Trivariate Spline Approximations of 3D Navier-Stokes Equations

Gerard Awanou Institute for Mathematics and its Applications awanou@ima.umn.edu

Presentation at the 10th Annual Conference for African American Researchers in the Mathematical Sciences , June 24, 2004 - p.1/47

Overview The Navier-Stokes Equations Features of the Spline Method Trivariate Splines **Discretization of the Stokes Equations Discretization of the Navier-Stokes Equations** Iterative Method for Solving the Discrete Problem **Computational Experiments** Work in Progress

The Navier-Stokes equations

$$\begin{aligned} -\nu \,\Delta \mathbf{u} + \sum_{j=1}^{3} u_j \frac{\partial \mathbf{u}}{\partial x_j} + \nabla p &= \mathbf{f} & \text{in } \Omega, \\ \text{div } \mathbf{u} &= 0 & \text{in } \Omega. \end{aligned}$$
(1)

The Navier-Stokes equations

$$\begin{aligned} -\nu \,\Delta \mathbf{u} + \sum_{j=1}^{3} u_j \frac{\partial \mathbf{u}}{\partial x_j} + \nabla p &= \mathbf{f} & \text{in } \Omega, \\ \operatorname{div} \mathbf{u} &= 0 & \operatorname{in} \Omega. \end{aligned}$$
(1)

$$V_0 = \{ \mathbf{v} \in H_0^1(\Omega)^3, \text{div } \mathbf{v} = 0 \}$$
$$L_0^2(\Omega) = \{ u \in L^2(\Omega), \int_{\Omega} u = 0 \} \text{ and }$$
$$H^{\frac{1}{2}}(\partial \Omega) = \{ \tau(u), u \in H^1(\Omega) \},$$

Existence and Uniqueness

Let Ω be a bounded connected open subset of \mathbb{R}^3 with a Lipschitz continuous boundary. For $\mathbf{f} \in H^{-1}(\Omega)^3$ and $\mathbf{g} \in H^{\frac{1}{2}}(\partial \Omega)^3$ satisfying $\int_{\partial \Omega} \mathbf{g} \cdot \mathbf{n} = 0$, the problem: find $(\mathbf{u}, p) \in H^1(\Omega)^3 \times L^2_0(\Omega)$ such that

$$-\nu \Delta \mathbf{u} + \sum_{j=1}^{3} u_{j} \frac{\partial}{\partial x_{j}} \mathbf{u} + \nabla p = \mathbf{f} \quad \text{in } \Omega$$
$$\operatorname{div} \mathbf{u} = 0 \quad \text{in } \Omega$$
$$\mathbf{u} = \mathbf{g} \quad \text{on } \partial \Omega,$$

has a solution which is unique provided that ν is sufficiently large.

 $S_d^r(\mathcal{T}) = \{ s \in C^r(\Omega), \ s|_t \in \mathbb{P}_d, \ \forall t \in \mathcal{T} \},\$

where \mathbb{P}^d is the space of polynomials of total degree d.

We use the *B*-form of splines and associate to each component u_i of $\mathbf{u}, i = 1, ..., 3$ a vector of coefficients c_i .

 $S_d^r(\mathcal{T}) = \{ s \in C^r(\Omega), \ s|_t \in \mathbb{P}_d, \ \forall t \in \mathcal{T} \},\$

where \mathbb{P}^d is the space of polynomials of total degree d.

We use the *B*-form of splines and associate to each component u_i of $\mathbf{u}, i = 1, ..., 3$ a vector of coefficients c_i .

 Smoothness requirements on c. In general, smoothness can be imposed in a flexible way across the domain.

• Polynomials of high degrees can be easily used locally to get better approximation properties.

