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LOW ORDER MIXED FINITE ELEMENT APPROXIMATIONS

OF THE MONGE-AMPÈRE EQUATION

JAMAL ADETOLA, BERNADIN AHOUNOU, GERARD AWANOU, AND HAILONG GUO

Abstract. In this paper, we are interested in the analysis of the convergence of a low order
mixed finite element method for the Monge-Ampère equation. The unknowns in the formulation

are the scalar variable and the discrete Hessian. The distinguished feature of the method is that
the unknowns are discretized using only piecewise linear functions. A superconvergent gradient
recovery technique is first applied to the scalar variable, then a piecewise gradient is taken, the

projection of which gives the discrete Hessian matrix. For the analysis we make a discrete elliptic
regularity assumption, supported by numerical experiments, for the discretization based on gra-
dient recovery of an equation in non divergence form. A numerical example which confirms the
theoretical results is presented.
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1. Introduction

In this paper, we analyze a linear finite element discretization of the elliptic
Monge-Ampère equation for smooth solutions on a convex polygonal domain. The
method is a variant of the method introduced in [15] for which numerical experi-
ments for both smooth and non-smooth solutions were reported in [20]. Let Ω be
a convex polygonal domain in R2 endowed with a triangulation Th which is con-
forming and quasi-uniform. For the purpose of our analysis, we further assume the
triangulation to be uniform, i.e. two triangles sharing an edge form a parallelogram.
Let Vh denote the space of piecewise linear continuous functions on Ω and let Σh

denote the space of piecewise linear continuous 2×2 matrix fields on Ω. Our goal is
to seek an element uh ∈ Vh which approximates the unique strictly convex C4(Ω)
solution u (when it exists) of the problem

det(D2u) = f inΩ,

u = g on ∂Ω.
(1)

The right hand side function f ∈ C2(Ω) is assumed to satisfy f > 0. The boundary
function g ∈ C(∂Ω) is also given and assumed to extend to a C4(Ω) convex function.
Here we use det(D2u) to denote the determinant of the Hessian matrix D2u =(
∂2u/(∂xi∂xj)

)
i,j=1,2

.

The discrete problem is to find uh ∈ Vh such that uh = gh on ∂Ω and∫
Ω

(f − detH(uh))v dx = 0, ∀v ∈ Vh ∩H1
0 (Ω),(2)

where H(uh), the discrete Hessian of uh, is an element of Σh defined by∫
Ω

H(uh) : µdx =

∫
Ω

(DGhuh) : µdx, ∀µ ∈ Σh.(3)

The operator Gh : Vh → Vh × Vh in (3) is taken as the weighted average gradient
recovery operator and is somehow a substitution for the gradient operator. The
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finite element function gh is the standard finite element interpolation of the conti-
nuous function g in Vh. For two matrices A and B, A : B denotes their Frobenius
inner product. We denote by E i

h the set of interior edges of Thand by Nh the set
of vertices of Th. For a vector field v, Dv denotes its piecewise gradient vector, the
matrix field with rows the gradients of the corresponding components of v,.

The Monge-Ampère operator appears in a number of problems where the solution
is known to be smooth. For example, it appears in the study of von Kármán model
for plate buckling [5]. It is argued in [17] that for meteorological applications for
which legacy finite element codes are used for the discretization of other differential
operators, it could be advantageous to use a finite element discretization as well for
the Monge-Ampère operator. The readers are referred to [9, 21] and the references
therein for a review of numerical methods for Monge-Ampère type equations.

Problem (2) with the discrete Hessian (3) is equivalent to the following mixed
formulation: find (uh, σh) ∈ Vh × Σh such that uh = gh on ∂Ω∫

Ω

(f − detσh)v dx = 0, ∀v ∈ Vh ∩H1
0 (Ω)∫

Ω

σh : µdx =

∫
Ω

(DGhuh) : µdx, ∀µ ∈ Σh.

(4)

Analysis of discretizations similar to (2) and (4) for cubic and higher order elements
were conducted in [20, 3]. Problem (2), with the gradient recovery operator replaced
by the piecewise gradient in a weak formulation of (3), was proposed in [15, 20] for
quadratic and higher order approximations, c.f. Remark 3.2 below. See also [20] for
a version with linear approximations. Related ideas can be found in [14, 10, 16, 11].
Our error analysis is based on the above formulation (4). We use the same argument
as in [20, 3].

In addition, we make a discrete elliptic regularity assumption for the discretiza-
tion based on a gradient recovery operator of the non divergence form of a linear
elliptic equation. We support this assumption with numerical experiments. The
linear elliptic equation considered is the linearization of the Monge-Ampère equa-
tion and can be written in both divergence and non divergence forms. A discrete
elliptic regularity approach for a linear equation in divergence form was first used
in [19] for interior penalty methods for the Monge-Ampère equation on a smooth
domain. It was recently used in [2] for a mixed method under an assumption of
elliptic regularity for the linearization of the continuous problem.

We show that the piecewise gradient of the recovered gradient of the finite ele-
ment solution converges at a rate O(h) to the piecewise gradient of the recovered
gradient of the interpolant in the Lp norm with | lnh| ≤ p ≤ 2| lnh|, and the discrete
Hessian converges at a rate O(h) in the L∞ norm.

Our analysis is limited to uniform partitions of a convex polygonal domain so that
we can take advantage of a superconvergent approximation property for the gradient
recovery operator proved in [23], c.f. (11) below. We want to emphasize that
although we only give the analysis on uniform meshes, numerical results indicate
that the results may hold on general Delaunay triangulations. Elements of Σh can
be required to be symmetric matrix fields to reduce the number of unknowns. The
analysis of this paper also holds in that case.

