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Abstract: The theory of elasticity is used to predict the response of a material body subject to
applied forces. In the linear theory, where the displacement is small, the stress tensor which
measures the internal forces is the variable of primal importance. However the symmetry
of the stress tensor which expresses the conservation of angular momentum had been a
challenge for finite element computations. We review in this paper approaches based on
mixed finite element methods.
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1. Introduction

The unknowns in the elasticity equations are the stress, which encodes the internal forces, and
the displacement, which measures how points in the body move. In the linear theory of elasticity,
displacements are assumed to be small and hence the stress becomes the primary unknown. The outline
of the paper is as follows. The next section has four parts in which we introduce the linear theory
of elasticity following [1], the concept of finite element discretizations and some notation. Then, we
consider several variational formulations of the elasticity equations and make the case of the use of
mixed finite elements. The main section is devoted to a survey of mixed finite elements for elasticity.
We explain the Arnold-Winther construction and its generalizations to three-dimensional elements and
nonconforming elements. We conclude with some remarks.
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2. Preliminaries

2.1. Linear Theory of Elasticity

When forces are applied to a solid body, occupying a domain Ω in Rn, it will undergo deformations:
its shape and volume will change. A point initially at a position x with coordinates xi, i = 1, . . . n will
move to a new position x′

i, i = 1 . . . n. The vector u with components xi − x′
i is called the displacement

vector. The deformation of the body is completely determined if u, as a function of x, is specified. Let dl
and dl′ denote the distance between two points very close to each other before and after the deformation
respectively. We have

dl2 =
∑
i

dx2
i , and dl

′2 =
∑
i

dx
′2
i

and for small deformations [1]
dl

′2 = dl2 +
∑
i,k

2(ϵu)ik dxi dxk

where

(ϵu)ik =
1

2

(
∂ui

∂xk

+
∂uk

∂xi

)
is the strain tensor. We also have ϵ(u) = 1/2(∇u+ (∇u)T ), where ∇u is the matrix field with rows the
gradient of each component of u.

When a deformation occurs, the arrangement of molecules is changed and internal forces arise to
return the body to its original state of equilibrium. They are encoded in the stress tensor σ. The
ith component of the force acting on the element of surface ds with normal n is given by

∑
k σiknk.

The conservation of angular momentum implies that the stress tensor is a symmetric matrix field [2],
Page 53.

We now give the field equations of elasticity for an isotropic material, a material which has the same
mechanical properties in all directions. From thermodynamic considerations, we have the following
linear relationship, called Hooke’s law, between the strain tensor and the stress tensor for small
deformations

Aσ = ϵ(u) (1)

where Aσ = 1
2µ
σ− λ

2µ(2µ+nλ)
(tr σ)I and I is the n×n identity matrix. The constants λ and µ are called

Lame coefficients. They satisfy 0 < µ1 < µ < µ2 and 0 < λ < ∞ for some constants µ1, µ2. Finally,
the equilibrium condition is encoded in the equation

div σ = f (2)

For simplicity, we will assume homogeneous boundary conditions, u = 0 on the boundary ∂Ω of Ω.

2.2. Finite Elements

The finite element method is a widely used technique for approximating the solutions of boundary
value problems arising in science and engineering. In its most general form, the starting point is a
variational formulation of the equation. By analogy, a vector in Rn is characterized by its coordinates or
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its inner product with vectors of the canonical basis. Here the solution u of the problem is sought in an
infinite dimensional (closed) subspace U of a Hilbert space H and characterized as

a(r, s) = F (s), for all s ∈ U (3)

where F is a linear continuous functional on U and a is linear in the second argument. Under
appropriate assumptions a solution exists and is unique. The finite element proceeds in constructing
finite dimensional subspaces Uh of U , where h is a parameter accumulating to zero associated to a
decomposition of the domain of computation Ω into elements, known as triangulation. The discrete
problem consists in solving for rh ∈ Uh, the problem

a(rh, s) = F (s), for all s ∈ Uh

Again, under appropriate assumptions which will be stated below, the error between r and rh will be
quantified. We will assume for simplicity that the computational domain for n = 2 and n = 3 has
piecewise planar boundary so that it can be subdivided into triangles, for plane problems, and tetrahedra
for three-dimensional problems. Furthermore, we will assume that the intersection of any two triangles
is either empty or is a common edge or is a common vertex. Similarly, we require the intersection of
two tetrahedra to be either empty or a common vertex, edge or face. We will also discuss rectangular
finite elements, where the domain is assumed to be subdivided into rectangles or cubes, satisfying the
analogous conditions. In all the above cases, h can be taken as the maximum of the diameter of the
elements. Following [3], a finite element is given by a triple (K,UK ,ΘK) where

