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Abstract. We present new rectangular mixed finite elements for linear elasticity.
The approach is based on a modification of the Hellinger-Reissner functional in
which the symmetry of the stress field is enforced weakly through the introduction
of a Lagrange multiplier. The elements are analogues of the lowest order elements
described in Arnold, Falk and Winther [ Mixed finite element methods for linear
elasticity with weakly imposed symmetry. Mathematics of Computation 76 (2007),
pp. 1699–1723]. Piecewise constants are used to approximate the displacement and
the rotation. The first order BDM elements are used to approximate each row of
the stress field.

1. Introduction

The theory of elasticity is used to predict the response of a material to applied forces.
The unknowns in the equations are the stress field, a symmetric matrix field which
encodes the internal forces and the displacement, a vector field. For various reasons,
mixed finite elements where one approximates both the stress and displacement are
the methods of choice. One seeks the stress in the space of symmetric matrix fields
with components square integrable and with divergence, taken row-wise, also square
integrable. The displacement is sought in the space of square integrable vector fields.
The pair forms a unique saddle point of the Hellinger-Reissner functional. It is very
difficult to construct at the discrete level, finite element spaces which satisfy Brezzi’s
stability conditions. These conditions provide sufficient conditions for the stability of
mixed finite element methods. Indeed for several decades before the work of Arnold
and Winter [10, 11] the existence of such elements was an open problem. These
elements have been extended to rectangular meshes in two dimension [3, 17], three
dimension [13] and on tetrahedral meshes [5, 1]. Despite their relative complexity,
mixed finite elements with symmetric stress fields are useful in certain situations [25].
If one desires simpler elements, one is forced to turn to nonconforming elements. Non-
conformity can be introduced by weakening the symmetry condition or by weakening
the requirement that the stress field is L2 integrable. We refer to [12] for a review on
nonconforming elements with symmetric stress fields and other approaches to linear
elasticity.

Stable mixed finite elements with weakly imposed symmetry have been introduced
in [2, 6, 26, 28, 27, 24, 7, 9, 15, 23, 22, 19], The purpose of this paper is to present
elements with weakly imposed symmetry for rectangular meshes. Precisely, we will
use piecewise constants to approximate the displacement and the rotation and 18 or
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12 dimensional spaces to approximate the stress field. The simplest older element on
rectangular meshes in two dimensions is the one of [24] with 11 degrees of freedom for
the stress, piecewise constants to approximate the displacement but a 4 dimensional
space to approximate the rotation. The advantage of our element is that the rotation
can be eliminated by static condensation. In three dimensions as well, our elements
are simpler than Morley’s elements.

The paper is organized as follows: after some preliminaries in the next section, we
present our low order elements in two dimension and then in three dimension. We
conclude with some remarks on higher order elements.

2. Preliminaries

Let Ω be a simply connected polygonal domain of Rn, n = 2, 3, occupied by a linearly
elastic body which is clamped on ∂Ω. We denote as usual by L2(Ω,Rn) the space of
square integrable vector fields with values in Rn and Hk(K,X) the space of functions
with domain K ⊂ Rn, taking values in the finite dimensional space X, and with
all derivatives of order at most k square integrable. We let H(div,Ω, X) be the
space of square-integrable fields taking values in X and which have square integrable
divergence. For our purposes, X will be either M the space of n × n matrices, S
the space of n × n symmetric matrices, Rn, or R, and in the latter case, we simply
write Hk(X). The divergence operator is the usual divergence for vector fields which
produces a matrix field when acting on a matrix field by taking the divergence of each
row. We will also need the space H(curl,Ω,Rn) of square-integrable fields with square
integrable curl. We recall that in two dimension for a scalar function q, curl(q) =
(∂2q,−∂1q) and in three dimension

curl(q1, q2, q3) = (∂2q3 − ∂3q2,−∂1q3 + ∂3q1, ∂1q2 − ∂2q1).

For a vector field in two dimension or a matrix field in three dimension, the curl
operator produces a matrix field by taking the curl of each row. The norms in
Hk(K,X) and Hk(K) are denoted respectively by || · ||Hk and || · ||k. We use the usual
notations of Pk(K,X) for the space of polynomials on K with values in X of total
degree less than k and Pk1,k2(K,X) for the space of polynomials of degree at most
k1 in x and of degree at most k2 in y. Similarly, Pk1,k2,k3(K,X) denotes the space of
polynomials of degree at most k1 in x, of degree at most k2 in y and of degree at most
k3 in z. We write Pk, Pk1,k2 and Pk1,k2,k3 respectively when X = R.