- Polynomials of high degrees can be easily used locally to get better approximation properties.
- Weak formulation: Find $\mathbf{u} \in H^1(\Omega)^3$ such that

$$\nabla \int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v} + \sum_{j=1}^{3} \int_{\Omega} u_{j} \frac{\partial \mathbf{u}}{\partial x_{j}} \cdot \mathbf{v} = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \qquad \forall \mathbf{v} \in V_{0}$$
$$\operatorname{div} \mathbf{u} = 0 \qquad \operatorname{in} \Omega$$
$$\mathbf{u} = \mathbf{g} \qquad \operatorname{on} \partial \Omega$$

- Polynomials of high degrees can be easily used locally to get better approximation properties.
- Weak formulation: Find $\mathbf{u} \in H^1(\Omega)^3$ such that

$$\nabla \int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v} + \sum_{j=1}^{3} \int_{\Omega} u_{j} \frac{\partial \mathbf{u}}{\partial x_{j}} \cdot \mathbf{v} = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \qquad \forall \mathbf{v} \in V_{0}$$
$$\operatorname{div} \mathbf{u} = 0 \qquad \text{in } \Omega$$
$$\mathbf{u} = \mathbf{g} \qquad \text{on } \partial \Omega$$

$$\nu \overline{K} \mathbf{c} + \overline{B}(\mathbf{c}) \mathbf{c} + L^T \lambda = \overline{M} \mathbf{F}$$

Presentation at the 10th Annual Conference for African American Researchers in the Mathematical Sciences , June 24, 2004 - p.6/47

Lc =

• The previous system of nonlinear equations is linearized and the resulting linear systems solved by a variant of the augmented Lagrangian algorithm.

- The previous system of nonlinear equations is linearized and the resulting linear systems solved by a variant of the augmented Lagrangian algorithm.
- The mass and stiffness matrices can be assembled easily and these processes can be done in parallel.

- The previous system of nonlinear equations is linearized and the resulting linear systems solved by a variant of the augmented Lagrangian algorithm.
- The mass and stiffness matrices can be assembled easily and these processes can be done in parallel.
- The pressure is computed by solving a Poisson equation with Neumann boundary conditions.

Trivariate Splines

Let $d \ge 1$ and $r \ge 0$ be two fixed integers. Given a bounded domain Ω of \mathbb{R}^3 with piecewise planar boundary, let \mathcal{T} be a tetrahedral partition of Ω .

$$S_d^r(\Omega) = \{ p \in C^r(\Omega), \ p_{|t} \in P_d, \ \forall t \in \mathcal{T} \}.$$

$$p(x, y, z) = \sum_{0 \le i+j+k \le d} \alpha_{ijk} x^i y^j z^k,$$

Barycentric coordinates

Given a non-degenerate tetrahedron $T = \langle v_1, v_2, v_3, v_4 \rangle$, any point v = (x, y, z) can be written uniquely in the form $v = b_1v_1 + b_2v_2 + b_3v_3 + v_4b_4$ with $b_1 + b_2 + b_3 + b_4 = 1$.

B-form of splines Bernstein polynomials of degree d

$$B_{ijkl}^{d}(v) = \frac{d!}{i!j!k!l!} b_1^i b_2^j b_3^k b_4^l, \quad i+j+k+l = d.$$

They are polynomials of degree d since each b_i is a linear polynomial. The set $\mathcal{B}^d = \{B^d_{ijkl}(x, y, z), i + j + k + l = d\}$ is a basis for the space of polynomials P_d .

We recall that the dimension of P_d is $\binom{d+3}{3}$. As a consequence any spline s in S_d^r can be written uniquely

$$s_{|T} = \sum_{i+j+k+l=d} c_{ijkl}^T B_{ijkl}^d,$$

since $s_{|T}$ is a polynomial of degree d. nth = number of tetrahedra, $m = \dim P_d$ and N = m * nth.

