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The Navier-Stokes equations

{
−ν ∆u +

∑3
j=1 uj

∂u
∂xj

+ ∇p = f in Ω,

div u = 0 in Ω.
(1)

V0 = {v ∈ H1
0(Ω)3, div v = 0}

L2
0(Ω) = {u ∈ L2(Ω),

∫

Ω

u = 0} and

H
1
2 (∂Ω) = {τ(u), u ∈ H1(Ω)},
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Existence and Uniqueness
Let Ω be a bounded connected open subset of IR3 with
a Lipschitz continuous boundary. For f ∈ H−1(Ω)3

and g ∈ H
1
2 (∂Ω)3 satisfying

∫
∂Ω g · n = 0, the

problem: find (u, p) ∈ H1(Ω)3 × L2
0(Ω) such that





−ν ∆u +
∑3

j=1 uj
∂

∂xj
u + ∇p = f in Ω

div u = 0 in Ω

u = g on ∂Ω,

has a solution which is unique provided that ν is
sufficiently large.
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Features of the spline method
• We shall assume that Ω is a polygonal domain of

IR3 with a tetrahedral partition T and use the
spline space

Sr
d(T ) = {s ∈ Cr(Ω), s|t ∈ IPd, ∀t ∈ T },

where IPd is the space of polynomials of total
degree d.
We use the B-form of splines and associate to
each component ui of u, i = 1, . . . , 3 a vector of
coefficients ci.

• Smoothness requirements on c. In general,
smoothness can be imposed in a flexible way
across the domain.
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Features of the spline method
• Polynomials of high degrees can be easily used

locally to get better approximation properties.

• Weak formulation: Find u ∈ H1(Ω)3 such that

ν

∫

Ω

∇u · ∇v +
3∑

j=1

∫

Ω

uj

∂u

∂xj

· v =

∫

Ω

f · v ∀v ∈ V0

div u = 0 in Ω

u = g on ∂Ω

•

νKc + B(c)c + LTλ = MF

Lc = G
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Features of the spline method
• The previous system of nonlinear equations is

linearized and the resulting linear systems solved
by a variant of the augmented Lagrangian
algorithm.

• The mass and stiffness matrices can be assembled
easily and these processes can be done in parallel.

• The pressure is computed by solving a Poisson
equation with Neumann boundary conditions.
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Trivariate Splines
Let d ≥ 1 and r ≥ 0 be two fixed integers. Given a bounded domain Ω

of R3 with piecewise planar boundary, let T be a tetrahedral partition

of Ω.

Sr
d(Ω) = {p ∈ Cr(Ω), p|t ∈ Pd, ∀t ∈ T }.

p(x, y, z) =
∑

0≤i+j+k≤d

αijkx
iyjzk,

Barycentric coordinates

Given a non-degenerate tetrahedron T = 〈v1, v2, v3, v4〉, any point

v = (x, y, z) can be written uniquely in the form

v = b1v1 + b2v2 + b3v3 + v4b4 with b1 + b2 + b3 + b4 = 1.
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B-form of splines

Bernstein polynomials of degree d

Bd
ijkl(v) =

d!

i!j!k!l!
bi
1b

j
2b

k
3b

l
4, i + j + k + l = d.

They are polynomials of degree d since each bi is a linear polynomial.

The set Bd = {Bd
ijkl(x, y, z), i + j + k + l = d} is a basis for the space

of polynomials Pd.

We recall that the dimension of Pd is
(
d+3
3

)
.

As a consequence any spline s in Sr
d can be written uniquely

s|T =
∑

i+j+k+l=d

cT
ijklB

d
ijkl,

since s|T is a polynomial of degree d.

nth = number of tetrahedra, m = dimPd and N = m ∗ nth.
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Bivariate splines

The restriction of a trivariate polynomial of degree d on a face of a

tetrahedron is a bivariate polynomial and can be written in B-form
∑

i+j+k=d

c̃ijkB̃
d
ijk(v),

where

B̃d
ijk =

d!

i!j!k!
bi
1b

j
2b

k
3.

For example, given the trivariate spline on a tetrahedron T

p =
∑

i+j+k+l=d cijklB
d
ijkl, q =

∑
i+j+k=d cijk0B

d
ijk0 can be

considered as a bivariate polynomial.
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Interpolation

There is a unique polynomial p of degree d that interpolates any given

function f on a tetrahedron T = 〈v1, v2, v3, v4〉 at the domain points

ξijkl = iv1+jv2+kv3+lv4

d
.

This gives rise to an interpolation operator Πd. Πd(f) will denote both

the spline interpolant and its B-net.