The solution (σ, u) ∈ H(div,Ω,S)× L2(Ω,Rn) of the elasticity problem can be char-
acterized as the unique critical point of the Hellinger-Reissner functional

J (σ, v) =

∫
Ω

(
1

2
Aτ + div τ · v − f · v

)
dx.

The compliance tensor A = A(x) : S → S is given, bounded and symmetric positive
definite uniformly with respect to x ∈ Ω, and the body force f is also given. In the
homogeneous and isotropic case,

Aσ =
1

2µ

(
σ − λ

2µ+ 2λ
tr (σ)I

)
where I is the identity matrix and λ and µ are the positive Lame constants.
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To treat both two and three dimensional problems in a unified framework, one pos-
sibility is to use finite element differential forms [8]. However, for n = 2, 3 a simple
device will suffice. We define P to be R when n = 2 and P = R3 for n = 3. Then we
define as τ = τ12 − τ21 for a 2 × 2 matrix and as τ = (τ32 − τ23, τ13 − τ31, τ21 − τ12)′

in three dimension. For a symmetric matrix field, as τ = 0. Next, we define H to be
R2 when n = 2 and H = M for n = 3. For the formulation with weakly imposed
symmetry condition, a critical point of the extended functional

J (σ, v) +

∫
Ω

η · as τ

is sought over H(div,Ω,M) × L2(Ω,Rn) × L2(Ω,P). The unique solution (σ, u, γ)
satisfies

(Aσ, τ) + (div τ, u) + (as τ, γ) = 0, τ ∈ H(div,Ω,M),

(div σ, v) = (f, v), v ∈ L2(Ω,Rn),

(asσ, q) = 0, q ∈ L2(Ω,P).

(2.1)

For the associated discrete system with finite element spaces Σh×Vh×Qh ⊂ H(div,Ω,M)×
L2(Ω,Rn) × L2(Ω,P), the symmetry condition will be enforced only weakly. The
Brezzi’s conditions for stability are

• There exists a positive constant c1 independent of h such that ||τ ||H(div) ≤
c1(Aτ, τ), if τ ∈ Σh, (div τ, v) = 0 for all v ∈ Vh and (as τ, q) = 0, ∀q ∈ Qh,
• There exists a positive constant c2 independent of h such that ∀ (v, q) ∈ Vh×
Qh, (v, q) 6= (0, 0),∃ τ ∈ Σh, τ 6= 0 with (div τ, v)+(as τ, q) ≥ c2||τ ||H(div)(||v||L2+
||q||L2).

To fulfill these conditions, we construct Σh, Vh and Qh such that

1- div Σh ⊂ Vh
2- Given (v, q) ∈ Vh ×Qh, (v, q) 6= (0, 0),∃ τ ∈ Σh, τ 6= 0 such that

(2.2) ||τ ||H(div) ≤ C(||v||L2 + ||q||L2),

and div τ = v, PQh
as τ = q, where PQh

is the L2 projection operator.

The first Brezzi condition follows from the condition div Σh ⊂ Vh. It is easy to see
that the second follows from condition (2) above. To construct elements which satisfy
(1) and (2), we follow the constructive approach of Arnold, Falk and Winther, [7, 9],
using discrete versions of the de Rham sequence. In addition to the spaces Σh, Vh and
Qh, we also construct finite element spaces Rh ⊂ H(div,Ω,H) and Θh ⊂ H(curl,Ω,H)
in such a way that the following diagrams commute:

H(div,Ω,H)
div−−→ L2(Ω,P) −→ 0yΠRh

yΠQh

Rh
div−−→ Qh −→ 0,
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H(curl,Ω,H)
curl−−→ H(div,Ω,M)

div−−→ L2(Ω,Rn) −→ 0yΠΘh

yΠΣh

yΠVh

Θh
curl−−→ Σh

div−−→ Vh −→ 0.
We note that the commutativity of the far left side of the diagram above will not be
used. For a finite dimensional space Xh, ΠXh

is a bounded projection operator. We
recall that

ΠXh
v = v, ∀ v ∈ Xh.(2.3)

Next, we define an operator S : C∞(Ω,H) → C∞(Ω,H) which connects the two
diagrams above. In two dimension, S is simply the identity operator, while in three
dimension, for q = (qij)i,j=1,...,3, we define

(2.4) S(q) =

q22 + q33 −q21 −q31

−q12 q11 + q33 −q32

−q13 −q23 q11 + q22

 .

In that case, S is also invertible with S(q) = tr(q)I − qT , S−1(q) = 1/2 tr(q)I − qT ,
[15], where qT denotes the transpose of q, I is the 3 × 3 identity matrix and tr(q)
denotes the trace of q. The following fundamental relation holds in both dimension:

(2.5) as curl q = − divS(q).