The rest of the paper is organized as follows. In Section 2, we present some
additional notation and preliminaries. In Section 3, we conduct the error estimate
for the discrete Monge-Ampère equation. In section 4, we give numerical results for
a smooth solution to support our theoretical results. Some conclusions are drawn in
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section 5. In an appendix, we collect some detailed calculations and give numerical
results to support our discrete elliptic regularity assumption.

Remark 1.1. Part of this paper is based on the Ph.D. thesis of Jamal Adetola [1].

2. Preliminaries

For a subdomain S of Ω and a given real number 1 ≤ p ≤ ∞, let W k,p(S) denote
the Sobolev space with norm ∥ · ∥Wk,p and seminorm | · |Wk,p . The Sobolev space
W k,p(S) reduces to the standard Lebesgue space Lp(S) and its norm is denoted
∥ · ∥Lp(S) when k = 0. When p = 2, we denote simply W k,2(S) by Hk(S) and the

corresponding norm is denoted ∥ · ∥Hk . In addition, we let H1
0 (S) be the subset of

H1(S) of elements with vanishing traces. Similarly, W k,p
0 (S) denotes the subset of

W k,p(S) of elements with vanishing traces.
Given a normed space X with norm ||.||X , let X2 denote the space of vector

fields with components in X and let X2×2 denote the space of matrix fields with
each component in X. If X is finite dimensional of dimension N , then X2 has
dimension 2N and X2×2 has dimension 4N . The inner products in L2(Ω), L2(Ω)2,
and L2(Ω)2×2 are denoted by (·, ·) and the inner products on L2(∂Ω) and L2(∂Ω)2

are denoted ⟨·, ·⟩. For 1 ≤ p < ∞ and v = (vi)
2
i=1 ∈ W k,p(S)2, its norm is given by

(||v||Wk,p)p = (||v1||Wk,p)p + (||v2||Wk,p)p. Similarly σ = (σij)
2
i,j=1 ∈ W k,p(S)2×2

has norm given by (||σ||Wk,p)p =
∑2

i,j=1(||σij ||Wk,p)p.

Put ||v||Wk,∞ = maxi=1,2 ||vi||Wk,∞ and ||σ||Wk,∞ = maxi,j=1,2 ||σij ||Wk,∞ .
Let n denote the unit outward normal vector to ∂Ω. For a matrix A with

entries Aij , recall that the cofactor matrix of A, denoted cof A, is the matrix with

entries (cof A)ij = (−1)i+j det(A)ji where det(A)ji is the determinant of the matrix
obtained from A by deleting its ith row and its jth column. For two matrices
A = (Aij)i,j=1,2 and B = (Bij)i,j=1,2, their Frobenius inner product is given by

A : B =
2∑

i,j=1

AijBij .

We define the divergence of a matrix field as the vector obtained by taking the
divergence of each row. We denote by hK the diameter of the element K and put
h = max

K∈Th

hK . We assume that h ≤ 1 and denote by he the length of the edge e.

We assume that the triangulation is conforming and quasi-uniform, i.e. there is a
constant C > 0 such that h ≤ CρK for all K ∈ Th, where ρK denotes the radius
of the largest ball inside K. Finally, we require that two triangles sharing an edge
form a parallelogram. Triangulations with the latter property are called uniform.
Constants are named and unless indicated, are independent of h and p.

For a scalar function v, Dv denotes its piecewise gradient vector when it is
defined. We will often use the inverse estimate [6, Theorem 4.5.11]

(5) ∥zh∥W t,p(Th) ≤ C1h
s−t+min(0, 2p−

2
q )∥zh∥W s,q(Th),

for 0 ≤ s ≤ t, 1 ≤ p, q ≤ ∞ and zh ∈ Vh. As explained in [2] the constant C1 in (5)
is independent of h and p. In particular,

||Dv||L∞ ≤ C1h
−1||v||L∞ , ∀v ∈ Vh.(6)

Let Ih(v) denote the Lagrange interpolant of v ∈ C(Ω). We have

||v − Ihv||W j,p ≤ C2h
2−j∥v∥W 2,p ,∀v ∈ W 2,p(Ω), j = 0, 1 and 2 ≤ p ≤ ∞.(7)

We will use the same constant C2 for constants arising from an interpolation es-
timate. We note that for v ∈ C(Ω) ∩ W 1,p(Ω) and p > 2 the interpolation and



672 J. ADETOLA, B. AHOUNOU, G. AWANOU, AND H. GUO

stability estimates

||v − Ihv||Lp ≤ C2h||v||W 1,p

||DIhv||Lp ≤ C2||v||W 1,p ,
(8)

hold [6, Corollary 4.4.24], where we use for simplicity the same constant C2 as in
the interpolation error estimate (7).

We make the abuse of notation of denoting by Ihσ the matrix field with compo-
nents the corresponding Lagrange interpolants of the components of σ. Again by
an abuse of notation, let Ih(Dv) denote the Lagrange interpolant of Dv ∈ C(Ω)2.
Applying (7) to each component of σ − Ihσ we have

||σ − Ihσ||Lp(K) ≤ 2C2h
2
K∥σ∥W 2,p ,∀σ ∈ W 2,p(K)2×2 .(9)

Recall that Gh : Vh → Vh × Vh denotes the weighted average gradient recovery
operator. For any vertex P ∈ Nh, let ωP := { τ ∈ Th, P ∈ τ } be the union of local
elements attached to P . For vh ∈ Vh, the recovered gradient at the vertex P is
defined by

(Ghvh)(P ) =
1

|ωP |

∫
ωP

Dvh,

where |ωP | is the measure of ωP . The recovered gradient function is then defined
as

Ghvh =
∑

P∈Nh

(Ghvh)(P )ϕP ,

where ϕP is the linear nodal basis function corresponding to P . It is known that this
definition is equivalent on uniform meshes to the polynomial preserving recovery
operator analyzed in [23]. Thus, if we assume that the mesh is uniform, as in [18,
Theorem 3.2], we have for all v ∈ Vh and p ≥ 2

(10) ||Ghv||Lp ≤ C3||Dv||Lp .