We can also define a boundary interpolation operator Πb
d since a

bivariate polynomial p of degree d is uniquely determined on a triangle

〈v1, v2, v3〉 by its values at the domain points ξijk = iv1+jv2+kv3

d
. Note

that here the domain points have three indices.

We have for a spline s with B-net c according to our notations

Rc = Πb
d(s)
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Derivatives

We want to give formulas for the directional derivatives of p in a

direction defined by a vector u joining the points v1 and v2. Let

a = (a1, a2, a3, a4) with components the difference of the barycentric

coordinates of v1 and v2. Dup can be written in B-form as a

polynomial of degree d − 1.

Dup = d
∑

i+j+k+l=d−1

c
(1)
ijkl(a) Bd−1

ijkl , where

c
(1)
ijkl(a) = a1ci+1,j,k,l + a2ci,j+1,k,l + a3ci,j,k+1,l + a4ci+1,j,k,l+1.

It’s not difficult to see that there are matrices D1, D2 and D3 such that

if c encodes the B-net of s, Dic, i = 1, . . . , 3 encode respectively the

B-net of ∂s
∂xi

.
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Integration

There’s a matrix G such that if p and q have B-nets c and d,

∫

Ω
pq = cT Gd

Smoothness conditions

Let t = 〈v1, v2, v3, v4〉 and t′ = 〈v1, v2, v3, v5〉 be two tetrahedra with

common face 〈v1, v2, v3〉. Then s is of class Cr on t ∪ t′ if and only if

ct′

ijkm =
∑

µ+ν+κ+δ=m

ct
i+µ,j+ν,γ+κ,δB

l
µ,ν,κ,δ(v5), m = 0, . . . , r, i + j + k = d − m.

This suggests that there’s a (l, N) matrix H such that s is in Cr(Ω) if

and only if

Hc = 0.
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Discretization

The weak form of the Navier-Stokes equations is: Find u ∈ H1(Ω)3

such that

ν

∫

Ω
∇u · ∇v +

3∑

j=1

∫

Ω
uj

∂u

∂xj
· v =

∫

Ω
f · v ∀v ∈ V0

div u = 0 in Ω

u = g on ∂Ω

where

V0 = {v ∈ H1
0 (Ω)3, div v = 0}.

We now consider spline approximations of the velocity vector field u.

Let d ≥ 1 and r ≥ 0 be two given integers.
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Let also S ⊂ S0
d(T ) be a spline subspace over a tetrahedral partition T

of Ω consisting of spline functions which are Cr inside Ω and C0 near

the boundary ∂Ω.

• Recall that there is a matrix H such that if s ∈ S with

B-coefficient vector c, then

Hc = 0.

• Also recall that there is a matrix R which maps c to the

B-coefficients of s on the boundary of Ω and Rc = G represents

the boundary condition, i.e., s = g on the boundary

approximately.
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• Finally there are matrices D1, D2 and D3 such that if c encodes

the B-net of s, Dic, i = 1, . . . , 3 encode respectively the B-net

of ∂s
∂xi

.

• u = (u1, u2, u3) velocity vector

su = (s1, s2, s3) spline approximating vector

si ∈ S satisfying Hci = 0, R(ci) = G(gi) for i = 1, 2, 3.

div u = 0 is discretized as D1c1 + D2c2 + D3c3 = 0

• Let

H =




H 0 0

0 H 0

0 0 H


 , R =




R 0 0

0 R 0

0 0 R


 ,
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•

G = (G(g1), G(g2), G(g3))
T D =

[
D1 D2 D3

]
.

Hc = 0, Rc = G and Dc = 0

L =
[

H
T

R
T

D
T

]T

and G =
[

0 GT 0
]T

,

• In other words, if we let

Sg = {c ∈ (IRN )3, Lc = G},

we are seeking for a solution in Sg. We approximate elements of

V0 by vectors d = (d1, d2, d3) in

S0 = {d ∈ (IRN )3, Ld = 0}.
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a(u,v) =

∫

Ω
∇u · ∇v

b(w;u,v) =

3∑

j=1

∫

Ω
wj

∂u

∂xj
· v.