We summarize the elements of the constructive approach of [7, 9] in the following
theorem, the proof of which is reproduced below for convenience.

Theorem 2.1. Under the commutativity assumptions

ΠQh
div q = div ΠRh

q, ∀q ∈ C∞(Ω,H),(2.6)

div ΠΣh
σ = ΠVh

div σ, ∀σ ∈ C∞(Ω,M),(2.7)

and

ΠRh
SΠΘh

S−1 = ΠRh
,(2.8)

||ΠΣh
u||L2 ≤ c||u||H1 , ∀τ ∈ H1(Ω,M),(2.9)

|| curl ΠΘh
ρ||L2 ≤ c||ρ||H1 , ∀ρ ∈ H1(Ω,H).(2.10)

the second Brezzi condition holds.

Proof. By elliptic regularity, given v ∈ Vh,∃ η ∈ H1(Ω,M) such that

(2.11) div η = v and ||η||H1 ≤ ||v||L2 .

Given q ∈ Qh ⊂ L2(Ω,P), there exists φ ∈ H1(Ω,H) such that

(2.12) div φ = q − ΠQh
as ΠΣh

η and ||φ||H1 ≤ C||q − ΠQh
as ΠΣh

η||L2 .

We set τ = ΠΣh
η + curl ΠΘh

S−1φ and by (2.7) and (2.3) we have

div τ = div ΠΣh
η = ΠVh

div η = ΠVh
v = v.

By (2.5) and (2.6) it follows that

ΠQh
as curl q = ΠQh

divSq = div ΠRh
Sq,
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We therefore have using (2.8), (2.6) and (2.3),

ΠQh
as τ = ΠQh

as ΠΣh
η + ΠQh

as curl ΠΘh
S−1φ

= ΠQh
as ΠΣh

η + div ΠRh
SΠΘh

S−1φ

= ΠQh
as ΠΣh

η + div ΠRh
φ

= ΠQh
as ΠΣh

η + ΠQh
div φ

= ΠQh
as ΠΣh

η + ΠQh
q − ΠQh

as ΠΣh
η

= q.

It remains to prove the inequality (2.2). We have by (2.11) and (2.9)

||ΠΣh
η||L2 ≤ C||η||H1 ≤ C||v||L2 ,

and by (2.11), (2.3), (2.11), (2.9) and (2.12)

|| curl ΠΘh
S−1φ||L2 ≤ ||S−1φ||H1 ≤ C||φ||H1 ≤ ||q − ΠQh

as ΠΣh
η||L2

≤ C(||q||L2 + || as ΠΣh
η||L2) ≤ C(||q||L2 + ||η||H1)

≤ C(||q||L2 + ||v||L2).

It follows that ||τ ||L2 = ||ΠΣh
η + curl ΠΘh

φ||L2 ≤ C(||q||L2 + ||v||L2). Since div τ = v,
this proves the result. �

Let Th denote a conforming partition of Ω into rectangles of diameter bounded by h,
which is quasi-uniform in the sense that the aspect ratio of the rectangles is bounded
by a fixed constant. Let R̂ = [0, 1]n be the reference rectangle and let F : R̂ → R
be an affine mapping onto R, F (x̂) = Bx̂ + b, with b ∈ Rn and B a n × n diagonal
matrix. Our goal in the next section is to construct spaces Σh, Vh and Θh such that
the conditions of Theorem (2.1) hold. If (σ, u, p) denotes the solution of problem (2.1)
and (σh, uh, ph) ∈ Σh × Vh ×Θh is the solution of the associated discrete system, the
optimality condition

||σ − σh||H(div) + ||u− uh||L2 + ||γ − γh||L2 ≤ C infτh∈Σh,vh∈Vh,ρh∈Qh

(||σ − τh||H(div) + ||u− vh||L2 + ||γ − ρh||L2),
(2.13)

holds.

As with [7, 5, 15], the following refined error estimates hold

||σ − σh||H(div) + ||uh − ΠVh
u||L2 + ||γ − γh||L2 ≤ C(||σ − ΠΣh

σ||H(div) + ||γ − ΠQh
γ||L2),

||u− uh||L2 ≤ C(||σ − ΠΣh
σ||H(div) + ||γ − ΠQh

γ||L2 + ||u− ΠVh
u||L2),

|| div(σ − σh)||L2 = || div σ − ΠVh
div σ||L2 .

