Trivariate Spline Approximations of 3D Navier-Stokes Equations

Gerard Awanou
Institute for Mathematics and its Applications
awanou@ima.umn.edu
Overview

The Navier-Stokes Equations

Features of the Spline Method

Trivariate Splines

Discretization of the Stokes Equations

Discretization of the Navier-Stokes Equations

Iterative Method for Solving the Discrete Problem

Computational Experiments

Work in Progress
The Navier-Stokes equations

\[
\begin{aligned}
-\nu \ \Delta u + \sum_{j=1}^{3} u_j \frac{\partial u}{\partial x_j} + \nabla p &= f \quad \text{in } \Omega, \\
\text{div } u &= 0 \quad \text{in } \Omega.
\end{aligned}
\]
The Navier-Stokes equations

\[
\begin{aligned}
-\nu \Delta u + \sum_{j=1}^{3} u_j \frac{\partial u}{\partial x_j} + \nabla p &= f \quad \text{in } \Omega, \\
\text{div } u &= 0 \quad \text{in } \Omega.
\end{aligned}
\]

(1)

\[
V_0 = \{ v \in H^1_0(\Omega)^3, \text{div } v = 0 \}
\]

\[
L^2_0(\Omega) = \{ u \in L^2(\Omega), \int_{\Omega} u = 0 \} \quad \text{and}
\]

\[
H^{1/2}(\partial \Omega) = \{ \tau(u), u \in H^1(\Omega) \},
\]
Existence and Uniqueness

Let Ω be a bounded connected open subset of \mathbb{R}^3 with a Lipschitz continuous boundary. For $f \in H^{-1}(\Omega)^3$ and $g \in H^{1/2}(\partial\Omega)^3$ satisfying $\int_{\partial\Omega} g \cdot n = 0$, the problem: find $(u, p) \in H^1(\Omega)^3 \times L^2_0(\Omega)$ such that

$$
\begin{cases}
-\nu \Delta u + \sum_{j=1}^{3} u_j \frac{\partial}{\partial x_j} u + \nabla p &= f & \text{in } \Omega \\
\text{div } u &= 0 & \text{in } \Omega \\
u \begin{array}{c}
\end{array}u &= g & \text{on } \partial\Omega,
\end{cases}
$$

has a solution which is unique provided that ν is sufficiently large.
Features of the spline method

- We shall assume that Ω is a polygonal domain of \mathbb{R}^3 with a tetrahedral partition \mathcal{T} and use the spline space

$$S^r_d(\mathcal{T}) = \{ s \in C^r(\Omega), \ s|_t \in \mathbb{P}_d, \ \forall t \in \mathcal{T} \} ,$$

where \mathbb{P}^d is the space of polynomials of total degree d.

We use the B-form of splines and associate to each component u_i of u, $i = 1, \ldots, 3$ a vector of coefficients c_i.
Features of the spline method

- We shall assume that Ω is a polygonal domain of \mathbb{R}^3 with a tetrahedral partition T and use the spline space

\[S_d^r(T) = \{ s \in C^r(\Omega), \ s|_t \in \mathbb{P}_d, \ \forall t \in T \}, \]

where \mathbb{P}_d is the space of polynomials of total degree d.

We use the B-form of splines and associate to each component u_i of u, $i = 1, \ldots, 3$ a vector of coefficients c_i.

- Smoothness requirements on c. In general, smoothness can be imposed in a flexible way across the domain.
Features of the spline method

- Polynomials of high degrees can be easily used locally to get better approximation properties.
Features of the spline method

- Polynomials of high degrees can be easily used locally to get better approximation properties.

- Weak formulation: Find $u \in H^1(\Omega)^3$ such that

\[
\nu \int_{\Omega} \nabla u \cdot \nabla v + \sum_{j=1}^{3} \int_{\Omega} u_j \frac{\partial u}{\partial x_j} \cdot v = \int_{\Omega} f \cdot v \quad \forall v \in V_0
\]

\[
\text{div } u = 0 \quad \text{in } \Omega
\]

\[
u u = g \quad \text{on } \partial \Omega
\]
Features of the spline method

- Polynomials of high degrees can be easily used locally to get better approximation properties.
- Weak formulation: Find $u \in H^1(\Omega)^3$ such that

\[
\nu \int_{\Omega} \nabla u \cdot \nabla v + \sum_{j=1}^{3} \int_{\Omega} u_j \frac{\partial u}{\partial x_j} \cdot v = \int_{\Omega} f \cdot v \quad \forall v \in V_0
\]

\[
\text{div } u = 0 \quad \text{in } \Omega
\]

\[
u \bar{K} c + \bar{B}(c)c + L^T \lambda = \bar{M} \bar{F}
\]

\[
Lc = \bar{G}
\]
Features of the spline method

- The previous system of nonlinear equations is linearized and the resulting linear systems solved by a variant of the augmented Lagrangian algorithm.
Features of the spline method

- The previous system of nonlinear equations is linearized and the resulting linear systems solved by a variant of the augmented Lagrangian algorithm.

- The mass and stiffness matrices can be assembled easily and these processes can be done in parallel.
Features of the spline method

• The previous system of nonlinear equations is linearized and the resulting linear systems solved by a variant of the augmented Lagrangian algorithm.