Moreover, analogous to [12, Lemma 4.5], Gh is superconvergent in the sense that
for 2 ≤ p ≤ ∞

(11) ||Du−GhIhu||Lp ≤ C4h
2||u||W 3,p .

We will also need the simpler convergence estimate (using the same constant C4

for convenience)

(12) ||Du−GhIhu||Lp ≤ C4h||u||W 2,p ,

the proof of which is similar to the proof of (11), based on the Bramble-Hilbert
lemma.

Arguing as for the proof of [13, Theorem 3.2], we have for 2 ≤ p ≤ ∞

||D2u−DGhIhu||Lp ≤ ||D2u−D(Ih(Du))||Lp + ||D(Ih(Du))−DGhIhu||Lp

≤ C2h||Du||W 2,p + C1h
−1||Ih(Du)−GhIhu||Lp

≤ C2h||Du||W 2,p + C1h
−1||Ih(Du)−Du||Lp

+ C1h
−1||Du−GhIhu||Lp

≤ C2h||Du||W 2,p + C2C1h||Du||W 2,p + C4C1h||u||W 3,p

≤ (C2 + C2C1 + C4C1)h||u||W 3,p ,

where in the first step we use a triangular inequality, (7) and (6) in the second step,
a triangular inequality in the third step, then (6) and (11) in the fourth. We put
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C5 = C2 + C2C1 + C4C1, and we have

(13) ||D2u−DGhIhu||Lp ≤ C5h||u||W 3,p .

We have for v ∈ Vh

|| divGhv||Lp ≤ ||DGhv||Lp .

Analogous to [8, Lemma 3], c.f. the appendix,for vh ∈ Vh ∩H1
0 (Ω) and p ≥ 2

(14) ∥Ghvh −Dvh∥Lp ≤ C6h∥div(Ghvh)∥Lp .

By Poincaré’s inequality and [8, Lemma 4], for all v ∈ Vh ∩H1
0 (Ω)

||v||L2 ≤ C7||Dv||L2 ≤ C8||DGhv||L2 .(15)

Since for p ≥ 2, ||DGhv||L2 ≤ C9||DGhv||Lp , it follows from (15) that if ||DGhv||Lp =
0 for vh ∈ Vh ∩H1

0 (Ω), we have vh = 0. We shall consider the following norm on
Vh ∩H1

0 (Ω) for p ≥ 2

(16) ∥v∥p
W̃ 1,p(Ω)

:= ||DGhv||pLp .

Let nK denote the outward normal to an element K of Th and let vK denote the
restriction of the field v on K. For any edge e ⊂ ∂K such that e = ∂K ∩ ∂L for
L ∈ Th, we define for a vector v the jump of v by [[v]]e = vK · nK + vL · nL. If e is a
boundary edge, i.e. e = ∂K ∩ ∂Ω, we let [[v]]e = vK · nK .

3. Error analysis for smooth solutions

We need the following weak formulation of (1): find (u, σ) ∈ W 4,∞(Ω)×W 2,∞(Ω)2×2

such that for all K ∈ Th
(σ, µ)K + (divµ,Du)K − ⟨Du, µn⟩∂K = 0, ∀µ ∈ H1(Ω)2×2

(detσ, v) = (f, v), ∀v ∈ H1
0 (Ω)

u = g on ∂Ω.

(17)

It was proved in [3] that (17) is well defined. Also, if u is a smooth solution of (1),
then (u,D2u) solves (17). We first make an observation which will allow us to view
(4) as a variant of a method proposed in [15, 20].

Lemma 3.1. For µ ∈ Σh and v ∈ Vh

(DGhv, µ) = −(div µ,Ghv) + ⟨Ghv, µn⟩∂Ω.

Proof. Using an integration by parts

(divµ,Ghv) =
∑

K∈Th

(div µ,Ghv)K = −
∑

K∈Th

(µ,DGhv)K +
∑

K∈Th

⟨Ghv, µnK⟩∂K

= −
∑

K∈Th

(µ,DGhv)K +
∑
e∈Ei

h

∫
e

[[µGhv]] ds+ ⟨Ghv, µn⟩∂Ω.

Since µ and Ghv are continuous, the result follows. �

Remark 3.2. It follows from Lemma 3.1 that for µ ∈ Σh

(H(v), µ) = −(div µ,Ghv) + ⟨Ghv, µn⟩∂Ω,

which is the definition of the discrete Hessian given in [15] with Ghv replaced by
Dv.
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In this paper, we make a discrete elliptic regularity assumption for the non
divergence form of the linearization of (1), c.f. Assumption 3.5 below. To partially
motivate such an assumption, we prove a discrete elliptic regularity assumption
for the divergence form of the linearization of (1). First we make a regularity
assumption about the continuous problem.

Assumption 3.3. Let ϕ be the solution of

(18) − div((cofD2u)Dϕ) = r in Ω, ϕ = 0 on ∂Ω.

For r ∈ Lp(Ω), p ≥ 2, the weak solution ϕ of (18) is in W 2,p(Ω) and

(19) ∥ϕ∥W 2,p ≤ C10(D
2u)p∥r∥Lp ,

for a constant C10 which depends on D2u. Moreover, if r ∈ H1(Ω) ∩ C(Ω), then
Dϕ ∈ C(Ω)2.

It is known that (19) holds when Ω is smooth [7] and when Ω is a plane rect-
angular domain [1]. As for the C1 continuity of ϕ, it is known that when Ω is
an acute triangular domain [4, Section 4.1], for r ∈ H1(Ω), ϕ ∈ H3(Ω), hence
Dϕ ∈ (H2(Ω))2. Thus Dϕ ∈ C(Ω)2.