3. Two dimensional elements

We recall the lowest order BDM element,

(3.1) BDM1(K) = { q | q = p1(x, y) + r curl(x2y) + s curl(xy2), p1 ∈ P1 × P1 },

and an element q ∈ BDM1(K) is uniquely determined by the conditions
∫
e
q ·

n p1 ds, for each edge e of K, ∀ p1 ∈ P1(e).
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We choose Vh = P0(Th), Qh = P0(Th), with degrees of freedom the value at an interior
point in each element K and

ΣK = { τ, τ(x, y) ∈M, (τi1, τi2) ∈ BDM1(K), i = 1, 2 }.
A matrix field τ ∈ ΣK is uniquely determined by the first two moments of τn on each
edge, (2× 2× 4 = 16 degrees of freedom). The stress field space Σh is therefore the
space of matrix fields which belong piecewise to ΣK and have normal components
which are continuous across mesh edges.

We will also need the serendipity finite element space Sh, defined on a single element
K by

SK = P2(K) + span{x2y, xy2},
and with degrees of freedom for q ∈ SK

(1) the values of q at the vertices (4 degrees of freedom),
(2) the average of q on each edge (4 degrees of freedom).

It is not difficult to check that the sequence

0 −→ R ⊂−→ SK
curl−−→ BDM1(K)

div−−→ P0(K) −→ 0.

is exact. One checks that each space is mapped in the one that follows. Then one
notes that the alternating sum of the dimensions is zero and that the polynomial de
Rham sequence is exact.

We therefore define the space Θh as follows: on each element K, ΘK = SK × SK
and the space Θh is the space of vector fields which belong piecewise to ΘK and are
continuous across mesh edges.

Finally we take for Rh the lowest order Raviart-Thomas element, i.e. Rh = RT0(Th).
We recall that RT0(K) = P1,0(K) × P0,1(K) with degrees of freedom the average of
the normal component of q ∈ RT0(K) on each edge.

The projection operator ΠΣh
is taken as the canonical interpolation operator and

defined by∫
e

ΠΣh
(σ)n · q ds =

∫
e

σn · q ds, for all edges e and for all q ∈ P1(e)× P1(e).

Similarly we define ΠRh
by∫

e

ΠRh
(q) · n ds =

∫
e

q · n ds, for all edges e.

It remains to define the interpolation operator ΠΘh
. For this we first define Π0

K :
H1(K,R2)→ ΘK by

Π0
Kψ(v) = 0 for each vertex v of K,∫

e

Π0
Kψ(s) ds =

∫
e

ψ(s) ds for each edge e ⊂ ∂K,

and Π0
h : H1(Ω,R2) → Θh by (Π0

hτ)|K = Π0
Kτ . Next, let Lh be a Clement interpola-

tion operator [14, 18] which maps L2(Ω,R) into

{ θh ∈ C0(Ω̄) | θh|K ∈ P1,1,∀K ∈ Th },
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and denote as well by Lh the corresponding operator which maps L2(Ω,R2) into the
subspace Θh of continuous vector fields whose components are piecewise in P1,1. We
have

(3.2) ‖Lhτ − τ‖j ≤ chm−j‖τ‖m, 0 ≤ j ≤ 1, j ≤ m ≤ 2,

with c independent of h. We define our interpolation operator ΠΘh
by

(3.3) ΠΘh
= Π0

h(I − Lh) + Lh.

Theorem 3.1. For the triple (Σh, Vh,Θh) the conditions of Theorem (2.1) hold and
we have the optimality condition (2.13). Moreover if σ and u are sufficiently smooth,

||σ − σh||H(div) + ||u− uh||L2 + ||γ − γh||L2 ≤ C h||u||3.(3.4)

Proof. Let q ∈ C∞(Ω,R2). We have using the definition of ΠRh
and Green’s theorem,∫

Ω

div ΠRh
q dx =

∑
K

∫
K

div ΠRh
q dx =

∑
K

∫
∂K

ΠRh
q · n ds

=
∑
K

∫
∂K

q · n ds =

∫
Ω

div q,

which proves (2.6).

Next, let σ ∈ C∞(Ω,M). Again using the definition of ΠΣh
and Green’s theorem,∫

Ω

div σ − div ΠΣh
σ dx =

∑
K

∫
K

div(σ − ΠΣh
σ) dx =

∑
K

∫
∂K

(σ − ΠΣh
σ)n ds = 0,

which proves (2.7).

For q ∈ C∞(Ω,R2), put u = Π0
hq. We have using the definition of Π0

h∫
e

(u− q) · n ds =

∫
e

(Π0
hq − q) · n ds = 0.

It follows that ΠRh
(u − q) = 0 i.e. ΠRh

Π0
hq = ΠRh

q. Finally, ΠRh
ΠΘh

= ΠRh
Π0
h(I −

Lh) + ΠRh
Lh = ΠRh

(I − Lh) + ΠRh
Lh = ΠRh

, that is (2.8) holds.