∫

Ω
fv

M t =

( ∫
t
Bd

αBd
β

)

|α|=d,|β|=d

, local mass matrix

M is the global mass matrix

Kt =

( ∫

t

∇Bd
α∇Bd

β

)

|α|=d,|β|=d

, local stiffness matrix

K global stiffness matrix
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Continuous Discrete
u = (u1, u2, u3) c = (c1, c2, c3)

v = (v1, v2, v3) d = (d1, d2, d3)

u ∈ S ⊂ Sr
d(Ω) Hc = 0

div u = 0 Dc = 0

u = g on ∂Ω Rc = G

u ∈ Sg Lc = G∫
Ω fivj dT

j MFi∫
Ω fv dTMF

a(u,v) =
∫

Ω ∇u · ∇v cTKd

b(w;u,v) =
∑3

j=1

∫
Ω wj

∂u
∂xj

· v dTB(e)c
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Discretization of the Stokes
equations

Corollary of the Lax-Milgram lemma

Let V be a real Hilbert space with norm denoted by ||.||V ,

(u, v) −→ a(u, v) a real bilinear form on V × V , l an element of the

dual of V and let us denote the duality pairing between V and its dual

V ′ by <, >. If a is continuous, symmetric and is elliptic on V i.e. there

is α > 0 such that a(v, v) ≥ α||v||2V for all v ∈ V , then, the problem:

Find u ∈ V such that

a(u, v) =< l, v >,

has one an only one solution which minimizes the following functional

over V

J(v) =
1

2
a(v, v)− < l, v > .
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Under the same hypotheses as in the theorem on the Navier-Stokes

equations, the Stokes equations:




−ν∆u + ∇p = f in Ω

div u = 0 in Ω

u = g on ∂Ω

have a unique solution u in H1(Ω)3 and a pressure p in L2(Ω) unique

up to an additive constant. These equations are derived under the

assumption that the velocity is sufficiently small to ignore the nonlinear

term u · ∇u(x, t).

The weak form of the equations is: Find u in H1(Ω)3 such that div

u = 0 and ν
∫
Ω ∇u · ∇v =

∫
Ω f · v, ∀v ∈ V0,
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V0 = {v ∈ H1
0 (Ω)3 such that div v = 0}.

In this case, the velocity vector u is is the unique minimizer in

V = {v ∈ H1(Ω)3 such that div v = 0}

of the functional

J(u) =
ν

2

∫

Ω
∇u · ∇u −

∫

Ω
f · u.

If we let c encode the B-net of the approximant, the discrete problem

is: Minimize

J(c) =
ν

2
cT Kc + FT Mc

over (IRN )3 under the constraint Lc = G.
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By the theory of Lagrange multipliers, there is a
vector of Lagrange multipliers λ such that

{
νKc + LTλ = MF,

Lc = G.
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Computation of the pressure
term

Assuming that u is smooth and taking the divergence of the equation

−ν∆u + ∇p = f in Ω

we get

−∆p = −div f

since div u = 0. Here, the pressure is the minimizer over

L2
0(Ω) = {p ∈ L2(Ω),

∫

Ω
p = 0}

of

Q(v) =
1

2

∫

Ω
|∇v|2 −

∫

Ω
(−div f)v −

∫

∂Ω
(f · n + ν(∆u) · n)v.

Discretization for the pressure in Navier-Stokes equations is similar.
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Discretization of the Navier-
Stokes equations

Find c in R3N satisfying Lc = G with G encoding the side conditions

and

νcT Kd + (B(c)c)Td = dT MF

for all d in R3N with constraints Ld = 0.

Here, K and M are the stiffness and mass matrices respectively;

(Bc)d encodes the nonlinear term. If one considers the following

linear functional in d,

J(d) = (νcT K + (B(c)c)T + FT M)d,

we have J(d) = 0 for all d satisfying Ld = 0.
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This implies the existence of a Lagrange multiplier λ such that

J(d) + λT Ld = 0.

νcT K + (B(c)c)T + λT L = FT M

In summary, the discrete solution c must satisfy

νcT K + (B(c)c)T + λT L = FT M

Lc = G

This can be written

νKc + B(c)c + LT λ = MF

Lc = G.

This has a unique solution c provided the viscosity ν is sufficiently large.
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Linearization
A simple iteration algorithm Starting with an initial guess c(0) which

can be computed by solving the Stokes equations, we consider the

sequence of problems

νKc(n+1) + B(c(n))c(n+1) + LT λ(n+1) = MF

Lcn+1 = G,

The following convergence result is similar to one of the convergence

results of [Karakashian’82].

The previous system has a unique solution c(n+1) and the unique

solution c is such that

||c(n+1) − c||H1(Ω)3 ≤ γ1||c
(n) − c||H1(Ω)3

for a constant γ1 < 1. As a consequence c(n+1) converges to c.
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Newton’s iterations We are interested in the sequence c(n+1) defined by

νKc(n+1) + B(c(n))c(n+1) + B̃(c(n))c(n+1) + LT λ(n+1) =

MF + B(c(n))c(n)

Lc(n+1) = G.