Presentation at the 10th Annual Conference for African American Researchers in the Mathematical Sciences , June 24, 2004 – p.9/47

Bivariate splines

The restriction of a trivariate polynomial of degree d on a face of a tetrahedron is a bivariate polynomial and can be written in B-form

$$\sum_{ijk} \widetilde{c}_{ijk} \widetilde{B}^d_{ijk}(v),$$

where

$$\widetilde{B}^d_{ijk} = \frac{d!}{i!j!k!} b^i_1 b^j_2 b^k_3.$$

For example, given the trivariate spline on a tetrahedron T $p = \sum_{i+j+k+l=d} c_{ijkl} B^d_{ijkl}, \quad q = \sum_{i+j+k=d} c_{ijk0} B^d_{ijk0}$ can be considered as a bivariate polynomial.

Interpolation

There is a unique polynomial p of degree d that interpolates any given function f on a tetrahedron $T = \langle v_1, v_2, v_3, v_4 \rangle$ at the domain points $\xi_{ijkl} = \frac{iv_1 + jv_2 + kv_3 + lv_4}{d}$.

This gives rise to an interpolation operator Π_d . $\Pi_d(f)$ will denote both the spline interpolant and its *B*-net.

We can also define a boundary interpolation operator Π_d^b since a bivariate polynomial p of degree d is uniquely determined on a triangle $\langle v_1, v_2, v_3 \rangle$ by its values at the domain points $\xi_{ijk} = \frac{iv_1 + jv_2 + kv_3}{d}$. Note that here the domain points have three indices.

We have for a spline s with B-net c according to our notations

 $Rc = \Pi_d^b(s)$

Derivatives

We want to give formulas for the directional derivatives of p in a direction defined by a vector **u** joining the points v_1 and v_2 . Let $\mathbf{a} = (a_1, a_2, a_3, a_4)$ with components the difference of the barycentric coordinates of v_1 and v_2 . $D_{\mathbf{u}}p$ can be written in *B*-form as a polynomial of degree d - 1.

$$D_{\mathbf{u}}p = d \sum_{i+j+k+l=d-1} c_{ijkl}^{(1)}(\mathbf{a}) B_{ijkl}^{d-1}, \quad \text{where}$$

 $c_{ijkl}^{(1)}(\mathbf{a}) = a_1 c_{i+1,j,k,l} + a_2 c_{i,j+1,k,l} + a_3 c_{i,j,k+1,l} + a_4 c_{i+1,j,k,l+1}.$

It's not difficult to see that there are matrices D_1, D_2 and D_3 such that if *c* encodes the *B*-net of *s*, D_ic , i = 1, ..., 3 encode respectively the *B*-net of $\frac{\partial s}{\partial x_i}$.

Presentation at the 10th Annual Conference for African American Researchers in the Mathematical Sciences , June 24, 2004 – p.12/47

Integration

There's a matrix G such that if p and q have B-nets c and d,

$$\int_{\Omega} pq = c^T G d$$

Smoothness conditions

Let $t = \langle v_1, v_2, v_3, v_4 \rangle$ and $t' = \langle v_1, v_2, v_3, v_5 \rangle$ be two tetrahedra with common face $\langle v_1, v_2, v_3 \rangle$. Then s is of class C^r on $t \cup t'$ if and only if

$$c_{ijkm}^{t'} = \sum_{\mu+\nu+\kappa+\delta=m} c_{i+\mu,j+\nu,\gamma+\kappa,\delta}^{t} B_{\mu,\nu,\kappa,\delta}^{l}(v_5), \ m = 0,\dots,r, \ i+j+k = d-m$$

This suggests that there's a (l, N) matrix H such that s is in $C^{r}(\Omega)$ if and only if

$$Hc = 0.$$

Discretization

The weak form of the Navier-Stokes equations is: Find $\mathbf{u} \in H^1(\Omega)^3$ such that

$$\nu \int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v} + \sum_{j=1}^{3} \int_{\Omega} u_{j} \frac{\partial \mathbf{u}}{\partial x_{j}} \cdot \mathbf{v} = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \qquad \forall \mathbf{v} \in V_{0}$$

div $\mathbf{u} = 0$ in Ω
 $\mathbf{u} = \mathbf{g}$ on $\partial \Omega$

where

$$V_0 = \{ \mathbf{v} \in H_0^1(\Omega)^3, \text{div } \mathbf{v} = 0 \}.$$

We now consider spline approximations of the velocity vector field **u**. Let $d \ge 1$ and $r \ge 0$ be two given integers. Let also $S \subset S_d^0(\mathcal{T})$ be a spline subspace over a tetrahedral partition \mathcal{T} of Ω consisting of spline functions which are C^r inside Ω and C^0 near the boundary $\partial \Omega$.