• The mass and stiffness matrices can be assembled easily and these processes can be done in parallel.

• The pressure is computed by solving a Poisson equation with Neumann boundary conditions.
Trivariate Splines

Let \(d \geq 1 \) and \(r \geq 0 \) be two fixed integers. Given a bounded domain \(\Omega \) of \(\mathbb{R}^3 \) with piecewise planar boundary, let \(\mathcal{T} \) be a tetrahedral partition of \(\Omega \).

\[
S_{d}^{r}(\Omega) = \{ p \in C^{r}(\Omega), \ p|_{t} \in P_{d}, \ \forall t \in \mathcal{T} \}.
\]

\[
p(x, y, z) = \sum_{0 \leq i+j+k \leq d} \alpha_{ijk} x^{i} y^{j} z^{k},
\]

Barycentric coordinates

Given a non-degenerate tetrahedron \(T = \langle v_1, v_2, v_3, v_4 \rangle \), any point \(v = (x, y, z) \) can be written uniquely in the form

\[
v = b_1 v_1 + b_2 v_2 + b_3 v_3 + v_4 b_4 \text{ with } b_1 + b_2 + b_3 + b_4 = 1.
\]
B-form of splines

Bernstein polynomials of degree d

$$B_{ijkl}^d(v) = \frac{d!}{i!j!k!l!} b_1^i b_2^j b_3^k b_4^l, \quad i + j + k + l = d.$$

They are polynomials of degree d since each b_i is a linear polynomial. The set $\mathcal{B}^d = \{B_{ijkl}^d(x, y, z), i + j + k + l = d\}$ is a basis for the space of polynomials P_d.

We recall that the dimension of P_d is $\binom{d+3}{3}$.

As a consequence any spline s in S^r_d can be written uniquely

$$s|_T = \sum_{i+j+k+l=d} c_{ijkl}^T B_{ijkl}^d,$$

since $s|_T$ is a polynomial of degree d.

$n_{th} = \text{number of tetrahedra}, \ m = \dim P_d$ and $N = m \ast n_{th}$.

Presentation at the 10th Annual Conference for African American Researchers in the Mathematical Sciences, June 24, 2004 – p.9/47
Bivariate splines

The restriction of a trivariate polynomial of degree d on a face of a tetrahedron is a bivariate polynomial and can be written in B-form

$$
\sum_{i+j+k=d} \tilde{c}_{ijk} \tilde{B}^d_{ijk}(v),
$$

where

$$
\tilde{B}^d_{ijk} = \frac{d!}{i!j!k!} b^i_1 b^j_2 b^k_3.
$$

For example, given the trivariate spline on a tetrahedron T

$$
p = \sum_{i+j+k+l=d} c_{ijkl} B^d_{ijkl}, \quad q = \sum_{i+j+k=d} c_{ijk0} B^d_{ijk0}
$$

can be considered as a bivariate polynomial.
Interpolation

There is a unique polynomial \(p \) of degree \(d \) that interpolates any given function \(f \) on a tetrahedron \(T = \langle v_1, v_2, v_3, v_4 \rangle \) at the domain points

\[
\xi_{ijkl} = \frac{iv_1 + jv_2 + kv_3 + lv_4}{d}.
\]

This gives rise to an interpolation operator \(\Pi_d \). \(\Pi_d(f) \) will denote both the spline interpolant and its \(B \)-net.

We can also define a boundary interpolation operator \(\Pi_d^b \) since a bivariate polynomial \(p \) of degree \(d \) is uniquely determined on a triangle \(\langle v_1, v_2, v_3 \rangle \) by its values at the domain points \(\xi_{ijk} = \frac{iv_1 + jv_2 + kv_3}{d} \). Note that here the domain points have three indices.

We have for a spline \(s \) with \(B \)-net \(c \) according to our notations

\[
Rc = \Pi_d^b(s)
\]
Derivatives

We want to give formulas for the directional derivatives of \(p \) in a direction defined by a vector \(\mathbf{u} \) joining the points \(v_1 \) and \(v_2 \). Let \(\mathbf{a} = (a_1, a_2, a_3, a_4) \) with components the difference of the barycentric coordinates of \(v_1 \) and \(v_2 \). \(D_{\mathbf{u}} p \) can be written in \(B \)-form as a polynomial of degree \(d - 1 \).

\[
D_{\mathbf{u}} p = d \sum_{i+j+k+l=d-1} c^{(1)}_{ijkl}(\mathbf{a}) B^{d-1}_{ijkl}, \quad \text{where}
\]

\[
c^{(1)}_{ijkl}(\mathbf{a}) = a_1 c_{i+1,j,k,l} + a_2 c_{i,j+1,k,l} + a_3 c_{i,j,k+1,l} + a_4 c_{i+1,j,k,l+1}.
\]