B̃ is defined such that B̃(c)d = B(d)c. We have the following

convergence result

There exists r > 0 such that if ||c − c(0)||H1(Ω)3 < r, there is a unique

c(n+1) solution of the system and ||c − c(n)||H1(Ω)3 < r for all n with

||c − c(n+1)||H1(Ω)3 ≤ 1
r
||c − c(n)||H1(Ω)3 . Moreover, if there’s η < 1

such that ||c − c(0)||H1(Ω)3 = rη, then c(n) converges to c as

||c − c(n)||H1(Ω)3 ≤
1

r2n−1
||c − c(0)||2

n

H1(Ω)3 , n = 1, 2, . . .
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Practical computation of c The previous methods all involve to find c

solution of a singular system of type

 A LT

L 0





 c

λ


 =


 F

G


 ,

with A non symmetric.

Under the hypothese that ν is sufficiently large or ||F||L2(Ω)3 is suf-

ficiently small, the symmetric part (A)s of A is positive definite with

respect to L in the sense that xT (A)sx ≥ 0 and xT (A)sx = 0 with

Lx = 0 implies x = 0.
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We show that the later condition is sufficient for the solution c to be

unique. Indeed if (d, β) is another solution we have

A(c − d) + LT (λ − β) = 0.

So, with e = c − d,

eT
(
(A)se + (A)ase + LT (λ − β)

)
= 0

Le = 0.

Here (A)as denotes the antisymmetric part of A. We have eT ((A)ase =

0 and eT L = 0. Therefore eT (A)se = 0 with Le = 0. Thus c = d.

This suggests that we can retrieve the solution c by computing any least

squares solution of the system.
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We consider for l= 0, 1, 2, . . . , the sequence of problems

 A LT

L −εI





 c(l+1)

λ(l+1)


 =


 F

G − ελ(l)


 , (1)

where λ(0) is a suitable initial guess for example λ(0) = 0, and I is

the identity matrix. Let also assume that A is a matrix of size n × n;

c, F ∈ IRn; L is a matrix of size m × n and λ, G ∈ IRm.
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• Theorem

Suppose that the linear system (of the discrete problem) has a

unique solution c. Assume that As = 1
2(A + AT ) the symmetric

part of A is positive definite with respect to L, i.e., xT Asx ≥ 0

and xT Asx = 0 with Lx = 0 implies x = 0. Then, the sequence

(c(l+1)) defined by the iterative method converges to the solution

c for any ε > 0. Furthermore,

‖c − c(l+1)‖ ≤ Cε‖c − c(l)‖

for some constant C independent of ε and l.

• Proof

We first show that c(l+1) and λ(l+1) are well-defined. Let us first

rewrite the iterative method system as follows.
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Ac(l+1) + LT λ(l+1) = F and (1)

Lc(l+1) − ελ(l+1) = G − ελ(l) (2).

Multiplying (2) on the left by LT and substituing LT λ(l+1) into (1) and

rewriting (2), we get

(A +
1

ε
LT L)c(l+1) = −LT λ(l) + F +

1

ε
LT G (3)

λ(l+1) +
1

ε
Lc(l+1) = λ(l) +

1

ε
G.

To show that the iterative method system is solvable under the hypothe-

ses of the theorem, we need only to show that A + 1
ε
LT L is invertible.
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Since A is a square matrix, it is enough to show that

(A +
1

ε
LT L)x = 0 ⇒ x = 0.

That is,

0 = xT (A +
1

ε
LT L)x = xT (As +

1

ε
LT L)x = xT Asx +

1

ε
(Lx)T (Lx)

since xT Aax = 0. It follows that

xT Asx = 0 and (Lx)T (Lx) = 0.

By the assumptions on A, i.e., As is assumed to be symmetric positive definite

with respect to L, we get x = 0. Hence, the new iterative linear system is

invertible and c(l+1) and λ(l+1) are well-defined.
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We now show that c(l+1) converges to c. Let also u(l+1) = c(l+1) − c and

p(l+1) = λ(l+1) − λ. We have





(A + 1
ε
LT L)u(l+1) + LT p(l) = 0

p(l+1) = p(l) + 1
ε
Lu(l+1).

‖p(l)‖2 − ‖p(l+1)‖2 =
2

ε
(Asu

(l+1), u(l+1)) +
1

ε2
‖Lu(l+1)‖2.