By the trace theorem, one shows that (ΠΣh
)|K̂ is bounded on H1(K̂,M). Moreover

if we define for a matrix field M̂ , PF (M̂)(x) = 1/det(B)M̂(x̂)BT , x = F (x̂), then it
is not difficult to verify that PF ((ΠΣh

)|K̂ σ̂) = (ΠΣh
)|KPF σ̂, hence (2.9) follows from

a standard scaling argument.

Let ρ̂ ∈ H1(K̂,R2). We define its Piola transform by PF ρ̂ = (PF ρ̂1, PF ρ̂2) where for
a scalar function û, PF û = û ◦ F−1.

Since ˆcurlΠ0
K̂
ρ̂ ∈ ΣK̂ ,

|| ˆcurlΠ0
K̂
ρ̂||L2(T̂ ) ≤ C

∑
ê⊂∂K̂

1∑
i=0

∣∣∣∣ ∫
ê

ˆcurlΠ0
K̂
ρ̂ · n̂ŝi dŝ

∣∣∣∣,
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where ê is an edge of ∂K̂. Next, curl q · n = ∂q/∂s and using the definition of Π0
K̂

,∫
ê

ˆcurlΠ0
K̂
ρ̂ · n̂ dŝ =

∫
ê

∂

∂ŝ
Π0
K̂
ρ̂ dŝ = 0∫

ê

ˆcurlΠ0
K̂
ρ̂ · n̂ ŝ dŝ =

∫
ê

∂

∂s
(Π0

K̂
ρ̂)ŝ dŝ = −

∫
ê

Π0
K̂
ρ̂ dŝ = −

∫
ê

ρ̂ dŝ.

By the trace theorem, it follows that

|| ˆcurlΠ0
K̂
ρ̂||L2(T̂ ) ≤ C||ρ̂||1,T̂ ,

and scaling to an arbitrary rectangle K, we get

|| curl Π0
Kρ||L2(K) ≤ C(h−1|ρ|0,K + C|ρ|1,K).

We therefore have

|| curl ΠΘh
ρ||L2 ≤ || curl Π0

h(I − Lh)ρ||L2 + || curlLhρ||L2

≤ c(h−1||(I − Lh)ρ||L2 + ||(I − Lh)ρ||H1) + c||Lhρ||H1

≤ c||ρ||H1 ,

that is (2.10) holds. Since div Σh ⊂ Vh, the Brezzi conditions hold and the error
estimates follow from the optimality error estimate from the theory of mixed methods,
properties of the canonical interpolation operator for BDM elements, [16] p. 132, and
error estimates of the L2 projection operator. �

3.1. Simplified element of low order. Analogous to the simplified element of [7],
we can develop elements simpler than the lowest order BDM type elements. The key
point is that for (2.8) to hold, we only need Θh to have normal components continuous
across edges. We start the construction by taking as Θh the rectangular version of a
space introduced by Fortin, [20] and [21] p. 153. The spaces Rh, Vh and Qh are the
same. To define the space Θh, let i, j be the unit vectors in the x and y directions
respectively. We put

p1 = −x(1− x)(1− y) i

p2 = −y(1− y)(1− x) j

p3 = x(1− x)y i

p4 = xy(1− y) j,

and define on each element K,

ΘK = P1,1(K)× P1,1(K)⊕ span { p1, p2, p3, p4 }

with degrees of freedom

(1) the values of q at the vertices (4× 2 = 8 degrees of freedom),
(2) the average of q · n on each edge (4 degrees of freedom).

The stress space ΣK is defined as(
P1,0(K) P0,1(K)
P1,0(K) P0,1(K)

)
⊕ span { curl p1, curl p2, curl p3, curl p4 },
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where

(
P1,0(K) P0,1(K)
P1,0(K) P0,1(K)

)
is the space of matrix fields with components in the in-

dicated spaces. Explicitly, we have curl p1 =

(
x(1− x) (1− 2x)(1− y)

0 0

)
, curl p2 =(

0 0
(−1 + 2y)(1− x) −y(1− y)

)
, curl p3 =

(
x(1− x) −(1− 2x)y

0 0

)
and curl p4 =(

0 0
x(1− 2y) −y(1− y)

)
.

For τ ∈
(
P1,0(K) P0,1(K)
P1,0(K) P0,1(K)

)
, τn ∈ P0(e)× P0(e) on each edge e but (curl pi)n · t ∈

P1(e), i = 1, . . . , 4. The following degrees of freedom are unisolvent:

(1)
∫
e
τn · n ds for each edge e

(2)
∫
e
τn · t p ds for each edge e and p ∈ P1(e).