It’s not difficult to see that there are matrices \(D_1, D_2 \) and \(D_3 \) such that if \(c \) encodes the \(B \)-net of \(s \), \(D_i c, i = 1, \ldots, 3 \) encode respectively the \(B \)-net of \(\frac{\partial s}{\partial x_i} \).
Integration
There’s a matrix G such that if p and q have B-nets c and d,

$$\int_{\Omega} pq = c^T G d$$

Smoothness conditions
Let $t = \langle v_1, v_2, v_3, v_4 \rangle$ and $t' = \langle v_1, v_2, v_3, v_5 \rangle$ be two tetrahedra with common face $\langle v_1, v_2, v_3 \rangle$. Then s is of class C^r on $t \cup t'$ if and only if

$$c_{ijkm}^t = \sum_{\mu + \nu + \kappa + \delta = m} c_{i+\mu, j+\nu, \gamma+\kappa, \delta}^t B^l_{\mu, \nu, \kappa, \delta}(v_5), \ m = 0, \ldots, r, \ i + j + k = d - m$$

This suggests that there’s a (l, N) matrix H such that s is in $C^r(\Omega)$ if and only if

$$H c = 0.$$
Discretization

The weak form of the Navier-Stokes equations is: Find \(u \in H^1(\Omega)^3 \) such that

\[
\nu \int_{\Omega} \nabla u \cdot \nabla v + \sum_{j=1}^{3} \int_{\Omega} u_j \frac{\partial u}{\partial x_j} \cdot v = \int_{\Omega} f \cdot v \quad \forall v \in V_0
\]

\[
\text{div } u = 0 \quad \text{in } \Omega
\]

\[
u \int_{\partial \Omega} u \cdot n = \int_{\partial \Omega} g \quad \text{on } \partial \Omega
\]

where

\[
V_0 = \{ v \in H^1_0(\Omega)^3, \text{div } v = 0 \}.
\]

We now consider spline approximations of the velocity vector field \(u \). Let \(d \geq 1 \) and \(r \geq 0 \) be two given integers.
Let also $S \subset S^0_d(\mathcal{T})$ be a spline subspace over a tetrahedral partition \mathcal{T} of Ω consisting of spline functions which are C^r inside Ω and C^0 near the boundary $\partial \Omega$.

- Recall that there is a matrix H such that if $s \in S$ with B-coefficient vector c, then

$$Hc = 0.$$
Let also $S \subset S_0^d(\mathcal{T})$ be a spline subspace over a tetrahedral partition \mathcal{T} of Ω consisting of spline functions which are C^r inside Ω and C^0 near the boundary $\partial \Omega$.

- Recall that there is a matrix H such that if $s \in S$ with B-coefficient vector c, then

$$Hc = 0.$$

- Also recall that there is a matrix R which maps c to the B-coefficients of s on the boundary of Ω and $Rc = G$ represents the boundary condition, i.e., $s = g$ on the boundary approximately.
Finally there are matrices D_1, D_2 and D_3 such that if c encodes the B-net of s, $D_i c$, $i = 1, \ldots, 3$ encode respectively the B-net of $\frac{\partial s}{\partial x_i}$.
• Finally there are matrices D_1, D_2 and D_3 such that if c encodes the B-net of s, $D_i c$, $i = 1, \ldots, 3$ encode respectively the B-net of $\frac{\partial s}{\partial x_i}$.

• $\mathbf{u} = (u_1, u_2, u_3)$ velocity vector
 $s_{\mathbf{u}} = (s_1, s_2, s_3)$ spline approximating vector
 $s_i \in S$ satisfying $H \mathbf{c}_i = 0, R(\mathbf{c}_i) = G(g_i)$ for $i = 1, 2, 3$.

 $\text{div} \mathbf{u} = 0$ is discretized as $D_1 \mathbf{c}_1 + D_2 \mathbf{c}_2 + D_3 \mathbf{c}_3 = 0$
• Finally there are matrices \(D_1, D_2 \) and \(D_3 \) such that if \(c \) encodes the \(B \)-net of \(s \), \(D_i c, i = 1, \ldots, 3 \) encode respectively the \(B \)-net of \(\frac{\partial s}{\partial x_i} \).

• \(u = (u_1, u_2, u_3) \) velocity vector

• \(s_u = (s_1, s_2, s_3) \) spline approximating vector

• \(s_i \in S \) satisfying \(Hc_i = 0, R(c_i) = G(g_i) \) for \(i = 1, 2, 3 \).

• \(\text{div} \ u = 0 \) is discretized as \(D_1 c_1 + D_2 c_2 + D_3 c_3 = 0 \)

• Let

\[
\overline{H} = \begin{pmatrix}
H & 0 & 0 \\
0 & H & 0 \\
0 & 0 & H
\end{pmatrix}, \quad \overline{R} = \begin{pmatrix}
R & 0 & 0 \\
0 & R & 0 \\
0 & 0 & R
\end{pmatrix},
\]
\[\mathbf{G} = (G(g_1), G(g_2), G(g_3))^T \quad \overline{\mathbf{D}} = \begin{bmatrix} D_1 & D_2 & D_3 \end{bmatrix}. \]

\[\overline{H} \mathbf{c} = 0, \overline{R} \mathbf{c} = \mathbf{G} \text{ and } \overline{D} \mathbf{c} = 0 \]