1. K is a closed bounded subset of Rn with a nonempty interior and a Lipschitz continuous boundary,

2. UK is a finite dimensional space of vector-valued or matrix-valued functions defined over the set
K, and

3. ΘK is a finite set of linearly independent linear functionals, θi, i = 1, . . . , N referred to as degrees
of freedom of the finite element, defined over the set UK .

It is assumed that the set ΘK is UK-unisolvent in the sense that

θi(p) = 0, i = 1, . . . , N =⇒ p ≡ 0

The finite element space Uh is defined as the space of piecewise polynomials which restrict to an element
of UK on each element K. The degrees of freedom give the global continuity property of the finite
element space. For example, if K is a triangle and we take as UK , the space of piecewise linear functions,
a set of degrees of freedom can be defined as the values at the vertices. A piecewise polynomial on a
triangulation with these degrees of freedom is necessarily continuous, since a linear polynomial on an
edge is uniquely determined by the values at the vertices. Let {ϕi, i = 1 . . . , N} ⊂ UK be a basis of
UK , dual to ΘK , i.e. θi(ϕj) = δji . The natural interpolation operator ΠUh

associated to Uh is defined by
ΠUh

|Kv := ΠKv :=
∑N

i=1 θi(v)ϕi, ∀ v ∈ U .



Symmetry 2010, 2 1378

2.3. Notation

Let Ω be a simply connected domain in Rn, n = 2, 3 with a shape regular family of meshes with
mesh size h decreasing to zero. We will assume that the triangulation is regular in the sense that the
aspect ratio [3], of the elements is bounded by a fixed constant. Thus no element can become too thin
or too long. Let S denote the space of n × n symmetric matrix fields. We let L2(K,X) be the usual
space of square integrable functions with domain K ⊂ Rn and with values in the finite dimensional
space X . For k ≥ 1 we denote by Hk(K,X) the space of functions on K, taking values in X , and
with all derivatives of order at most k in L2(K,X). For our purposes, X will be either S, Rn, or R, and
in the latter case, we will simply write Hk(K). The norm in Hk(K,X) is denoted ∥ · ∥k. We define
H(div,Ω,S) = {S ∈ S, divS ∈ L2(Ω,Rn) }. Here the divergence of a matrix field is the vector field
obtained after taking the divergence of each row. We let (, ) denote the L2(Ω, X) inner product. The
space of infinitely differentiable functions on Ω with values in X is denoted by C∞(Ω, X).

We use the usual notations of Pk(K,X) for the space of polynomials of degree at most k and
Pk1,k2(K,X) for the space of polynomials on K of degree at most k1 in x and of degree at most k2
in y. We write Pk and Pk1,k2 respectively when X = R and it is clear that they are considered on K. We
recall that the dimension of Pk(Rn) is

(
n+k
k

)
. For two elements σ and τ ∈ S, σ : τ =

∑n
i,j=1 σijτij is the

Kronecker product of σ and τ .

2.4. Variational Formulations of the Elasticity Equations

There are several variational formulations on which one can base a finite element discretization of
the elasticity equations. We describe briefly three of them following [4]. In the primal variational
formulation, the displacement is the unique critical point over H1

0 (Ω) of the energy functional∫
Ω

1

2
A−1ϵ(v) : ϵ(v) + f · v

The main drawback of this approach is that computing the stress from the displacement using (1) involves
approximate derivatives and hence less accuracy. In the dual variational principle, the stress field can be
computed directly in principle as the unique critical point of the complementary energy functional∫

Ω

1

2
Aτ : τ

over {σ ∈ H(div,Ω), div σ = f}. However enforcing constraints in the finite element method is a
challenging task. On the other hand, (1) is an overdetermined system if one wants to compute the
displacement from the stress. For example, for n = 2, two unknowns determine the displacement vector
while (1), which is an equality between two 2 × 2 symmetric matrices, gives three equations. We now
describe the mixed variational principle in which the stress field and the displacement form the unique
critical point of the Hellinger-Reissner functional∫