We conclude that since As is nonnegative,

‖p(l)‖2 − ‖p(l+1)‖2 ≥ 0,

and the sequence {‖p(l)‖} is seen to be decreasing.
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Being bounded below by 0, it converges; hence ‖p(l)‖2 − ‖p(l+1)‖2

converges to 0 which implies that (Asu
(l+1), u(l+1)) and ‖Lu(l+1)‖2

converge to 0. Since As + 1
ε
LT L is positive definite, it follows that

u(l+1) converges to 0 and finally c(l+1) converges to c.
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Sketch of proof of convergence
rate

We prove that

‖c − c(l+1)‖ ≤ Cε‖c − c(l)‖,

Recall that u(l+1) = c(l+1) − c and p(l+1) = λ(l+1) − λ. We showed that

‖p(l+1)‖ ≤ ‖p(l)‖, for all l

i.e. that (p(l)) is a decreasing sequence. We also have





(A + 1
ε
LT L)u(l+1) + LT p(l) = 0

p(l+1) = p(l) + 1
ε
Lu(l+1),

from which it follows that

Au(l+1) + LT p(l+1) = 0

Presentation at the 10th Annual Conference for African American Researchers in the Mathematical Sciences , June 24, 2004 – p.37/47



We write u(l+1) = û(l+1) + u(l+1) with û(l+1) ∈ Ker(L) and u(l+1) ∈

Im(LT ). Note that L : Im(LT ) → Im(L) has a bounded inverse, so there

exists k0 > 0 such that

‖u(l+1)‖ ≤
1

k0
‖Lu(l+1)‖,

from which it follows that

‖u(l+1)‖ ≤
2ε

k0
‖p(l)‖

To get a bound on ‖û(l+1)‖, we notice that A is invertible on Ker(L) since

A + 1
ε
LT L is invertible. This gives for some α0 > 0,

‖û(l+1)‖ ≤
1

α0
sup

v0∈Ker(L)

(v0, Aû(l+1))

‖v0‖
= sup

v0∈Ker(L)

−vT
0 Au(l+1)

‖v0‖
≤ ‖A‖ ‖u(l+1)‖.
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Putting together, we obtain

‖u(l+1)‖ ≤ Cε‖p(l)‖, for some constant C > 0

To finish, we need a bound on ‖p(l)‖ in terms of ‖u(l)‖. It can be shown that

one can choose λ0 such that p(l) ∈ Im(L) and since LT : Im(L) → Im(LT )

has a bounded inverse,

‖p(l)‖ ≤
1

k0
‖LT p(l)‖.

This completes the proof since LT p(l) = −Au(l).
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Computational Experiments on
the 3D Stokes Equations

Let Ω ⊂ IR3 be a cube with sides of length 1. We
consider the vector field u = (u1, u2, u3) with a
pressure p.

u1 = − exp(x + 2y + 3z)

u2 = 2 exp(x + 2y + 3z)

u3 = − exp(x + 2y + 3z)

p = x(1 − x)z(1 − z).
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Table 1 Approximation Errors from Trivariate Spline Spaces on I1

degrees u1 u2 u3 p

3 3.3633×10 5.9431×10 4.0397×10 1.3466 ×103

4 1.7010×10 4.4374×10 3.5368×10 3.8562 ×102

5 2.3804 7.3711 5.9629 9.8470 ×101

6 3.9620×10−1 1.2238 1.0311 2.7404 ×101

7 6.7456×10−2 1.9789 ×10−1 1.6260×10−1 6.8411

Rate 1.56×107 d−9.8294 3.22×107 d−9.6203 2.32×107 d−9.5463 8.50 ×106 d−7.1353

Table 2 Approximation Errors from Trivariate Spline Spaces on I2

degrees u1 u2 u3 p

3 1.5083×10 1.8709×10 1.5222×10 4.4382 ×102

4 9.4142×10−1 2.2094 1.8373 3.5278×101

5 9.1619×10−2 2.2322×10−1 2.0176×10−1 5.8199

6 8.5128×10−3 2.3520×10−2 1.9276×10−2 7.1884 ×10−1

Rate 9.31×106 d−11.5631 1.24×107 d−11.1692 1.09×107 d−11.1901 1.05×107 d−9.1064

Presentation at the 10th Annual Conference for African American Researchers in the Mathematical Sciences , June 24, 2004 – p.41/47



L2 norm of the error versus degree on T1 (rate 1.6777 × 107

d−9.8962) and T2 (rate 7.7013 × 106 d−11.8503)
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H1 norm of the error versus degree on T1 (rate 1.6777 × 107

d−9.8962) and T2 (rate 7.7013 × 106 d−11.8503)
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Lid Driven Cavity Flow Prob-
lem
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Work in Progress
• Time dependent Navier-Stokes

• Extension to variational inequalities

• Thank You!
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