Lemma 3.4 (A discrete elliptic regularity result). Let r ∈ Lp(Ω) ∩ H1(Ω) ∩
C(Ω), p > 2 and let v ∈ Vh ∩W 1,p

0 (Ω) solve

(20)
(
(cofD2u)Dv,Dw

)
= (r, w), ∀w ∈ Vh ∩W 1,p

0 (Ω).

We have
∥v∥

W̃ 1,p(Th)
≤ C11(D

2u)p∥r∥Lp ,

for a constant C11 which depends on D2u.

Proof. By Assumption 3.3, ϕ ∈ W 2,p(Ω) and

||ϕ||W 2,p ≤ C10p||r||Lp .

Let Ph : W 1,p
0 (Ω) → Vh ∩W 1,p

0 (Ω) be the projection defined by(
(cofD2u)DPhz,Dw

)
=

(
(cofD2u)Dz,Dw

)
, ∀w ∈ Vh ∩W 1,q

0 (Ω),
1

p
+

1

q
= 1.

For z ∈ W 2,p(Ω) we have div
(
(cofD2u)Dz

)
∈ Lp(Ω) and for w ∈ W 1,q

0 (Ω)(
(cofD2u)Dz,Dw

)
=

(
div

(
(cofD2u)Dz

)
, w

)
.

We have, c.f. for example [6, (8.5.4)],

(21) ∥Phw − w∥W 1,p ≤ C12(D
2u)h∥w∥W 2,p for w ∈ W 2,p(Ω) ∩W 1,p

0 (Ω),

for a constant C12 which depends on D2u.
Analogous to the proof of (13), we have using (12), (8) and the continuity of Dϕ

||D2ϕ−DGhIhϕ||Lp ≤ ||D2ϕ−D(Ih(Dϕ))||Lp + ||D(Ih(Dϕ))−DGhIhϕ||Lp

≤ ||ϕ||W 2,p + C2||Dϕ||W 1,p + C1h
−1||Ih(Dϕ)−GhIhϕ||Lp

≤ ||ϕ||W 2,p + C2||Dϕ||W 1,p + C1h
−1||Ih(Dϕ)−Dϕ||Lp

+ C1h
−1||Dϕ−GhIhϕ||Lp

≤ (1 + C2)||ϕ||W 2,p + C1C2||ϕ||W 2,p + C1C4||ϕ||W 2,p

≤ C13||ϕ||W 2,p ,

(22)
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with C13 = 1 + C2 + C1C2 + C1C4. We have by (22) and (21)

||DGhPhϕ||Lp ≤ ||DGhPhϕ−DGhIhϕ||Lp + ||DGhIhϕ−D2ϕ||Lp + ||D2ϕ||Lp

≤ C1h
−1||Gh(Phϕ− Ihϕ)||Lp + ||DGhIhϕ−D2ϕ||Lp + ||D2ϕ||Lp

≤ C1C3h
−1||D(Phϕ− Ihϕ)||Lp + (1 + C13)||ϕ||W 2,p

≤ C1C3h
−1||DPhϕ−Dϕ||Lp + C1C3h

−1||Dϕ−DIhϕ||Lp

+ (1 + C13)||ϕ||W 2,p

≤ C1C3C12∥ϕ∥W 2,p + C1C3C2∥ϕ∥W 2,p + (1 + C13)||ϕ||W 2,p .

Therefore for a constant C14 := C1C3(C12(D
2u) +C2) + 1+C13 which depends on

D2u, we have

(23) ||DGhPhϕ||Lp ≤ C14||ϕ||W 2,p .

We obtain ∥v∥
W̃ 1,p(Th)

≤ C14||ϕ||W 2,p . We have ∥ϕ∥W 2,p ≤ C10p||r||Lp by (19),

from which the result follows. �

We will not use the above discrete elliptic regularity result in this paper. What
is needed is the discrete elliptic regularity assumption below. Numerical results
supporting such an assumption are given in the appendix. The solvability and
error estimates for (25) is the main difficult part. With estimates such as (21)
for a suitable projection for the non divergence form of the equation, the proof of
the discrete elliptic regularity assumption would be similar to the one proved in
Theorem 3.4.

Since div cofD2u = 0, div((cofD2u)Dϕ) = r in Ω can be written

(24) A : D2ϕ = r in Ω,

where

A = cofD2u.

We next consider a discretization of the above form (24), known as non divergence
form, of the linearization of (1).

Assumption 3.5 (Discrete elliptic regularity for non divergence form). For r ∈
Lp(Ω), p ≥ 2, there exists a unique v ∈ Vh ∩W 1,p

0 (Ω) which solves

(25) (A : H(v), w) = (r, w), ∀w ∈ Vh ∩W 1,p
0 (Ω).

Moreover

(26) ∥v∥
W̃ 1,p(Ω)

≤ C15(D
2u)p∥r∥Lp ,

for a constant C15 which depends on D2u.

The proof of the following lemma is the same as the proof of [2, Lemma 2.3].

Lemma 3.6. For p ≥ 2 and q such that 1/p+ 1/q = 1, we have

∥r∥Lp ≤ C16 sup
χ ̸=0

χ∈Vh

|(r, χ)|
∥χ∥Lq

, r ∈ Vh

∥r∥Lp ≤ C16 sup
χ̸=0

χ∈Vh∩H1
0 (Ω)

|(r, χ)|
∥χ∥Lq

, r ∈ Vh ∩H1
0 (Ω),

where we use the same constant C17 in both estimates for convenience.
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Lemma 3.6 also holds for matrix valued fields. One starts with a converse Hölder
inequality for matrix fields

∥η∥Lp = sup
µ̸=0

µ∈(Lq(Ω))2×2

|(η, µ)|
∥µ∥Lq

, η ∈ (Lp(Ω))2×2,
1

p
+

1

q
= 1, 1 < p < ∞.(27)

We give the proof of (27) in the appendix. One then uses projections as in the
proof of [2, Lemma 2.3] to obtain

∥η∥Lp ≤ C16 sup
µ̸=0

µ∈Σh

|(η, µ)|
∥µ∥Lq

, η ∈ Σh,
1

p
+

1

q
= 1.(28)

Our strategy is to use the discrete elliptic regularity approach taken in [19]. In
the remainder of the paper, we assume p satisfies

(29) | lnh| ≤ p ≤ 2| lnh|, p > 2.