Ω

(
1

2
Aτ : τ + div τ · v − f · v

)
dx
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over H(div,Ω,S) × L2(Ω,Rn). The mixed weak formulation is then given by: Find
σ ∈ Σ = H(div,Ω,S) and u ∈ V = L2(Ω,Rn) such that

(Aσ, τ) + (div τ, u) = 0, ∀τ ∈ Σ

(div σ, v) = (f, v), ∀v ∈ U
(4)

Alternatively, the above equations can be obtained directly from (1) and (2) by integration by parts∫
Ω

div τ · v = −
∫
Ω

τ : ϵ(v) +

∫
∂Ω

(σ · n) · v (5)

∀ (τ, v) ∈ H(div,Ω,S) × L2(Ω,Rn) and using the boundary condition for u. It is also possible to
write them in the abstract form (3) for an unknown (σ, u). Clearly, the stress is approximated directly
in the mixed formulation. But there are other reasons behind the popularity of mixed methods. In
certain situations, e.g. for viscoelastic materials with an incompressibility constraint [5], it is not possible
to eliminate the stress from the equations, hence the development of stable mixed elements for linear
elasticity is a promising important step towards the resolution of related problems. On the other hand,
mixed methods are in general robust in certain limiting situations [6–8], in the incompressibility limit
for the elasticity equations.

It can be shown that the following conditions hold:

∃α > 0 such that (Aτ, τ) ≥ α||τ ||2Σ, ∀τ ∈ K (6)

where
K = {τ ∈ Σ : (div τ, v) = 0, ∀ v ∈ V } (7)

and

∃ β > 0 such that infv∈V supτ∈Σ
(div τ, v)

∥v∥V ∥τ∥Σ
≥ β (8)

These conditions in turn imply existence and uniqueness of a solution of the variational problem (4) [9].
The condition (8) is known as inf-sup condition. The main disadvantages of mixed finite elements is
that they lead to indefinite system of equations and their construction, especially for symmetric matrix
fields, is challenging as Brezzi’s stability conditions for mixed methods, discrete analogues of (6)–(8),
must be satisfied.

3. Mixed Finite Elements for Elasticity

A conforming mixed finite element approximation of (4) consists in choosing finite dimensional
spaces Σh ⊂ Σ and Vh ⊂ V such that

1. (First Brezzi condition) ∃α > 0 independent of h such that

(Aτ, τ) ≥ α∥τ∥2Σ (9)

for all τ in Kh where
Kh = {τ ∈ Σh : (div τ, v) = 0, ∀v ∈ Vh} (10)
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2. (Second Brezzi condition) ∃ β > 0 independent of h such that

supτ∈Σh

(div τ, v)

∥τ∥Σ
≥ β∥v∥V ∀v ∈ Vh (11)

We must therefore choose finite dimensional spaces for each of the n(n + 1)/2 components
σij, i ≥ j of the stress field and each of the n components for the displacement u. To satisfy the condition
Vh ⊂ L2(Ω)n, we simply take spaces of piecewise discontinuous polynomials. However, the condition
Σh ⊂ H(div,Ω,S) is equivalent to the condition that σn is continuous across interior edges (for n = 2)
or interior faces (for n = 3) of the triangulation [10]. It is not easy to satisfy both requirements of the
Brezzi conditions. Heuristically, the first one would be easier to satisfy if Kh were small. That translates
into Σh small and Vh big. For the second, one wants Vh small since the condition must be satisfied by all
v ∈ Vh. And the bigger Σh is, the bigger the supremum will be. So Σh small and Vh big for the first one
and Σh big but Vh small for the second one.

Another set of sufficient conditions which imply the Brezzi conditions [11], and are easier to satisfy
are given by:

• div Σh ⊂ Vh.

