook Pro. That’s less
time it took Newton’s method to find the solution for a more regular problem,
c.f. Table 3.

For smooth solutions, (8) appears to be faster than Newton’s method on
fine meshes, Table 3. We also give on Table 3 computational time for the
iterative method

∆hu
k+1
h =

√
(∆hukh)2 + 4(f −Mh[ukh]), (14)

where the operator Mh is defined by (12). The above iterative method is the
analogue of a variant of an iterative method introduced in [7] where therein
Mh[vh] = detHd(vh). The iterative method (14), unlike the one proposed in
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h
1/22 1/23 1/24 1/25 1/26 1/27 1/28

5.52 10−3 5.19 10−3 3.15 10−3 1.73 10−3 9.01 10−4 4.60 10−4 2.32 10−4

Table 1 Smooth solution u(x, y) = e(x
2+y2)/2, g(x, y) = e(x

2+y2)/2 and f(x, y) = (1 +

x2 + y2)ex
2+y2 with the iterative method (8) and ν = 50

h
1/23 1/24 1/25 1/26 1/27 1/28

3.94 10−3 2.85 10−3 1.67 10−3 8.97 10−4 4.65 10−4 2.37 10−4

Table 2 Non smooth solution (not in H2(Ω)) u(x, y) = −
√

2− x2 − y2, g(x, y) =

−
√

2− x2 − y2 and f(x, y) = 2/(2− x2 − y2)2 with the iterative method (8) and ν = 150

h
1/22 1/23 1/24 1/25 1/26 1/27 1/28

Newton 0.02 0.03 0.09 0.42 2.66 4.51 994
ν = 4 0.16 0.14 0.34 1.38 0.67 3.10 1.52

Method (14) 0.03 0.05 0.15 0.63 1.06 1.56 7.12

Table 3 Computation times for Newton’s method, the time marching method (8) and the

iterative method (14) for u(x, y) = e(x
2+y2)/2

[7], may not be well defined for some initial guesses. Nethertheless it finds the
solution to (6) given by (8) and Newton’s method for Test 1. The variant

∆hu
k+1
h =

√
(∆hukh)2 + 2(f −Mh[ukh]),

works for Test 3 but not for Test 4. It also converges to a solution different
from the one found by (8) for Tests 1 and 2. The iterative method

∆hu
k+1
h (x) =

(
2f(x) + (∂1−∂

1
+u

k
h(x))2 + (∂2−∂

2
+u

k
h(x))2

+ (∂2−∂
1
+u

k
h(x))∂2−∂

1
+u

k
h(x− he1) + (∂1−∂

2
+u

k
h(x))(∂1−∂

2
+u

k
h(x− he2))

) 1
2

,

modeled after the one introduced in [7] and suggested by how the compatible
discretization treats the terms (∂2u/∂x21)(∂2u/∂x22) and ∂2u/(∂x1∂x2), per-
forms well for all our tests but returns the solution to a discretization different
from the one studied in this paper. These numerical experiments suggest that
the time marching approach is easier to generalize than the one proposed in
[7]. Also, no convergence result is known for the latter.
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the solution of (6)
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Böhmer’s method. J. Comput. Appl. Math. 254, 43–54 (2013)

16. Dean, E.J., Glowinski, R.: Numerical solution of the two-dimensional elliptic Monge-
Ampère equation with Dirichlet boundary conditions: a least-squares approach. C. R.
Math. Acad. Sci. Paris 339(12), 887–892 (2004)

17. Dean, E.J., Glowinski, R.: An augmented Lagrangian approach to the numerical solution
of the Dirichlet problem for the elliptic Monge-Ampère equation in two dimensions.
Electron. Trans. Numer. Anal. 22, 71–96 (electronic) (2006)

18. Dinew, S., Zhang, X., Zhang, X.: The C2,α estimate of complex Monge-Ampère equa-
tion. Indiana Univ. Math. J. 60(5), 1713–1722 (2011)

19. Feng, X., Glowinski, R., Neilan, M.: Recent Developments in Numerical Methods for
Fully Nonlinear Second Order Partial Differential Equations. SIAM Rev. 55(2), 205–267
(2013)

20. Feng, X., Neilan, M.: Analysis of Galerkin methods for the fully nonlinear Monge-
Ampère equation. J. Sci. Comput. 47(3), 303–327 (2011)

21. Froese, B., Oberman, A.: Convergent finite difference solvers for viscosity solutions of
the elliptic Monge-Ampère equation in dimensions two and higher. SIAM J. Numer.
Anal. 49(4), 1692–1714 (2011)

22. Froese, B.D., Oberman, A.M.: Convergent filtered schemes for the Monge-Ampère par-
tial differential equation. SIAM J. Numer. Anal. 51(1), 423–444 (2013)

23. Glowinski, R.: Numerical methods for fully nonlinear elliptic equations. In: ICIAM
07—6th International Congress on Industrial and Applied Mathematics, pp. 155–192.
Eur. Math. Soc., Zürich (2009)
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