To see this, let τ = η+a1 curl p1 +a2 curl p2 +a3 curl p3 +a4 curl p4 ∈ ΣK such that all
the above degrees of freedom vanish. Since the normal component of (τi1, τi2), i = 1, 2
vanish on each edge, we have

τi1 = x(1− x)ci1, τi2 = y(1− y)ci2, i = 1, 2, ci,j ∈ R, i, j = 1, 2.

Since

τ11 = η11 + a1x(1− x) + a3x(1− x), η11 ∈ P10(K)

τ12 = η12 + a1(1− 2x)(1− y)− a3(1− 2x)y, η12 ∈ P01(K)

τ21 = η21 + a2(−1 + 2y)(1− x)− a4x(1− 2y), η21 ∈ P10(K)

τ22 = η21 − a4y(1− y)− a4y(1− y), η22 ∈ P01(K),

we conclude that a1 = a2 = a3 = a4 = 0 and η = 0, that is: τ = 0 and the claim
follows.

From the approximation properties of the lowest order Raviart-Thomas element, the
estimate (3.4) still holds.

4. Three dimensional elements

The de Rham complex in three dimensions is

R ⊂−→ C∞(Ω,R)
grad−−→ C∞(Ω,R3)

curl−−→ C∞(Ω,R3)
div−−→ C∞(Ω,R) −→ 0.

We choose the following form of BDM elememt, [16], p.124

BDM1(K) = P1(K,R3) + curl span

{  0
0
xy2

 ,

 0
0
x2y

 ,

y2z
0
0

 ,

yz2

0
0

 ,

 0
xz2

0

 ,

 0
x2z
0

 }
.

Clearly divBDM1(K) = P0(K). We define VK = P0(K)3 and

ΣK = { τ, τ(x, y, z) ∈M, (τi1, τi2, τi3) ∈ BDM1(K), i = 1, 2, 3 }.
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The degrees of freedom on VK are the values of each component at an interior point
while a matrix field τ in ΣK is uniquely determined by the moments of order 0 and
1 of τn on each face (3× 3× 6 degrees of freedom).

We now define two spaces SK and UK such that the sequence below is exact.

R ⊂−→ SK
grad−−→ UK

curl−−→ BDM1(K)
div−−→ P0(K,R) −→ 0.

The space SK is not directly used in the construction but helped discover UK . We
take the space SK as the three dimensional serendipity space of order 2 defined as

SK = P2(K,R) + span{x2y, x2z, xy2, xz2, y2z, yz2, xyz, x2yz, xy2z, xyz2 },

with degrees of freedom

(1) the values of q ∈ SK at the vertices (8 degrees of freedom),
(2) the average of q ∈ SK on each edge (12 degrees of freedom).

The unisolvency of these degrees of freedom is proven for example in [4]. We define
the space UK as

UK = P1,1,1(K,R3) + span{ y2z, yz2, y2, z2 } × span{x2z, xz2, x2, z2 } × span{x2y, xy2, x2, y2 },

with degrees of freedom for u ∈ UK ,

(1) the first two moments of u · t on each edge, where t is a tangential vector to
the edge (12× 2 = 24 degrees of freedom),

(2) the average of u ∧ n on each face with unit outward normal n (6 × 2 = 12
degrees of freedom).

It is not very difficult to verify that the sequence above is exact. One checks that
each space is mapped in the one that follows. Then one notes that the alternating
sum of the dimensions is zero and that the polynomial de Rham sequence is exact.
We then only need to verify either that the kernel of the curl operator is the image
of the grad operator or that the kernel of the div operator is the image of the curl
operator. We verify the last one. Let u ∈ BDM1(K) such that div u = 0. We
write u = w + curl z, w ∈ P1(K,R3) and z in the span of the extra monomials in
the definition of BDM1(K). Note that z ∈ UK and div u = divw = 0. By the
exactness of the polynomial de Rham sequence, w = curl a, a ∈ P2(K,R3). Since for
α, β, γ ∈ R, curl(αx2, βy2, γz2) = 0, we may assume that a ∈ UK which completes the
proof of the claim.

We can now describe the space Θh as

Θh = { q, q(x, y, z) ∈M, (qi1, qi2, qi3) ∈ Uh, i = 1, 2, 3 },

with the degrees of freedom for q ∈ Θh

(1)
∫
e
q t si, i = 0, 1 for each edge e, where t is a tangential vector to the edge

(12× 2× 3 = 72 degrees of freedom),
(2)

∫
f
q∧n dxf for each face f with unit outward normal n (6×2×3 = 36 degrees

of freedom). For a matrix field q with row vectors qi, i = 1, 2, 3, q∧n is defined
as the matrix field with rows qi ∧ n, i = 1, 2, 3.
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Next we define the space Qh. We take QK = P0(K)3 with degrees of freedom the
values of each component at an interior point.