Recall that there is a matrix H such that if s ∈ S with
 B-coefficient vector c, then

 $H\mathbf{c}=0.$

Let also $S \subset S_d^0(T)$ be a spline subspace over a tetrahedral partition Tof Ω consisting of spline functions which are C^r inside Ω and C^0 near the boundary $\partial \Omega$.

Recall that there is a matrix H such that if s ∈ S with
 B-coefficient vector c, then

 $H\mathbf{c}=0.$

Also recall that there is a matrix R which maps c to the B-coefficients of s on the boundary of Ω and Rc = G represents the boundary condition, i.e., s = g on the boundary approximately.

• Finally there are matrices D_1, D_2 and D_3 such that if c encodes the B-net of $s, D_i c, i = 1, ..., 3$ encode respectively the B-net of $\frac{\partial s}{\partial x_i}$.

- Finally there are matrices D_1, D_2 and D_3 such that if c encodes the B-net of $s, D_i c, i = 1, ..., 3$ encode respectively the B-net of $\frac{\partial s}{\partial x_i}$.
- u = (u₁, u₂, u₃) velocity vector
 s_u = (s₁, s₂, s₃) spline approximating vector
 s_i ∈ S satisfying Hc_i = 0, R(c_i) = G(g_i) for i = 1, 2, 3.
 div u = 0 is discretized as D₁c₁ + D₂c₂ + D₃c₃ = 0

- Finally there are matrices D_1, D_2 and D_3 such that if c encodes the B-net of $s, D_i c, i = 1, ..., 3$ encode respectively the B-net of $\frac{\partial s}{\partial x_i}$.
- u = (u₁, u₂, u₃) velocity vector
 s_u = (s₁, s₂, s₃) spline approximating vector
 s_i ∈ S satisfying Hc_i = 0, R(c_i) = G(g_i) for i = 1, 2, 3.
 div u = 0 is discretized as D₁c₁ + D₂c₂ + D₃c₃ = 0

• Let

$$\overline{H} = \begin{pmatrix} H & 0 & 0 \\ 0 & H & 0 \\ 0 & 0 & H \end{pmatrix}, \quad \overline{R} = \begin{pmatrix} R & 0 & 0 \\ 0 & R & 0 \\ 0 & 0 & R \end{pmatrix},$$

 $\mathbf{G} = (G(g_1), G(g_2), G(g_3))^T \qquad \overline{D} = \begin{bmatrix} D_1 & D_2 & D_3 \end{bmatrix}.$ $\overline{H}\mathbf{c} = 0, \overline{R}\mathbf{c} = \mathbf{G} \text{ and } \overline{D}\mathbf{c} = 0$

$$L = \begin{bmatrix} \overline{H}^T & \overline{R}^T & \overline{D}^T \end{bmatrix}^T \text{ and } \overline{\mathbf{G}} = \begin{bmatrix} 0 & \mathbf{G}^T & 0 \end{bmatrix}^T,$$

 $\mathbf{G} = (G(g_1), G(g_2), G(g_3))^T \qquad \overline{D} = \begin{bmatrix} D_1 & D_2 & D_3 \end{bmatrix}.$ $\overline{H}\mathbf{c} = 0, \overline{R}\mathbf{c} = \mathbf{G} \text{ and } \overline{D}\mathbf{c} = 0$

$$L = \begin{bmatrix} \overline{H}^T & \overline{R}^T & \overline{D}^T \end{bmatrix}^T \text{ and } \overline{\mathbf{G}} = \begin{bmatrix} 0 & \mathbf{G}^T & 0 \end{bmatrix}^T,$$