\[L = \left[\begin{array}{ccc} \overline{H}^T & \overline{R}^T & \overline{D}^T \end{array} \right]^T \quad \text{and} \quad \overline{\mathbf{G}} = \left[\begin{array}{ccc} 0 & \mathbf{G}^T & 0 \end{array} \right]^T. \]
\[
G = (G(g_1), G(g_2), G(g_3))^T \quad \overline{D} = \begin{bmatrix} D_1 & D_2 & D_3 \end{bmatrix}.
\]

\[
\overline{H}c = 0, \overline{R}c = G \text{ and } \overline{D}c = 0
\]

\[
L = \begin{bmatrix} \overline{H}^T & \overline{R}^T & \overline{D}^T \end{bmatrix}^T \text{ and } \overline{G} = \begin{bmatrix} 0 & G^T & 0 \end{bmatrix}^T,
\]

In other words, if we let

\[
S_g = \{ c \in (\mathbb{R}^N)^3, Lc = \overline{G} \},
\]

we are seeking for a solution in \(S_g\). We approximate elements of \(V_0\) by vectors \(d = (d_1, d_2, d_3)\) in

\[
S_0 = \{ d \in (\mathbb{R}^N)^3, Ld = 0 \}.
\]
\[a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \]

\[b(w; u, v) = \sum_{j=1}^{3} \int_{\Omega} w_j \frac{\partial u}{\partial x_j} \cdot v. \]

\[\int_{\Omega} fv \]

\[M^t = \left(\int_{t} B^d_{\alpha} B^d_{\beta} \right)_{|\alpha|=d,|\beta|=d} \text{, local mass matrix} \]

\[M \text{ is the global mass matrix} \]

\[K^t = \left(\int_{t} \nabla B^d_{\alpha} \nabla B^d_{\beta} \right)_{|\alpha|=d,|\beta|=d} \text{, local stiffness matrix} \]

\[K \text{ global stiffness matrix} \]
<table>
<thead>
<tr>
<th>Continuous</th>
<th>Discrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{u} = (u_1, u_2, u_3))</td>
<td>(\mathbf{c} = (c_1, c_2, c_3))</td>
</tr>
<tr>
<td>(\mathbf{v} = (v_1, v_2, v_3))</td>
<td>(\mathbf{d} = (d_1, d_2, d_3))</td>
</tr>
<tr>
<td>(\mathbf{u} \in \mathcal{S} \subset \mathcal{S}_d^r(\Omega))</td>
<td>(\overline{H}\mathbf{c} = 0)</td>
</tr>
<tr>
<td>(\text{div} \ \mathbf{u} = 0)</td>
<td>(\overline{D}\mathbf{c} = 0)</td>
</tr>
<tr>
<td>(\mathbf{u} = g \text{ on } \partial \Omega)</td>
<td>(\overline{R}\mathbf{c} = \mathcal{G})</td>
</tr>
<tr>
<td>(\mathbf{u} \in \mathcal{S}_g)</td>
<td>(L\mathbf{c} = \mathcal{G})</td>
</tr>
<tr>
<td>(\int_{\Omega} f_i v_j)</td>
<td>(\mathbf{d}_j^T \mathcal{M} \mathcal{F}_i)</td>
</tr>
<tr>
<td>(\int_{\Omega} \mathbf{f} \mathbf{v})</td>
<td>(\mathbf{d}^T \overline{\mathcal{M}} \mathcal{F})</td>
</tr>
<tr>
<td>(a(\mathbf{u}, \mathbf{v}) = \int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v})</td>
<td>(\mathbf{c}^T \overline{\mathcal{K}} \mathbf{d})</td>
</tr>
<tr>
<td>(b(\mathbf{w}; \mathbf{u}, \mathbf{v}) = \sum_{j=1}^{3} \int_{\Omega} w_j \frac{\partial \mathbf{u}}{\partial x_j} \cdot \mathbf{v})</td>
<td>(\mathbf{d}^T \overline{\mathcal{B}}(\mathbf{e})\mathbf{c})</td>
</tr>
</tbody>
</table>
Discretization of the Stokes equations

Corollary of the Lax-Milgram lemma
Let V be a real Hilbert space with norm denoted by $\| \cdot \|_V$, $(u, v) \mapsto a(u, v)$ a real bilinear form on $V \times V$, l an element of the dual of V and let us denote the duality pairing between V and its dual V' by $<, >$. If a is continuous, symmetric and is elliptic on V i.e. there is $\alpha > 0$ such that $a(v, v) \geq \alpha \|v\|^2_V$ for all $v \in V$, then, the problem:

Find $u \in V$ such that

$$a(u, v) = < l, v >,$$

has one an only one solution which minimizes the following functional over V

$$J(v) = \frac{1}{2}a(v, v) - < l, v >.$$
Under the same hypotheses as in the theorem on the Navier-Stokes equations, the Stokes equations:

\[
\begin{aligned}
-\nu \Delta u + \nabla p &= f \text{ in } \Omega \\
\text{div } u &= 0 \text{ in } \Omega \\
u u &= g \text{ on } \partial \Omega
\end{aligned}
\]

have a unique solution \(u \) in \(H^1(\Omega)^3 \) and a pressure \(p \) in \(L^2(\Omega) \) unique up to an additive constant. These equations are derived under the assumption that the velocity is sufficiently small to ignore the nonlinear term \(u \cdot \nabla u(x, t) \).