• There exists a linear operator Πh : H1(Ω,S) → Σh, bounded in L(H1, L2) uniformly with respect
to h, and such that with Ph : L2(Ω,Rn) → Vh denoting the L2−projection the diagram

H(div,Ω,S) div−−−→ L2(Ω,Rn)yΠh

yPh

Σh
div−−−→ Vh

(12)

commutes. We recall that a commutative diagram is a diagram with spaces and maps such that when
picking two spaces, one can follow any path through the diagram and obtain the same result by
composition. We then have the optimal error estimate

∥σ − σh∥Σ + ∥u− uh∥V ≤ γ{infτ∈Σh
∥σ − τ∥Σ + infvh∈Vh

∥u− vh∥V } (13)

with γ independent of h. The estimate (13) says that the errors in approximating the stress and the
displacement depend only on the approximation property of the spaces Σh and Vh. The following
approximation properties of finite element spaces [12], under the assumption of shape regularity, allows
to have a rough estimate of the order of approximation under higher regularity assumptions. We have

infp∈Pk(Ω)||r − p||0 ≤ Chm||r||m, ∀ r ∈ Hm(Ω), 2 ≤ m ≤ k + 1, k ≥ 1 (14)

whenever Uh ⊂ U ⊂ Hm(Ω) contains Pk(Ω). Moreover the L2(Ω,Rn) projection operator onto a space
of piecewise discontinuous polynomial of degree k satisfies

||Phv − v||0 ≤ chm||v||m, for all v ∈ Hm(Ω), 0 ≤ m ≤ k + 1 (15)

Among the reasons to incorporate the symmetry of the stress field in finite element computations,
it has been argued that it is necessary to obtain good free surface conditions [13]. Perhaps also
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motivated by the need to preserve the structure of the continuous problem and to reduce the number
of unknowns, researchers have unsuccessfully tried for several decades to construct stable conforming
mixed finite elements for elasticity using polynomial shape functions. While for the corresponding
problem for the mixed formulation of the Poisson equation several compatible pairs were known, e.g.
the Raviart-Thomas and BDM elements [10], the symmetry of the stress field is a substantial difficulty
in the case of the elasticity equations. Earlier researchers circumvent the difficulty of the symmetry
condition by using composite elements, that is the stress and displacement are approximated on different
grids [14–17].

The first conforming elements with symmetric stress fields were introduced in [18] on triangular
meshes. In this section, we first review the Arnold-Winther construction, then discuss the various
extensions which have appeared in the literature.

3.1. The Arnold-winther Construction

We recall that an exact sequence is a sequence of spaces and maps between them such that the image of
one map is the kernel of the next. A key ingredient in the design is the use of differential complexes which
are exact sequences where the maps are differential operators [18]. In two dimensions, the elasticity
complex is

0 −−−→ P1(Ω)
⊂−−−→ C∞(Ω)

J−−−→ C∞(Ω, S) div−−−→ C∞(Ω,R2) −−−→ 0

where J is the Airy stress operator defined by

Jq :=

(
∂2q
∂y2

− ∂2q
∂x∂y

− ∂2q
∂x∂y

∂2q
∂x2

)
An analogous sequence with less smoothness is

0 −−−→ P1(Ω)
⊂−−−→ H2(Ω)

J−−−→ H(div,Ω, S) div−−−→ L2(Ω,R2) −−−→ 0

The above sequences are exact if the domain Ω is contractible [18]. Intuitively, a domain is contractible
if it can be continuously shrunk to a point. One way to look at the Arnold-Winther construction is that
the diagram (12) can be extended to a commutative diagram

0 −−−→ P1(Ω)
⊂−−−→ C∞(Ω)

J−−−→ C∞(Ω, S) div−−−→ C∞(Ω,R2) −−−→ 0yid

yIh

yΠh

yPh

0 −−−→ P1(Ω)
⊂−−−→ Qh

J−−−→ Σh
div−−−→ Vh −−−→ 0

(16)

where Ih is a projection operator. The choice of a space Qh which makes the bottom sequence exact
provides a discrete version of the elasticity sequence. The difficulty of choosing compatible pairs Σh

and Vh is then shifted to the choice of a conforming finite element subspace of H2(Ω), a much less
difficult task.

Recall that the objective is to choose finite dimensional spaces of polynomials on each element for
each of the three components of the stress field and each of the two components of the displacement
in such a way that σn is continuous across interior edges, div Σh ⊂ Vh and Ph div τ = divΠhτ,
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τ ∈ H(div,Ω,S). We choose Qh as the Argyris finite element space [19] with QK = P5(K) and the
degrees of freedom given by the values of the derivatives up to order two at the vertices and the average
of the normal component on each edge. Let V,E and R respectively denote the number of vertices ,
edges and triangles in the triangulation. We have dim Qh = 6V + E. We will write analogously dim
Σh = xV + yE + zR and dim Vh = wR since Vh is a space of piecewise discontinuous polynomials.
We are then led to consider a discrete sequence