For results which do not necessarily use (29), we will state when the constants do
not depend on p. We can now analyze the discretization (4). We are interested in
finding the solution (wh, ηh) ∈ Vh × Σh satisfying

(30) (ηh, µ) = (DGhwh, µ), ∀µ ∈ Σh.

It follows from Hölder inequality and the Lax-Milgram lemma that, given wh ∈ Vh,
the discrete Hessian of wh

H(wh) := ηh,

is well defined by (30).

Lemma 3.7. There exists a positive constant C17 ≥ 1 such that for wh and zh ∈ Vh

||H(wh)−H(zh)||L∞ ≤ C17||wh − zh||W̃ 1,p(Ω)
.

Proof. Let wh and zh ∈ Vh. By (30) we have for p ≥ 2 and 1/q = 1− 1/p

|(H(wh)−H(zh), µ)| =
∣∣(DGh(wh − zh), µ)

∣∣
≤ ||DGh(wh − zh)||Lp ||µ||Lq .

Since by definition, ||DGh(wh − zh)||Lp ≤ ||wh − zh||W̃ 1,p(Ω)
, by (28) we have

||H(wh)−H(zh)||Lp ≤ C16||wh − zh||W̃ 1,p(Ω)
.

By an inverse estimate and since p satisfies (29) we have

||H(wh)−H(zh)||L∞ ≤ C1h
− 2

p ||H(wh)−H(zh)||Lp ≤ C17||wh − zh||W̃ 1,p(Ω)
,

where C17 = max{C1C16 exp(2), 1 } where we note that as h ≤ 1, | lnh| = − lnh

and since | lnh| ≤ p ≤ 2| lnh|, h− 2
p = exp(−2/p lnh) = exp(2| lnh|/p) ≤ exp(2).

�
For ρ > 0 we define

B̄h(ρ) = {(wh, ηh) ∈ Vh × Σh, ∥wh − Ihu∥W̃ 1,p(Th)
≤ ρ, ∥ηh − Ihσ∥L∞ ≤ ρ}.

We also define

Zh = { (wh, ηh) ∈ Vh × Σh, wh = gh on ∂Ω, (wh, ηh) solves (30) } and

Bh(ρ) = B̄h(ρ) ∩ Zh.

Lemma 3.8. We have Bh(ρ) ̸= ∅, for h sufficiently small and ρ = C18h∥u∥W 4,∞ ,
for a positive constant C18 > 0 independent of h. More precisely, we have ∥H(Ihu)−
Ihσ∥L∞ ≤ C18h∥u∥W 4,∞ with σ = D2u.
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Proof. Let ηh ∈ Σh denote the discrete Hessian of Ihu given by (30). We show that
(Ihu, ηh) ∈ Bh(ρ) for h sufficiently small and ρ = C18h∥u∥W 4,∞ for a constant C18.
By (30), (ηh, µ) = (DGhIhu, µ) ∀µ ∈ Σh. Therefore

(ηh − Ihσ, µ) = (ηh − σ, µ) + (σ − Ihσ, µ) = (DGhIhu−D2u, µ) + (σ − Ihσ, µ).

It follows from (28) that for p ≥ 2

∥ηh − Ihσ∥Lp ≤ C16(||DGhIhu−D2u||Lp + ||Ihσ − σ||Lp).

Therefore by (9), (13) and since σ = D2u

∥ηh − Ihσ∥Lp ≤ C16C5h∥u∥W 3,p + 2C16C2h
2∥u∥W 4,p

≤ (C16C5∥u∥W 3,p + 2C16C2∥u∥W 4,p)h.

By an inverse estimate and since p satisfies (29) we have

∥ηh − Ihσ∥L∞ ≤ C1h
− 2

p ∥ηh − Ihσ∥Lp ≤ C1C16(C5 + 2C2) exp(2)h∥u∥W 4,p ,

from which the result follows with C18 = C1C16(C5 + 2C2) exp(2)max(|Ω|, 1), and
we recall that ηh = H(Ihu). �

As in [3], we consider the linearized problem : find (wh, ηh) ∈ Vh ∩H1
0 × Σh

(ηh, µ) = (DGhwh, µ)∀µ ∈ Σh

(A : ηh, v) = (f, v), ∀v ∈ Vh ∩H1
0 (Ω)

wh = gh on ∂Ω.

By the strict convexity of u, wh is well defined and ηh = H(wh). We can therefore
define the mapping T : Vh × Σh → Vh × Σh by

T (wh, ηh) = (T1(wh, ηh), T2(wh, ηh)),

where T1(wh, ηh) and T2(wh, ηh) satisfy

wh − T1(wh, ηh) = 0 on ∂Ω(31)

(T2(wh, ηh), µ) = (DGhT1(wh, ηh), µ), ∀µ ∈ Σh(32)

(A : H(wh − T1(wh, ηh)), v) = −(f, v) + (det ηh, v), ∀ v ∈ Vh ∩H1
0 (Ω).(33)

A fixed point of T with wh = gh on ∂Ω is a solution of the nonlinear problem (4).
Since T2(wh, ηh) = H(T1(wh, ηh)), we have the following corollary of Lemma 3.7.

Lemma 3.9. For ρ > 0 and (w1, η1) and (w2, η2) in Bh(ρ), we have

||T2(w1, η1)− T2(w2, η2)||L∞ ≤ C17||T1(w1, η1)− T1(w2, η2)||W̃ 1,p(Th)
,(34)

where C17 is the constant defined in Lemma 3.7.