Finally we describe the space Rh as

{ q, q(x, y, z) ∈M, (qi1, qi2, qi3)|K ∈ RT0(K), i = 1, 2, 3 },
where

RT0(K) = P1,0,0(K)× P0,1,0(K)× P0,0,1(K),

is the lowest order Raviart-Thomas element in three dimensions with degrees of free-
dom the average of the normal component on each face, (1 × 1 × 6=6 degrees of
freedom).

4.0.1. Unisolvency. The unisolvency of the degrees of freedom for VK , ΣK and SK
are well known. Similarly unisolvency for the degrees of freedom of Rh is immediate.
We only study the case of UK . Let v = (v1, v2, v3) ∈ UK and assume that all degrees
of freedom vanish. We show that v1 = 0. On each edge e, v · t ∈ P1(e) and hence we
get v · t = 0 on each edge. This implies that on the face z = 0 for example,

v1 = y(1− y)w1, w1 ∈ P1,0

v2 = x(1− x)w2, w2 ∈ P0,1.

However, if w1 has a linear term in x, xy2 would be the highest degree monomial in
v1. We conclude that w1 is constant. The face degrees of freedom imply that the
average of w1 vanish on the face z = 0, that is: w1 = 0. Similarly w2 = 0. We
conclude that v has expression

v1 = y(1− y)z(1− z)r1,

v2 = x(1− x)z(1− z)r2,

v3 = x(1− x)y(1− y)r3,

for constants r1, r2 and r3 which must vanish given the form of the highest degree
monomial in the expression of vi, i = 1, 2, 3.

4.0.2. Definition of interpolation operators. For q ∈ C∞(Ω,M), we define ΠRh
by∫

f

(ΠRh
q)n dx =

∫
f

qn dx, for all faces f.

The interpolation operator ΠΣh
is defined by∫

f

ΠΣh
(σ)n · q ds =

∫
f

σn · q ds, for all faces f and for all q ∈ P1(f)× P1(f)× P1(f).

It remains to define the interpolation operator ΠΘh
. For this we first define Π0

K :
H1(K,M)→ ΘK by∫

e

(Π0
Kq) t s

i ds = 0, i = 0, 1 for each edge e ⊂ ∂K,∫
f

(Π0
Kq) ∧ n dxf =

∫
f

q ∧ n dxf , for each face f ⊂ ∂K
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and Π0
h : H1(Ω,M)→ Θh by (Π0

hτ)|K = Π0
Kτ . Next, let Lh be a Clement interpolation

operator [14, 18] which maps L2(Ω,R) into

{ θh ∈ C0(Ω̄) | θh|K ∈ P1,1,1,∀K ∈ Th },
and denote as well by Lh the corresponding operator which maps L2(Ω,M) into the
subspace of Θh of continuous matrix fields whose components are piecewise in P1,1,1.
We have

(4.1) ‖Lhτ − τ‖j ≤ chm−j‖τ‖m, 0 ≤ j ≤ 1, j ≤ m ≤ 2,

with c independent of h. We define our interpolation operator ΠΘh
by

(4.2) ΠΘh
= Π0

h(I − Lh) + Lh.

4.0.3. Commutativity and surjectivity assumptions. The commutativity assumption
(2.6) and (2.7) are proven as in the 2D case. We verify the surjectivity assumption
ΠRh

SΠΘh
= ΠRh

S. We first show that ΠRh
SΠΘh

= ΠRh
S. For this let q ∈ C∞(Ω,M),

put ω = q − Π0
hq. We need to show that ΠRh

Sω = 0, that is∫
f

(Sω)(x)n dxf = 0, for each face f.

Since Π0
hw = 0, ∫

f

ω ∧ n = 0, for each face f.

Next for q = (qij)i,j=1,2,3,

q ∧ n =

q13n1 − q11n3 q11n2 − q12n1 q12n3 − q13n2

q23n1 − q21n3 q21n2 − q22n1 q22n3 − q23n2

q33n1 − q31n3 q31n2 − q32n1 q32n3 − q33n2

 ,

and

(Sq)n =

 q22n1 + q33n1 − q21n2 − q31n3

−q12n1 + q11n2 + q33n2 − q32n3

−q13n1 − q23n2 + q11n3 + q22n3

 =

−(q ∧ n)22 + (q ∧ n)31

(q ∧ n)12 − (q ∧ n)33

−(q ∧ n)11 + (q ∧ n)23

 .

This shows that
∫
f
ω ∧ n = 0 implies

∫
f
(Sω)n = 0 and the result follows using the

definition of Πh.