P1(K)
⊂−−−→ P5(K)

J−−−→ P3(K, S) div−−−→ P2(K,R2) −−−→ 0 (17)

which suggest possible choices ΣK = P3(K, S) and VK = P2(K,R2). For the above sequence to
be exact, the alternating sum of the dimensions must equal 0. On the other hand, by Euler’s formula,
V − E +R = 1. We have

3(V − E +R)− (6V + E) + (xV + yE + zR)− wR = 0

A solution of the above equation is given by x = 3, y = 4 and z = w− 3. It now requires some guess to
choose the degrees of freedom. Since there are 3 components for the stress field, it is natural to choose
as degrees of freedom the value of each of them at the vertices. It is not difficult to see that a polynomial
of degree k on an edge is uniquely determined by k + 1 independent conditions. Next, the requirement
that σn is continuous across interior edges leads to the choice of degrees of freedom

(1) the values of each component of τ(x) at the vertices of K (9 degrees of freedom),

(2) the first two moments of each component of τn on each edge (12 degrees of freedom).

But recall that for stability, we need div Σh ⊂ Vh and the commutativity property
Ph div τ = divΠhτ, τ ∈ H(div,Ω,S) or∫

K

div (τ − Πhτ) · v dx = −
∫
K

(τ − Πhτ) : ϵ(v) dx+

∫
∂K

(τ − Πhτ)n · v ds (18)

Sufficient conditions are v ∈ span{1, x} on each edge. We therefore choose VK = P1(K,R2) which
give w = 6 and z = 3. The lowest order Arnold-Winther construction is given by

ΣK =
{
τ ∈ P3(K, S), div τ ∈ VK

}
and VK = P1(K,R2)

with the last set of degrees of freedom given by

(3) the values of
∫
K
τ : ϕ for all ϕ in ϵ(VK).

The space Qh also enters in the proof of unisolvency for the degrees of freedom of Σh. If one assumes
that all degrees of freedom of τ ∈ ΣK vanish, an important step in the proof of unisolvency is to show
that div τ = 0. Next, the exactness of the sequence (17) give τ = Jq for q ∈ P5(K). One then has to be
able to show that q = 0 using the degrees of freedom of τ .

We have described the lowest order Arnold-Winther element. A family of elements indexed by k ≥ 1

has been constructed with convergence rate O(hk+2) for the stress and O(hk+1) for the displacement.
The interpolation operator Πh was chosen as a suitable modification of the natural interpolation operator
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of Σh. These elements have the unusual feature of involving vertex degrees of freedom, compared to the
BDM elements or Raviart-Thomas elements, and involve a fairly large number of degrees of freedom.
There was a reduced element with 21 degress of freedom for the stress and the three-dimensional space
of rigid body motions, {(a−cy, b+cx), a, b, c ∈ R} , to approximate the displacement. The convergence
rate in that case is O(h2) for the stress and O(h) for the displacement. With the Argyris interpolation
operator Ih, it can be shown that the diagram (16) commutes. We will illustrate the construction of higher
order elements and reduced elements for the tetrahedral elements.

3.2. The Three-dimensional Tetrahedral Elements

In three dimensions, the elasticity sequence is given by

T ↪→ C∞(Ω,R3)
ϵ−→ C∞(Ω,S) curl curl*−−−−−→ C∞(Ω,S) div−→ C∞(Ω,R3) → 0

Here T is the six dimensional space of rigid body motions, i.e., the space of linear polynomial functions
of the form x 7→ a+b×x for some a, b ∈ R3. One can require less smoothness in the following analogue
of the above sequence,

T −−−→ H1(Ω,R)3 ϵ−−−→ H(curl curl∗,Ω, S)
curl curl∗−−−−−→ H(div,Ω,S) div−−−→ L2(Ω,R3) −−−→ 0

where curl curl* is a second order differential operator defined as follows: Given a symmetric matrix
field, we first replace each column by its curl, and then replace each row of the resulting matrix
with its curl. We recall that for a three-dimensional vector field, curl v = (∂2v3 − ∂3v2,−∂1v3 +

∂3v1, ∂1v2−∂2v1)
T . Analogous to the definition of H(div,Ω,S), we define H(curl curl*,Ω; S) = {S ∈

L2(Ω,S) | curl curl* S ∈ L2(Ω,S) }. A polynomial analogue of the above sequence is