Lemma 3.10. We have for h sufficiently small

∥Ihu− T1(Ihu, Ihσ)∥W̃ 1,p(Ω)
≤ C19(σ)h(35)

∥Ihσ − T2(Ihu, Ihσ)∥L∞ ≤ C20(σ)h,(36)

for σ = D2u and positive constants C19 and C20 which depends on σ.

Proof. Since T1(Ihu, Ihσ) = Ihu on ∂Ω, we have v = Ihu − T1(Ihu, Ihσ) ∈ Vh ∩
H1

0 (Ω). For wh = Ihu and ηh = Ihσ, using (33) , detD2u = detσ = f , and discrete
elliptic regularity, we have

∥Ihu− T1(Ihu, Ihσ)∥W̃ 1,p(Ω)
≤ C15(D

2u)p∥detσ − det Ihσ∥Lp .(37)
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Since on each element K, det Ihσ − detσ = 1
2 (cof(Ihσ) + cof(σ)) : (Ihσ − σ), we

have

∥det Ihσ − detσ∥Lp(K) ≤ C21∥det Ihσ − detσ∥L∞(K)

≤ 2C21∥Ihσ + σ∥L∞(K)∥Ihσ − σ∥L∞(K),

where C21 = max(|Ω|, 1/4). Since Ih is a linear finite element interpolation, we
have ∥Ihσ∥L∞ ≤∥σ∥L∞ . Therefore, using (9)

∥det Ihσ − detσ∥Lp(K) ≤ 4C21∥σ∥L∞∥Ihσ − σ∥L∞(K) ≤ 8C21C2∥σ∥L∞h2∥σ∥W 2,∞ .

(38)

This implies by (37) and (29) that

∥Ihu− T1(Ihu, Ihσ)∥W̃ 1,2(Ω)
≤ 16C21C2C15∥σ∥L∞∥σ∥W 2,∞h2| lnh|.

We conclude that there exists a constant C19 which depends on σ such that

∥Ihu− T1(Ihu, Ihσ)∥W̃ 1,p(Ω)
≤ C19(σ)h,

for h sufficiently small. By Lemma 3.7 and (30) we have

||H(Ihu)− T2(Ihu, Ihσ)||L∞ ≤ C17∥Ihu− T1(Ihu, Ihσ)∥W̃ 1,p(Ω)
≤ C17C19(σ)h.

By triangular inequality, we have :

||Ihσ − T2(Ihu, Ihσ)||L∞ ≤ ||Ihσ −H(Ihu)||L∞ + ||H(Ihu)− T2(Ihu, Ihσ)||L∞ .

Since we proved in Lemma 3.8 that ||H(Ihu)− Ihσ||L∞ ≤ C18h∥u∥W 4,∞ , we obtain

∥Ihσ − T2(Ihu, Ihσ)∥L∞≤ C20h,

where C20 = C18∥u∥W 4,∞ + C17C19(σ). �

Lemma 3.11. For h sufficiently small and for (w1, η1) and (w2, η2) in Bh(ρ),
ρ ≥ C18h∥u∥W 4,∞ , we have

∥T1(w1, η1)− T1(w2, η2)∥W̃ 1,p(Ω)
≤ C22ρ| lnh| ∥η1 − η2∥L∞ ,

for a positive constant C22 which depends on D2(u).

Proof. The proof is analogous to the one of [3, Lemma 3.10]. Using (33), we have
with A = cofD2u

(A : H(T1(w1, η1)− T1(w2, η2)), v) = (A : H(w1 − w2), v)− (det η1 − det η2, v).

By [3, Lemma 2.4], on each element K we have

det η1 − det η2 = cof

(
1

2
η1 +

1

2
η2

)
: (η1 − η2).

Therefore, on each element K and using σ = D2u, H(w1) = η1, we have

(cofD2u) : (η1 − η2)− (det η1 − det η2) =(
(cofD2u)− cof

(
1

2
η1 +

1

2
η2

))
: (η1 − η2)

= cof

(
σ − 1

2
η1 −

1

2
η2

)
: (η1 − η2)

= cof

(
σ − Ihσ +

1

2
Ihσ − 1

2
η1 +

1

2
Ihσ − 1

2
η2

)
: (η1 − η2).
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We have∥∥∥∥cof (σ − Ihσ +
1

2
Ihσ − 1

2
η1 +

1

2
Ihσ − 1

2
η2

)∥∥∥∥
L∞(K)

≤

∥σ − Ihσ∥L∞(K) +
1

2
∥Ihσ − η1∥L∞(K) +

1

2
∥Ihσ − η2∥L∞(K)

≤ 2C2∥u∥W 4,∞h2 + ρ.

Therefore,

||(cofD2u) : (η1 − η2) + det η1 − det η2||Lp ≤ (2C2∥u∥W 4,∞h2 + ρ)||η1 − η2||Lp .

Therefore, by discrete elliptic regularity and (29)

∥T1(w1, η1)− T1(w2, η2)∥W̃ 1,p(Ω)

≤ C15(D
2u)p||(cofD2u) : (η1 − η2) + det η1 − det η2||Lp

≤ 2C15(D
2u)| lnh|(2C2∥u∥W 4,∞h2 + ρ)max(|Ω|, 1)||η1 − η2||L∞ .