The weak form of the equations is: Find \(u \) in \(H^1(\Omega)^3 \) such that \(\text{div } u = 0 \) and \(\nu \int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} f \cdot v, \quad \forall v \in V_0 \),
\[V_0 = \{ \mathbf{v} \in H^1_0(\Omega)^3 \text{ such that } \text{div } \mathbf{v} = 0 \}. \]

In this case, the velocity vector \(\mathbf{u} \) is the unique minimizer in

\[V = \{ \mathbf{v} \in H^1(\Omega)^3 \text{ such that } \text{div } \mathbf{v} = 0 \} \]

of the functional

\[
J(\mathbf{u}) = \frac{\nu}{2} \int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{u} - \int_{\Omega} \mathbf{f} \cdot \mathbf{u}.
\]

If we let \(\mathbf{c} \) encode the \(B \)-net of the approximant, the discrete problem is: Minimize

\[
J(\mathbf{c}) = \frac{\nu}{2} \mathbf{c}^T \mathbf{K} \mathbf{c} + \mathbf{F}^T \mathbf{M} \mathbf{c}
\]

over \((\mathbb{R}^N)^3 \) under the constraint \(L \mathbf{c} = \mathbf{G} \).
By the theory of Lagrange multipliers, there is a vector of Lagrange multipliers λ such that

$$\begin{cases}
\nu K c + L^T \lambda &= \overline{M} F, \\
L c &= \overline{G}.
\end{cases}$$
Computation of the pressure term

Assuming that u is smooth and taking the divergence of the equation

$$-\nu \Delta u + \nabla p = f \text{ in } \Omega$$

we get

$$-\Delta p = -\text{div } f$$

since $\text{div } u = 0$. Here, the pressure is the minimizer over

$$L^2_0(\Omega) = \{ p \in L^2(\Omega), \int_\Omega p = 0 \}$$

of

$$Q(v) = \frac{1}{2} \int_\Omega |\nabla v|^2 - \int_\Omega (-\text{div } f)v - \int_{\partial \Omega} (f \cdot n + \nu (\Delta u) \cdot n)v.$$

Discretization for the pressure in Navier-Stokes equations is similar.
Discretization of the Navier-Stokes equations

Find \(c \) in \(\mathbb{R}^{3N} \) satisfying \(Lc = \overline{G} \) with \(\overline{G} \) encoding the side conditions and

\[
\nu c^T K d + (\overline{B}(c)c)^T d = d^T M F
\]

for all \(d \) in \(\mathbb{R}^{3N} \) with constraints \(Ld = 0 \).

Here, \(K \) and \(M \) are the stiffness and mass matrices respectively; \((\overline{B}c)d\) encodes the nonlinear term. If one considers the following linear functional in \(d \),

\[
J(d) = (\nu c^T K + (\overline{B}(c)c)^T + F^T M) d,
\]

we have \(J(d) = 0 \) for all \(d \) satisfying \(Ld = 0 \).
This implies the existence of a Lagrange multiplier λ such that
\[J(d) + \lambda^T Ld = 0. \]

\[\nu c^T K + (\overline{B}(c)c)^T + \lambda^T L = F^T \overline{M} \]

In summary, the discrete solution c must satisfy
\[\nu c^T K + (\overline{B}(c)c)^T + \lambda^T L = F^T \overline{M} \]
\[Lc = \overline{G} \]

This can be written
\[\nu Kc + \overline{B}(c)c + L^T \lambda = \overline{M} F \]
\[Lc = \overline{G}. \]

This has a unique solution c provided the viscosity ν is sufficiently large.
Linearization

A simple iteration algorithm Starting with an initial guess \(c^{(0)} \) which can be computed by solving the Stokes equations, we consider the sequence of problems

\[
\nu K c^{(n+1)} + B(c^{(n)})c^{(n+1)} + LT \lambda^{(n+1)} = MF \\
Lc^{n+1} = \overline{G},
\]

The following convergence result is similar to one of the convergence results of [Karakashian’82].

The previous system has a unique solution \(c^{(n+1)} \) and the unique solution \(c \) is such that

\[
\|c^{(n+1)} - c\|_{H^1(\Omega)^3} \leq \gamma_1 \|c^{(n)} - c\|_{H^1(\Omega)^3}
\]

for a constant \(\gamma_1 < 1 \). As a consequence \(c^{(n+1)} \) converges to \(c \).
Newton’s iterations We are interested in the sequence $c^{(n+1)}$ defined by

$$
\nu \hat{K}c^{(n+1)} + \bar{B}(c^{(n)})c^{(n+1)} + \tilde{B}(c^{(n)})c^{(n+1)} + L^T \lambda^{(n+1)} =
\begin{align*}
\bar{M}F + \bar{B}(c^{(n)})c^{(n)}
\end{align*}
Lc^{(n+1)} = \overline{G}.
$$