T ⊂−−−→ Pk+4(Ω,R3)
ϵ−−−→ Pk+3(Ω, S)

curl curl∗−−−−−→ Pk+1(Ω, S)
div−−−→ Pk(Ω,R3) −−−→ 0

The above sequences are exact if the domain Ω is contractible [20,21]. In an attempt to mimic the
polynomial sequence at the discrete level,

T −−−→ Rh
ϵ−−−→ Qh

curl curl∗−−−−−→ Σh
div−−−→ Vh −−−→ 0

we face the difficulty that both Qh and Σh are spaces of symmetric matrix fields. Instead we will draw in
a first step analogies with the two-dimensional triangular elements. For integers s, k ≥ 0, we postulate
that VK is a space of discontinuous piecewise polynomials of degree at most s, i.e. VK = Ps(K,R3),
and

ΣK = {T ∈ Pk(K, S) | div T ∈ VK }

Analogous to the triangular elements, the following degrees of freedom for the stress field will be chosen

• vertex degrees of freedom,
• degrees of freedom to ensure continuity of τn,
• require

∫
∂K

τn · v ds = 0, ∀ v ∈ VK and
∫
K
τ : ϵ(v), v ∈ VK , for stability, (18).
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It can be shown that [21], when all the above degrees of freedom vanish for a given T ∈ ΣK , then
T ∈ Mk(K) := {τ ∈ ΣK , div τ = 0, τn = 0 on ∂K}. The last set of degrees of freedom can then be
chosen as

∫
K
τ : ϕ, dxϕ ∈ Mk(K).

Since there are 4 vertices for a tetrahedron and 6 components for the stress field, we need 6× 4 = 24

vertex degrees of freedom. Next, we specify the edge degrees of freedom to ensure continuity
of τn across edges. For each edge with unit normals n− and n+, and unit tangential vector t,
n′
−Tn+, n

′
−Tn−, n

′
−Tt, n′

+Tn+, n
′
+Tt ∈ Pk(e,R), can be specified independently. This requires

5(k−1) degrees of freedom. For a face T of the triangulation, we recall that dim Pk(T,R) = (k+2)(k+1)
2

.
For a given face, we have specified all 3 vertex and 3(k − 1) edge degrees of freedom. Hence it remains
to specify (k+2)(k+1)

2
− 3− 3(k − 1) = (k−1)(k−2)

2
= dim Pk−3(f,R) degrees of freedom on each face to

ensure continuity of τn. The face degrees of freedom are then chosen as
∫
f
Tn · v dx, v ∈ Pk−3(f,R3).

But the requirement
∫
K
Tn · v dx = 0, v ∈ VK leads to the constraint s ≤ k − 3.

We now describe the lowest order element of the family of tetrahedral elements with k = 4 and s = 1.
We take

ΣK = {T ∈ P4(K, S) | div T ∈ VK } and VK = P1(K,R3)

We have dim ΣK = 162 and dimVK = 12, with the stress degrees of freedom (d.o.f.)

1. vertex d.o.f . (4× 6 = 24),

2. edge d.o.f. (6× 3× 5 = 90),

3. face d.o.f. (4× 3× 3 = 36),

4.
∫
K
T : U,U ∈ ϵ(VK) (6 d.o.f.),

5. the value of the moments
∫
K
T : U dx, U ∈ M4(K), (6 d.o.f.),

where
M4(K) := {T ∈ P4(K, S) | div T = 0 and Tn = 0 on ∂K }

That M4(K) has the required dimension 6 was proved in [21]. An analogous element was obtained in
[22], where the last set of degrees of freedom was replaced by

∫
e
Tt · t dx for each of the six edges. The

other elements of the family can be described as

ΣK = {T ∈ Pk+3(K, S) | div T ∈ VK } and VK = Pk(K,R3)

The degrees of freedom are defined in a fashion similar to the lowest order case [21]. We obtained
O(hk+2) convergence rate for the stress and O(hk+1) convergence rate for the displacement. It should
be mentioned that the main difficulty was to prove that M4(K) has dimension 6 and construct bases for
Mk(K) for k ≥ 4, [21]. Moreover, analogous to the two-dimensional elements, it can be shown that the
following diagram, with suitably defined projection operators, commutes [23],

T −−−→ C∞(Ω,R3)
ϵ−−−→ C∞(Ω, S) curl curl*−−−−−→ C∞(Ω,S) div−−−→ C∞(Ω,R3) −−−→ 0yΠR

h

yΠQ
h

yπΣ
h

yPh

T −−−→ Rh
ϵ−−−→ Qh

curl curl*−−−−−→ Σh
div−−−→ Vh −−−→ 0
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It is possible to somewhat reduce the number of degrees of freedom for the lowest order element by
taking as VK the six dimensional space of rigid body motions [21]. The stress space then has local
dimension 156.