• In other words, if we let

$$S_g = \{ \mathbf{c} \in (\mathbb{R}^N)^3, L\mathbf{c} = \overline{\mathbf{G}} \},\$$

we are seeking for a solution in S_g . We approximate elements of V_0 by vectors $\mathbf{d} = (d_1, d_2, d_3)$ in

$$S_0 = \{ \mathbf{d} \in (\mathbb{R}^N)^3, L\mathbf{d} = 0 \}.$$

Presentation at the 10th Annual Conference for African American Researchers in the Mathematical Sciences , June 24, 2004 – p.17/47

$$a(\mathbf{u}, \mathbf{v}) = \int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v}$$
$$b(\mathbf{w}; \mathbf{u}, \mathbf{v}) = \sum_{j=1}^{3} \int_{\Omega} w_j \frac{\partial \mathbf{u}}{\partial x_j} \cdot \mathbf{v}.$$
$$\int_{\Omega} \mathbf{f} \mathbf{v}$$

 $M^{t} = \left(\int_{t} B^{d}_{\alpha} B^{d}_{\beta}\right)_{\substack{|\alpha|=d, |\beta|=d}}, \text{ local mass matrix}$ M is the global mass matrix $K^{t} = \left(\int_{t} \nabla B^{d}_{\alpha} \nabla B^{d}_{\beta}\right)_{\substack{|\alpha|=d, |\beta|=d}}, \text{ local stiffness matrix}$ K global stiffness matrix

Continuous	Discrete
$\mathbf{u} = (u_1, u_2, u_3)$	$\mathbf{c} = (c_1, c_2, c_3)$
$\mathbf{v} = (v_1, v_2, v_3)$	$\mathbf{d} = (d_1, d_2, d_3)$
$\mathbf{u} \in \mathcal{S} \subset S^r_d(\Omega)$	$\overline{H}\mathbf{c}=0$
div $\mathbf{u} = 0$	$\overline{D}\mathbf{c} = 0$
$\mathbf{u} = \mathbf{g} \text{ on } \partial \Omega$	$\overline{R}\mathbf{c} = \mathbf{G}$
$\mathbf{u}\in\mathcal{S}_{g}$	$L\mathbf{c} = \overline{\mathbf{G}}$
$\int_\Omega f_i v_j$	$d_j^T M F_i$
$\int_{\Omega} {f fv}$	$\mathbf{d}^T \overline{M} \mathbf{F}$
$a(\mathbf{u}, \mathbf{v}) = \int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v}$	$\mathbf{c}^T \overline{K} \mathbf{d}$
$b(\mathbf{w};\mathbf{u},\mathbf{v}) = \sum_{j=1}^{3} \int_{\Omega} w_j \frac{\partial \mathbf{u}}{\partial x_j} \cdot \mathbf{v}$	$\mathbf{d}^T \overline{B}(\mathbf{e}) \mathbf{c}$

 $Presentation \ at \ the \ 10 th \ Annual \ Conference \ for \ African \ American \ Researchers \ in \ the \ Mathematical \ Sciences \ , \ June \ 24, \ 2004 - p. 19/47$

equations of the Stokes

Corollary of the Lax-Milgram lemma

Let V be a real Hilbert space with norm denoted by $||.||_V$, $(u, v) \longrightarrow a(u, v)$ a real bilinear form on $V \times V$, l an element of the dual of V and let us denote the duality pairing between V and its dual V' by <,>. If a is continuous, symmetric and is elliptic on V i.e. there is $\alpha > 0$ such that $a(v, v) \ge \alpha ||v||_V^2$ for all $v \in V$, then, the problem: Find $u \in V$ such that

|a(u,v)| = < l, v >,

has one an only one solution which minimizes the following functional over V

$$J(v) = \frac{1}{2}a(v, v) - \langle l, v \rangle.$$

Under the same hypotheses as in the theorem on the Navier-Stokes equations, the Stokes equations:

$$-\nu\Delta \mathbf{u} + \nabla p = \mathbf{f} \text{ in } \Omega$$
$$\operatorname{div} \mathbf{u} = 0 \text{ in } \Omega$$
$$\mathbf{u} = \mathbf{g} \text{ on } \partial \Omega$$

have a unique solution \mathbf{u} in $H^1(\Omega)^3$ and a pressure p in $L^2(\Omega)$ unique up to an additive constant. These equations are derived under the assumption that the velocity is sufficiently small to ignore the nonlinear term $\mathbf{u} \cdot \nabla \mathbf{u}(\mathbf{x}, t)$.

The weak form of the equations is: Find **u** in $H^1(\Omega)^3$ such that div $\mathbf{u} = 0$ and $\nu \int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v} = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}, \quad \forall \mathbf{v} \in V_0,$ $\overline{V_0} = \{ \mathbf{v} \in H_0^1(\Omega)^3 \text{ such that } \operatorname{div} \mathbf{v} = 0 \}.$

In this case, the velocity vector **u** is is the unique minimizer in

$$V = \{ \mathbf{v} \in H^1(\Omega)^3 \text{ such that } \operatorname{div} \mathbf{v} = 0 \}$$

of the functional

$$J(\mathbf{u}) = \frac{\nu}{2} \int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{u} - \int_{\Omega} \mathbf{f} \cdot \mathbf{u}$$

If we let c encode the *B*-net of the approximant, the discrete problem is: Minimize

$$J(\mathbf{c}) = \frac{\nu}{2} \mathbf{c}^T \overline{K} \mathbf{c} + \mathbf{F}^T \overline{M} \mathbf{c}$$

over $(\mathbb{R}^N)^3$ under the constraint $L\mathbf{c} = \overline{\mathbf{G}}$.

By the theory of Lagrange multipliers, there is a vector of Lagrange multipliers λ such that

$$\begin{pmatrix}
\nu \overline{K}\mathbf{c} + L^T \lambda &= \overline{M}\mathbf{F}, \\
L\mathbf{c} &= \overline{\mathbf{G}}.
\end{cases}$$

Computation of the pressure term

Assuming that **u** is smooth and taking the divergence of the equation

 $-\nu\Delta \mathbf{u} + \nabla p = \mathbf{f} \text{ in } \Omega$

we get

 $-\Delta p = -\text{div } \mathbf{f}$

since div $\mathbf{u} = 0$. Here, the pressure is the minimizer over

$$L_0^2(\Omega) = \{ p \in L^2(\Omega), \int_{\Omega} p = 0 \}$$

of

$$Q(v) = \frac{1}{2} \int_{\Omega} |\nabla v|^2 - \int_{\Omega} (-\operatorname{\mathbf{div}} \mathbf{f})v - \int_{\partial \Omega} (\mathbf{f} \cdot \mathbf{n} + \nu(\Delta \mathbf{u}) \cdot \mathbf{n})v$$

Discretization for the pressure in Navier-Stokes equations is similar.

Stokes equations of the Navier-

Find c in \mathbb{R}^{3N} satisfying $Lc = \overline{G}$ with \overline{G} encoding the side conditions and

 $\nu \mathbf{c}^T \overline{K} \mathbf{d} + (\overline{B}(\mathbf{c})\mathbf{c})^T \mathbf{d} = \mathbf{d}^T \overline{M} \mathbf{F}$

for all d in \mathbb{R}^{3N} with constraints $L\mathbf{d} = 0$. Here, \overline{K} and \overline{M} are the stiffness and mass matrices respectively; $(\overline{B}\mathbf{c})\mathbf{d}$ encodes the nonlinear term. If one considers the following linear functional in d,

$$J(\mathbf{d}) = (\nu \mathbf{c}^T \overline{K} + (\overline{B}(\mathbf{c})\mathbf{c})^T + \mathbf{F}^T \overline{M})\mathbf{d},$$

we have $J(\mathbf{d}) = 0$ for all \mathbf{d} satisfying $L\mathbf{d} = 0$.