The result follows for h sufficiently small. We assumed that ρ ≥ C18h∥u∥W 4,∞ ,
since by Lemma 3.8 Bh(ρ) ̸= ∅ for ρ = C18h∥u∥W 4,∞ . �

Lemma 3.12. Let ρ = 4C23(D
2u)h where C23(D

2u) = max(C18∥u∥W 4,∞ , C19, C20).
For h sufficiently small, the mapping T leaves invariant the ball Bh(ρ). That is,
for (wh, ηh) in Bh(ρ), we have

∥T1(wh, ηh)− Ihu∥W̃ 1,p(Ω)
≤ ρ(39)

∥T2(wh, ηh)− Ihσ∥L∞ ≤ ρ.(40)

Proof. Let (wh, ηh) ∈ Bh(ρ). Recall that ∥wh−Ihu∥W̃ 1,p(Ω)
≤ ρ and ∥ηh−Ihσ∥L∞≤

ρ. We have by triangle inequality, Lemmas 3.11 and 3.10

∥T1(wh, ηh)− Ihu∥W̃ 1,p(Ω)
≤ ∥T1(wh, ηh)− T1(Ihu, Ihσ)∥W̃ 1,p(Ω)

+ ∥T1(Ihu, Ihσ)− Ihu∥W̃ 1,p(Ω)

≤ 4C23h| lnh|∥ηh − Ihσ∥L∞+C19h.

For h sufficiently small, 4C23h| lnh| ≤ 1/4 and by construction C19h ≤ ρ/4. There-
fore

∥T1(wh, ηh)− Ihu∥W̃ 1,p(Ω)
≤ 1

4
ρ+

1

4
ρ ≤ ρ

2
≤ ρ.

This proves (39). By triangle inequality

∥T2(wh, ηh)− Ihσ∥L∞≤ ∥T2(wh, ηh)− T2(Ihu, Ihσ)∥L∞ + ∥T2(Ihu, Ihσ)− Ihσ∥L∞ .

Thus, by Lemma 3.9

∥T2(wh, ηh)− Ihσ∥L∞≤ C17∥T1(wh, ηh)− T1(Ihu, Ihσ)∥W̃ 1,p(Ω)
+C20h

≤ 4C17C23h| lnh|∥ηh − Ihσ∥L∞+C20h.

Furthermore, for h sufficiently small and since ∥ηh − Ihσ∥L∞≤ ρ

∥T2(wh, ηh)− Ihσ∥L∞≤ 1

4
ρ+

1

4
ρ ≤ ρ.

This proves (40). �

Lemma 3.13. The mapping T is continuous on Bh(ρ) for ρ as defined in Lemma
3.12.
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Proof. Let (w1, η1) and (w2, η2) in Bh(ρ). We have by Lemmas 3.9 and 3.11, for h
sufficiently small

∥T1(w1, η1)− T1(w2, η2)∥W̃ 1,p(Ω)
+∥T2(w1, η1)− T2(w2, η2)∥L∞≤

(C17 + 1)∥T1(w1, η1)− T1(w2, η2)∥W̃ 1,p(Ω)
≤ 4(C17 + 1)C22C23h| lnh|∥η1 − η2∥L∞

≤ 2∥η1 − η2∥L∞ ,

which proves the result. �

Now, we are ready to show the well-posedness of the discrete problem (4).

Theorem 3.14. The discrete problem (4) has a unique solution (uh, σh) in Bh(ρ)
for h sufficiently small and ρ as defined in Lemma 3.12.

Proof. By Lemma 3.13, T is continuous on Bh(ρ) and by Lemma 3.12, T maps
Bh(ρ) into itself. Therefore by the Brouwer fixed point theorem it has a fixed point
(wh, ηh) in Bh(ρ). Assume that there exist two fixed points (w1

h, η
1
h) and (w2

h, η
2
h)

of T . We then have T1(w
1
h, η

1
h) = w1

h and T1(w
2
h, η

2
h) = w2

h. Also, T2(w
1
h, η

1
h) = η1h

and T2(w
2
h, η

2
h) = η2h. For h sufficiently small, by Lemmas 3.7 and 3.11

∥T2(w
1
h, η

1
h)− T2(w

2
h, η

2
h)∥L∞≤ C17∥T1(w

1
h, η

1
h)− T1(w

2
h, η

2
h)∥W̃ 1,p(Ω)

≤ 1

4
∥η1h − η2h∥L∞ .

Therefore

∥η1h − η2h∥L∞≤ C17∥w1
h − w2

h∥W̃ 1,p(Ω)
≤ 1

4
∥η1h − η2h∥L∞ .

We conclude that η1h = η2h and thus w1
h = w2

h. �

With the previous preparation, we are now in a perfect position to present our
main error estimation.

Theorem 3.15. Let (u, σ) ∈ W 4,∞(Ω)×W 2,∞(Ω)2×2 be the unique strictly convex
solution of (1) and let (uh, σh) the unique solution in Bh(ρ) of (4) for h sufficiently
small and ρ = 4C19h. We have

∥Ihu− uh∥W̃ 1,p(Ω)
≤ C24(u)h

∥σ − σh∥L∞ ≤ C25(u)h.

Moreover, ||u− uh||W 1,2 = O(h).

Proof. By Theorem 3.14, which states that the solution is in Bh(ρ), the definition
of Bh(ρ), the choice of ρ and with C24 = 4C23 and depends on u, we have ∥Ihu−
uh∥W̃ 1,p(Ω)

≤ C24(u)h.

Similarly, ∥Ihσ−σh∥L∞≤ C24(u)h. By a triangular inequality and using (9), we
obtain ∥σ − σh∥L∞≤ C25(u)h, for a constant C25(u).

By (15), (5), p > 2 we have

||Ihu− uh||L2 ≤ C8||DGh(Ihu− uh)||L2 ≤ C8C1||DGh(Ihu− uh)||Lp

= C8C1∥Ihu− uh∥W̃ 1,p(Ω)
≤ C8C1C24(u)h.