3.3. Rectangular Elements

With Arnold, we extended the triangular elements to rectangular meshes [24]. The polynomial
differential complexes are based on the Pk,l spaces. Our lowest order element has 36 degrees of freedom
for the stress and 3 degrees of freedom for the displacement with O(h) convergence rate for both the
stress and displacement. It was recently observed in [25], that on rectangular meshes it is not necessary
to impose vertex degrees of freedom for all components of the stress field. This lead to a different family
with the lowest order element having 17 degrees of freedom for the stress field and 4 degrees of freedom
for the displacement. A low order conforming rectangular elements in three dimensions has recently
been constructed in [26] with 72 degrees of freedom for the stress and 12 degrees of freedom for the
displacement.

3.4. Nonconforming Elements

The high number of degrees of freedom of the conforming elements has prompted the search for more
practical elements. One possibility to achieve this is to relax the conformity condition. In this section,
we consider nonconforming mixed elements for the elasticity problem in the sense that the stress space
Σh is not contained in H(div,Ω,S) because the normal component of the discrete stress field is not
continuous across element edges. The displacement space Vh satisfies Vh ⊂ L2(Ω,Rn). In addition to
their relative simplicity, the nonconforming elements do not involve any vertex degrees of freedom.

The framework described above extends to the nonconforming cases except that a so-called
consistency error [27] has to be shown to be at least O(h). In the two-dimensional case, it takes
the form

Eh(u, τ) =
∑
e∈Eh

∫
e

[τn · t]u · t ds

where Eh is the set of edges of the triangulation and [q] denotes the jump of the quantity q across
the given edge. Arnold and Winther, [27] obtained a 12 d.o.f. element for the stress with 3 d.o.f.
for the displacement on triangular meshes. The analogous nonconforming rectangular elements [28],
uses 16 d.o.f. for the stress and 3 d.o.f. for the displacement. Other nonconforming rectangular elements
have also been constructed. In [29], a 13 d.o.f. for the stress and 4 d.o.f. for the displacement was
constructed. A similar element with the same number of degrees of freedom was given in [30]. These
elements exhibit O(h) convergence rate for both the stress and displacement and can be written as part of
a discrete version of the elasticity sequence. In [31], an element with 19 d.o.f. for the stress and 6 d.o.f.
for the displacement was introduced. The construction does not use the commutative diagram, but instead
the Brezzi conditions are proved directly. These elements also extend to three-dimensional rectangular
elements with 60 d.o.f. for the stress and 12 d.o.f. for the displacement. They have O(h2) convergence
rate for the displacement and O(h) convergence rate for the stress. Another three-dimensional element
on rectangular meshes was introduced in [32]. It uses 54 d.o.f. for the stress and 12 d.o.f. for the
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displacement with O(h) convergence rate for both the stress and displacement. We recently constructed
three-dimensional nonconforming tetrahedral elements with 36 d.o.f for the stress and 6 d.o.f. for
the displacement with linear convergence rates in both variables [33]. None of the three-dimensional
nonconforming rectangular elements have been shown to be part of a discrete version of the elasticity
sequence, that is an analogue of (16).

4. Conclusions

Other researchers have abandoned the symmetry condition, used a different variational formulation,
or weakened the regularity conditions on the stress fields in various ways [34–39]. Stable mixed finite
elements with weakly imposed symmetry have been introduced in [17,40–44], but the simplest ones have
only been recently discovered [13,45–47]. The construction of discrete versions of the elasticity complex
has been made further systematic in [20,45,46] where a procedure to construct discrete versions of the
elasticity complex from discrete versions of the de Rham complex, an exact sequence connecting spaces
of differential forms, was made explicit. This process has been further improved in the finite element
exterior calculus [20,48]. Finally, we note that despite their relative complexity, conforming mixed finite
elements with symmetric stress field are useful in certain situations [49].
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