\tilde{B} is defined such that $\tilde{B}(c)d = \bar{B}(d)c$. We have the following convergence result. There exists $r > 0$ such that if $||c - c^{(0)}||_{H^1(\Omega)^3} < r$, there is a unique $c^{(n+1)}$ solution of the system and $||c - c^{(n)}||_{H^1(\Omega)^3} < r$ for all n with $||c - c^{(n+1)}||_{H^1(\Omega)^3} \leq \frac{1}{r} ||c - c^{(n)}||_{H^1(\Omega)^3}$. Moreover, if there’s $\eta < 1$ such that $||c - c^{(0)}||_{H^1(\Omega)^3} = r\eta$, then $c^{(n)}$ converges to c as

$$
||c - c^{(n)}||_{H^1(\Omega)^3} \leq \frac{1}{r^{2^n - 1}} ||c - c^{(0)}||_{H^1(\Omega)^3}^{2^n}, \quad n = 1, 2, \ldots
$$
Practical computation of c The previous methods all involve to find c solution of a singular system of type

$$
\begin{pmatrix}
A & L^T \\
L & 0
\end{pmatrix}
\begin{pmatrix}
c \\
\lambda
\end{pmatrix} =
\begin{bmatrix}
F \\
G
\end{bmatrix},
$$

with A non symmetric.

Under the hypothesis that ν is sufficiently large or $\|F\|_{L^2(\Omega)^3}$ is sufficiently small, the symmetric part $(A)_s$ of A is positive definite with respect to L in the sense that $x^T(A)_s x \geq 0$ and $x^T(A)_s x = 0$ with $Lx = 0$ implies $x = 0$.
We show that the later condition is sufficient for the solution \mathbf{c} to be unique. Indeed if (\mathbf{d}, β) is another solution we have
\[A(\mathbf{c} - \mathbf{d}) + L^T(\lambda - \beta) = 0. \]

So, with $\mathbf{e} = \mathbf{c} - \mathbf{d}$,
\[\mathbf{e}^T((A)_s\mathbf{e} + (A)_{as}\mathbf{e} + L^T(\lambda - \beta)) = 0 \]
\[Le = 0. \]

Here $(A)_{as}$ denotes the antisymmetric part of A. We have $\mathbf{e}^T((A)_{as}\mathbf{e} = 0$ and $\mathbf{e}^T L = 0$. Therefore $\mathbf{e}^T(A)_s\mathbf{e} = 0$ with $Le = 0$. Thus $\mathbf{c} = \mathbf{d}$.

This suggests that we can retrieve the solution \mathbf{c} by computing any least squares solution of the system.
We consider for \(l= 0, 1, 2, \ldots \), the sequence of problems

\[
\begin{pmatrix}
A & L^T \\
L & -\epsilon I
\end{pmatrix}
\begin{bmatrix}
c^{(l+1)} \\
\lambda^{(l+1)}
\end{bmatrix}
=
\begin{bmatrix}
F \\
G - \epsilon \lambda^{(l)}
\end{bmatrix},
\]

where \(\lambda^{(0)} \) is a suitable initial guess for example \(\lambda^{(0)} = 0 \), and \(I \) is the identity matrix. Let also assume that \(A \) is a matrix of size \(n \times n \); \(c, F \in \mathbb{R}^n \); \(L \) is a matrix of size \(m \times n \) and \(\lambda, G \in \mathbb{R}^m \).
Theorem

Suppose that the linear system (of the discrete problem) has a unique solution \(c \). Assume that \(A_s = \frac{1}{2}(A + A^T) \) the symmetric part of \(A \) is positive definite with respect to \(L \), i.e., \(x^T A_s x \geq 0 \) and \(x^T A_s x = 0 \) with \(Lx = 0 \) implies \(x = 0 \). Then, the sequence \((c^{(l+1)}) \) defined by the iterative method converges to the solution \(c \) for any \(\epsilon > 0 \). Furthermore,

\[
\|c - c^{(l+1)}\| \leq C \epsilon \|c - c^{(l)}\|
\]

for some constant \(C \) independent of \(\epsilon \) and \(l \).
Theorem

Suppose that the linear system (of the discrete problem) has a unique solution c. Assume that $A_s = \frac{1}{2}(A + A^T)$ the symmetric part of A is positive definite with respect to L, i.e., $x^T A_s x \geq 0$ and $x^T A_s x = 0$ with $Lx = 0$ implies $x = 0$. Then, the sequence $(c^{(l+1)})$ defined by the iterative method converges to the solution c for any $\epsilon > 0$. Furthermore,

$$\|c - c^{(l+1)}\| \leq C\epsilon\|c - c^{(l)}\|$$

for some constant C independent of ϵ and l.