We notice that for q ∈ Θh, for the surjectivity assumption to hold, the following de-
grees of freedom were not used:

∫
f
q12n3−q13n2 dxf =

∫
f
(q∧n)13,

∫
f
q23n1−q21n3 dxf =∫

f
(q ∧ n)12,

∫
f
q31n2 − q32n1 dxf =

∫
f
(q ∧ n)32. However since the faces of a rectangle

are parallel to the axes, one of these degrees of freedom is identically zero for each
face, hence two degrees of freedom per face are unnecessary.

4.0.4. Boundedness of the interpolation operators. By the trace theorem, one shows
that (ΠΣh

)|K̂ is bounded on H1(K̂,M). Moreover if we define for a matrix field

M̂ , PF (M̂)(x) = 1/det(B)M̂(x̂)BT , x = F (x̂), then it is not difficult to verify that
PF ((ΠΣh

)|K̂ σ̂) = (ΠΣh
)|KPF σ̂, hence (2.9) follows from a standard scaling argument.

Let ρ̂ ∈ H1(K̂,R3). We define its Piola transform by PF ρ̂ = (PF ρ̂1, PF ρ̂2, PF ρ̂3) where
for a scalar function û, PF û = û ◦ F−1.
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Since ˆcurlΠ0
K̂
ρ̂ ∈ ΣK̂ ,

|| ˆcurlΠ0
K̂
ρ̂||L2(T̂ ) ≤ C

∑
f̂⊂∂K̂

1∑
i=0

∣∣∣∣ ∫
f̂

ˆcurlΠ0
K̂
ρ̂ · n̂ŝi dŝ

∣∣∣∣,
where f̂ is a face of ∂K̂. Next, using the definition of Π0

K̂
, for q ∈ P1,1(f)×P1,1(f)×

P1,1(f), ∫
f̂

( ˆcurl(Π0
K̂
ρ̂)n̂) · q dxf =

∫
f̂

(Π0
K̂
ρ̂) ∧ n̂∇q dxf =

∫
f̂

ρ̂ ∧ n̂∇q dxf .

By the trace theorem, it follows that

|| ˆcurlΠ0
K̂
ρ̂||L2(T̂ ) ≤ C||ρ̂||1,T̂ ,

and scaling to an arbitrary rectangle K, we get

|| curl Π0
Kρ||L2(K) ≤ C(h−1|ρ|0,K + C|ρ|1,K).

We therefore have

|| curl ΠΘh
ρ||L2 ≤ || curl Π0

h(I − Lh)ρ||L2 + || curlLhρ||L2

≤ c(h−1||(I − Lh)ρ||L2 + ||(I − Lh)ρ||H1) + c||Lhρ||H1

≤ c||ρ||H1 ,

that is (2.10) holds. Since div Σh ⊂ Vh, the Brezzi conditions hold. From the op-
timality error estimate from the theory of mixed methods (2.13), properties of the
canonical interpolation operator for BDM elements, [16] p. 132, and error estimates
of the L2 projection operator, we have the following error estimate.

Theorem 4.1. For the triple (Σh, Vh,Θh) the conditions of Theorem (2.1) hold and
we have the optimality condition (2.13). Moreover if σ and u are sufficiently smooth,

||σ − σh||H(div) + ||u− uh||L2 + ||γ − γh||L2 ≤ C h||u||3.(4.3)

5. Higher order elements

Except the simplified element in two dimension, the elements we have described do
not have optimal rate of convergence for the stress. It does not seem possible to
simplify the three dimensional element using the framework described here. In two
dimension, for higher order approximation, H(div) elements can be constructed based
on the sequence,

0 −→ R ⊂−→ Pk+1,k+1
curl−−→ Pk+1,k × Pk,k+1

div−−→ Pk,k −→ 0.

Take Vh to be the space of piecewise continuous vector fields which belong locally
to Pk,k(K) × Pk,k(K), Qh the space of piecewise continuous functions which belong
locally to QK = Pk−1,k−1(K) and ΣK = { τ ∈M, (τi1, τi2) ∈ Pk+1,k × Pk,k+1, i = 1, 2 }
with degrees of freedom

(1)
∫
e
τn · pk ds, for each edge e of K, ∀ pk ∈ Pk(e),

(2)
∫
K
τ : φ dx, ∀φ ∈

(
Pk,k−1(K) Pk−1,k(K)
Pk,k−1(K) Pk−1,k(K)

)
,
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for k ≥ 1. The space Rh is taken to be the Raviart-Thomas space of order k − 1
and finally the space Θh is the space of continuous vector fields with components in
Pk+1,k+1(K) on each element K. Again, there one does not have optimal convergence
rate for the stress. We leave the details of the three dimensional analogue to the
interested reader.
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