With a similar argument, ||DIhu−Duh||L2 = O(h). Thus by a triangular inequality
and (7) we obtain ||Ihu − u||L2 = O(h) and ||DIhu −Du||L2 = O(h) which gives
||u− uh||W 1,2 = O(h). �
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Remark 3.16. The analysis may extend with a few technicalities to three dimen-
sions. We mention that the definition of uniform meshes is different in dimension
3 and dealing with cof σ− cof η requires the mean value theorem. For the extension
to general domains, one may use the penalty approach to the boundary conditions
proposed in [19].

4. Numerical results

In this section, we present a numerical example to verify and validate the theo-
retical results. To solve the nonlinear problem, we solve the discrete problem (2)
using Newton’s method. Although we only established the theoretical results on
uniform meshes, we want to show with an example that the method works for gen-
eral unstructured meshes. We consider two different types meshes: regular type
uniform meshes and Delaunay meshes.

In the numerical example, we choose the test function as u(x, y) = e(x
2+y2)/2.

Thus f(x, y) = (1 + x2 + y2)e(x
2+y2) and g(x, y) = e(x

2+y2)/2. The initial guess is
obtained by solving the mixed finite element approximation of the problem

∆u0 = 2
√
f, in U u0 = g on ∂Ω,

that is (2) with the determinant operator replaced by the trace operator and f
replaced by 2

√
f .

To summarize the numerical results, we consider the following four different
(discrete) norms:

D0e = ∥u− uh∥L∞ , D1e = ∥Du−Duh∥L∞ ;

Dr
1e = ∥Du−Ghuh∥L∞ , D2e = ∥D2u− σh∥L∞ .

Table 1. Numerical result on regular type uniform meshes.

Dof D0e order D1e Order Dr
1e Order D2e Order

289 1.54e-03 0.00 2.32e-01 0.00 1.77e-02 0.00 5.97e-01 0.00
1089 3.68e-04 2.16 1.21e-01 0.98 4.86e-03 1.95 3.26e-01 0.91
4225 9.02e-05 2.07 6.21e-02 0.99 1.28e-03 1.97 1.71e-01 0.95
16641 2.23e-05 2.04 3.15e-02 0.99 3.30e-04 1.98 8.79e-02 0.97
66049 5.56e-06 2.02 1.58e-02 1.00 8.36e-05 1.99 4.46e-02 0.99

Table 2. Numerical result on Delaunay meshes.

Dof D0e order D1e Order Dr
1e Order D2e Order

139 2.76e-03 0.00 2.44e-01 0.00 2.37e-02 0.00 6.51e-01 0.00
513 6.98e-04 2.11 1.26e-01 1.02 6.97e-03 1.87 3.22e-01 1.08
1969 1.78e-04 2.03 6.45e-02 0.99 1.80e-03 2.02 1.65e-01 1.00
7713 4.40e-05 2.05 3.27e-02 1.00 4.44e-04 2.05 7.34e-02 1.18
30529 1.08e-05 2.03 1.64e-02 1.00 1.04e-04 2.11 2.66e-02 1.48

We display the numerical convergence history in Tables 1 and 2 for regular type
uniform meshes and Delaunay meshes respectively. From those two tables, we can
see that the L∞ errors for σ converge at the rate O(h) indicated in Theorem 3.15.
We also observe that L∞ errors for Du converge at a rate O(h). This confirms the
rate O(h) for the L2 error for Du. The recovered gradient converges to the exact
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Figure 1. (p + 1)Z(p)/(pZ(p)) as a function of p on a uniform
mesh (left) and on an unstructured mesh.

gradient at a superconvergent rate O(h2). The experimental rate for the L∞ error
in u is O(h2). This suggests that our L2 error estimate is suboptimal.

5. Conclusion

In this paper, we proposed a linear finite element method for solving the Monge-
Ampère equation with a smooth solution and using a mixed finite element formula-
tion. The Hessian matrix is calculated using the gradient recovery technique. The
theoretical results are verified with a numerical example.

6. Appendix

6.1. Proof of the duality relation (27). The proof is analogous to the scalar
case c.f. [22, p. 130]. Let η ∈ (Lp(Ω))2×2, 1 < p < ∞ and choose q such that
1
p + 1

q = 1. And let µ ∈ (Lq(Ω))2×2. We have

(41) |(η, µ)| ≤ ||η||Lp ||µ||Lq .

Recall that for x ∈ R, sgn(x) = 1 if x > 0, sgn(x) = 0 if x = 0 and sgn(x) = −1 if
x < 0. For i, j in { 1, 2 } we define

ηij = |µij |
q
p sgn(µij).

Then |ηij |p = |µij |q = ηijµij . Hence ηij ∈ Lp(Ω) and ||ηij ||Lp = ||µij ||
q
p

Lq . Therefore

||η||pLp =
∑2

i,j=1 ||ηij ||
p
Lp =

∑2
i,j=1 ||µij ||qLq = ||µ||qLq . That is, ||η||Lp = ||µ||

q
p

Lq .
Next,

(η, µ) =
2∑

i,j=1

∫
Ω

ηijµij =
2∑

i,j=1

||µij ||qLq = ||µ||qLq = ||µ||Lq ||µ||q−1
Lq = ||µ||Lq ||µ||

q
p

Lq

= ||µ||Lq ||η||Lp .

This completes the proof.

6.2. Numerical evidence of discrete elliptic regularity for non divergence
form Assumption 3.5. We take

(42) u(x) = exp((x2
1 + x2

2)/2),

from which we compute A = D2u. The solution v is taken as sin(πx1) sin(πx2).
The right hand side function r was computed from A and v. Numerical evidence
indicate that (25) is solvable.
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Let Z(p) =∥r∥Lp/∥v∥
W̃ 1,p(Ω)

. Should the discrete elliptic regularity hold as

predicted, the ratios (p+1)Z(p)/(pZ(p)) should be equal to 1. In Figure 1 we plot
this ratio as a function of p on a uniform mesh and on an unstructured mesh. The
results confirm our predictions.
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Technologies, Ingénieries et Mathématique, Republic of Benin
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