Proof

We first show that $c^{(l+1)}$ and $\lambda^{(l+1)}$ are well-defined. Let us first rewrite the iterative method system as follows.
\[Ac^{(l+1)} + L^T \lambda^{(l+1)} = F \quad \text{and (1)} \]
\[Lc^{(l+1)} - \varepsilon \lambda^{(l+1)} = G - \varepsilon \lambda^{(l)} \quad (2). \]

Multiplying (2) on the left by \(L^T \) and substituting \(L^T \lambda^{(l+1)} \) into (1) and rewriting (2), we get

\[
\left(A + \frac{1}{\varepsilon} L^T L \right) c^{(l+1)} = -L^T \lambda^{(l)} + F + \frac{1}{\varepsilon} L^T G \quad (3)
\]
\[
\lambda^{(l+1)} + \frac{1}{\varepsilon} Lc^{(l+1)} = \lambda^{(l)} + \frac{1}{\varepsilon} G.
\]

To show that the iterative method system is solvable under the hypotheses of the theorem, we need only to show that \(A + \frac{1}{\varepsilon} L^T L \) is invertible.
Since A is a square matrix, it is enough to show that

$$(A + \frac{1}{\epsilon}L^T L)x = 0 \Rightarrow x = 0.$$

That is,

$$0 = x^T(A + \frac{1}{\epsilon}L^T L)x = x^T(A_s + \frac{1}{\epsilon}L^T L)x = x^T A_s x + \frac{1}{\epsilon}(Lx)^T(Lx)$$

since $x^T A_s x = 0$. It follows that

$$x^T A_s x = 0 \text{ and } (Lx)^T(Lx) = 0.$$

By the assumptions on A, i.e., A_s is assumed to be symmetric positive definite with respect to L, we get $x = 0$. Hence, the new iterative linear system is invertible and $c^{(l+1)}$ and $\lambda^{(l+1)}$ are well-defined.
We now show that $c^{(l+1)}$ converges to c. Let also $u^{(l+1)} = c^{(l+1)} - c$ and $p^{(l+1)} = \lambda^{(l+1)} - \lambda$. We have

$$\begin{cases}
(A + \frac{1}{\epsilon} L^T L)u^{(l+1)} + L^T p^{(l)} = 0 \\
p^{(l+1)} = p^{(l)} + \frac{1}{\epsilon} Lu^{(l+1)}.
\end{cases}$$

$$\|p^{(l)}\|^2 - \|p^{(l+1)}\|^2 = \frac{2}{\epsilon} (A_s u^{(l+1)}, u^{(l+1)}) + \frac{1}{\epsilon^2} \|Lu^{(l+1)}\|^2.$$

We conclude that since A_s is nonnegative,

$$\|p^{(l)}\|^2 - \|p^{(l+1)}\|^2 \geq 0,$$

and the sequence $\{\|p^{(l)}\|\}$ is seen to be decreasing.
Being bounded below by 0, it converges; hence \(\|p^{(l)}\|^2 - \|p^{(l+1)}\|^2 \) converges to 0 which implies that \((A_s u^{(l+1)}, u^{(l+1)})\) and \(\|Lu^{(l+1)}\|^2\) converge to 0. Since \(A_s + \frac{1}{\epsilon} L^T L\) is positive definite, it follows that \(u^{(l+1)}\) converges to 0 and finally \(c^{(l+1)}\) converges to \(c\).
Sketch of proof of convergence rate

We prove that
\[\|c - c^{(l+1)}\| \leq C\epsilon\|c - c^{(l)}\|, \]

Recall that \(u^{(l+1)} = c^{(l+1)} - c \) and \(p^{(l+1)} = \lambda^{(l+1)} - \lambda \). We showed that
\[\|p^{(l+1)}\| \leq \|p^{(l)}\|, \quad \text{for all } l \]
i.e. that \((p^{(l)}) \) is a decreasing sequence. We also have
\[
\begin{cases}
(A + \frac{1}{\epsilon}LT L)u^{(l+1)} + LTp^{(l)} = 0 \\
p^{(l+1)} = p^{(l)} + \frac{1}{\epsilon}Lu^{(l+1)},
\end{cases}
\]
from which it follows that
\[Au^{(l+1)} + LTp^{(l+1)} = 0 \]
We write \(u^{(l+1)} = \hat{u}^{(l+1)} + \overline{u}^{(l+1)} \) with \(\hat{u}^{(l+1)} \in \text{Ker}(L) \) and \(\overline{u}^{(l+1)} \in \text{Im}(L^T) \). Note that \(L : \text{Im}(L^T) \to \text{Im}(L) \) has a bounded inverse, so there exists \(k_0 > 0 \) such that

\[
\| \overline{u}^{(l+1)} \| \leq \frac{1}{k_0} \| Lu^{(l+1)} \|
\]

from which it follows that

\[
\| \overline{u}^{(l+1)} \| \leq \frac{2\epsilon}{k_0} \| p^{(l)} \|
\]

To get a bound on \(\| \hat{u}^{(l+1)} \| \), we notice that \(A \) is invertible on \(\text{Ker}(L) \) since \(A + \frac{1}{\epsilon} L^T L \) is invertible. This gives for some \(\alpha_0 > 0 \),

\[
\| \hat{u}^{(l+1)} \| \leq \frac{1}{\alpha_0} \sup_{v_0 \in \text{Ker}(L)} \frac{(v_0, A\hat{u}^{(l+1)})}{\| v_0 \|} = \sup_{v_0 \in \text{Ker}(L)} \frac{-v_0^T A\overline{u}^{(l+1)}}{\| v_0 \|} \leq \| A \| \| \overline{u}^{(l+1)} \|
\]
Putting together, we obtain

\[\| u^{(l+1)} \| \leq C \epsilon \| p^{(l)} \|, \quad \text{for some constant } C > 0 \]

To finish, we need a bound on \(\| p^{(l)} \| \) in terms of \(\| u^{(l)} \| \). It can be shown that one can choose \(\lambda_0 \) such that \(p^{(l)} \in \text{Im}(L) \) and since \(L^T : \text{Im}(L) \rightarrow \text{Im}(L^T) \) has a bounded inverse,

\[\| p^{(l)} \| \leq \frac{1}{k_0} \| L^T p^{(l)} \|. \]

This completes the proof since \(L^T p^{(l)} = -A u^{(l)} \).
Computational Experiments on the 3D Stokes Equations

Let $\Omega \subset \mathbb{R}^3$ be a cube with sides of length 1. We consider the vector field $\mathbf{u} = (u_1, u_2, u_3)$ with a pressure p.

\[
\begin{align*}
 u_1 &= -\exp(x + 2y + 3z) \\
 u_2 &= 2 \exp(x + 2y + 3z) \\
 u_3 &= -\exp(x + 2y + 3z) \\
 p &= x(1 - x)z(1 - z).
\end{align*}
\]
Table 1 Approximation Errors from Trivariate Spline Spaces on \mathcal{T}_1

<table>
<thead>
<tr>
<th>degrees</th>
<th>u_1</th>
<th>u_2</th>
<th>u_3</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3.3633×10</td>
<td>5.9431×10</td>
<td>4.0397×10</td>
<td>1.3466×10^3</td>
</tr>
<tr>
<td>4</td>
<td>1.7010×10</td>
<td>4.4374×10</td>
<td>3.5368×10</td>
<td>3.8562×10^2</td>
</tr>
<tr>
<td>5</td>
<td>2.3804</td>
<td>7.3711</td>
<td>5.9629</td>
<td>9.8470×10^1</td>
</tr>
<tr>
<td>6</td>
<td>3.9620×10^{-1}</td>
<td>1.2238</td>
<td>1.0311</td>
<td>2.7404×10^1</td>
</tr>
<tr>
<td>7</td>
<td>6.7456×10^{-2}</td>
<td>1.9789×10^{-1}</td>
<td>1.6260×10^{-1}</td>
<td>6.8411</td>
</tr>
<tr>
<td>Rate</td>
<td>$1.56\times 10^7 d^{-9.8294}$</td>
<td>$3.22\times 10^7 d^{-9.6203}$</td>
<td>$2.32\times 10^7 d^{-9.5463}$</td>
<td>$8.50 \times 10^6 d^{-7.13}$</td>
</tr>
</tbody>
</table>

Table 2 Approximation Errors from Trivariate Spline Spaces on \mathcal{T}_2

<table>
<thead>
<tr>
<th>degrees</th>
<th>u_1</th>
<th>u_2</th>
<th>u_3</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.5083×10</td>
<td>1.8709×10</td>
<td>1.5222×10</td>
<td>4.4382×10^2</td>
</tr>
<tr>
<td>4</td>
<td>9.4142×10^{-1}</td>
<td>2.2094</td>
<td>1.8373</td>
<td>3.5278×10^1</td>
</tr>
<tr>
<td>5</td>
<td>9.1619×10^{-2}</td>
<td>2.2322×10^{-1}</td>
<td>2.0176×10^{-1}</td>
<td>5.8199</td>
</tr>
<tr>
<td>6</td>
<td>8.5128×10^{-3}</td>
<td>2.3520×10^{-2}</td>
<td>1.9276×10^{-2}</td>
<td>7.1884×10^{-1}</td>
</tr>
<tr>
<td>Rate</td>
<td>$9.31\times 10^6 d^{-11.5631}$</td>
<td>$1.24\times 10^7 d^{-11.1692}$</td>
<td>$1.09\times 10^7 d^{-11.1901}$</td>
<td>$1.05 \times 10^7 d^{-9}$</td>
</tr>
</tbody>
</table>
L^2 norm of the error versus degree on \mathcal{T}_1 (rate $1.6777 \times 10^7 d^{-9.8962}$) and \mathcal{T}_2 (rate $7.7013 \times 10^6 d^{-11.8503}$)
H^1 norm of the error versus degree on \mathcal{T}_1 (rate $1.6777 \times 10^7 d^{-9.8962}$) and \mathcal{T}_2 (rate $7.7013 \times 10^6 d^{-11.8503}$)
Lid Driven Cavity Flow Problem

3D fluid profile in the $x - y$ plane

Presentation at the 10th Annual Conference for African American Researchers in the Mathematical Sciences, June 24, 2004 – p.44/47
3D fluid profile in the $y - z$ plane
3D fluid profile in the $x - z$ plane

Presentation at the 10th Annual Conference for African American Researchers in the Mathematical Sciences, June 24, 2004 – p.46/47
Work in Progress

- Time dependent Navier-Stokes
Work in Progress

- Time dependent Navier-Stokes
- Extension to variational inequalities
Work in Progress

- Time dependent Navier-Stokes
- Extension to variational inequalities
- Thank You!