This implies the existence of a Lagrange multiplier λ such that $J(\mathbf{d}) + \lambda^T L \mathbf{d} = 0.$

$$\nu \mathbf{c}^T \overline{K} + (\overline{B}(\mathbf{c})\mathbf{c})^T + \lambda^T L = \mathbf{F}^T \overline{M}$$

In summary, the discrete solution c must satisfy

$$\nu \mathbf{c}^T \overline{K} + (\overline{B}(\mathbf{c})\mathbf{c})^T + \lambda^T L = \mathbf{F}^T \overline{M}$$
$$L \mathbf{c} = \overline{\mathbf{G}}$$

This can be written

$$u \overline{K} \mathbf{c} + \overline{B}(\mathbf{c}) \mathbf{c} + L^T \lambda = \overline{M} \mathbf{F}$$

$$L \mathbf{c} = \overline{\mathbf{G}}.$$

This has a unique solution c provided the viscosity ν is sufficiently large.

Presentation at the 10th Annual Conference for African American Researchers in the Mathematical Sciences , June 24, 2004 – p.26/47

Linearization

A simple iteration algorithm Starting with an initial guess $c^{(0)}$ which can be computed by solving the Stokes equations, we consider the sequence of problems

$$\nu \overline{K} \mathbf{c}^{(n+1)} + \overline{B}(\mathbf{c}^{(n)}) \mathbf{c}^{(n+1)} + L^T \lambda^{(n+1)} = \overline{M} \mathbf{F}$$
$$L \mathbf{c}^{n+1} = \overline{\mathbf{G}},$$

The following convergence result is similar to one of the convergence results of [Karakashian'82]. The previous system has a unique solution $\mathbf{c}^{(n+1)}$ and the unique solution \mathbf{c} is such that

$$||\mathbf{c}^{(n+1)} - \mathbf{c}||_{H^1(\Omega)^3} \le \gamma_1 ||\mathbf{c}^{(n)} - \mathbf{c}||_{H^1(\Omega)^3}$$

for a constant $\gamma_1 < 1$. As a consequence $\mathbf{c}^{(n+1)}$ converges to \mathbf{c} .

Newton's iterations We are interested in the sequence $\mathbf{c}^{(n+1)}$ defined by $\nu \overline{K} \mathbf{c}^{(n+1)} + \overline{B}(\mathbf{c}^{(n)}) \mathbf{c}^{(n+1)} + \widetilde{B}(\mathbf{c}^{(n)}) \mathbf{c}^{(n+1)} + L^T \lambda^{(n+1)} =$ $\overline{M} \mathbf{F} + \overline{B}(\mathbf{c}^{(n)}) \mathbf{c}^{(n)}$ $L \mathbf{c}^{(n+1)} = \overline{\mathbf{G}}.$

 \widetilde{B} is defined such that $\widetilde{B}(\mathbf{c})\mathbf{d} = \overline{B}(\mathbf{d})\mathbf{c}$. We have the following convergence result There exists r > 0 such that if $||\mathbf{c} - \mathbf{c}^{(0)}||_{H^1(\Omega)^3} < r$, there is a unique $\mathbf{c}^{(n+1)}$ solution of the system and $||\mathbf{c} - \mathbf{c}^{(n)}||_{H^1(\Omega)^3} < r$ for all n with $||\mathbf{c} - \mathbf{c}^{(n+1)}||_{H^1(\Omega)^3} \le \frac{1}{r}||\mathbf{c} - \mathbf{c}^{(n)}||_{H^1(\Omega)^3}$. Moreover, if there's $\eta < 1$ such that $||\mathbf{c} - \mathbf{c}^{(0)}||_{H^1(\Omega)^3} = r\eta$, then $\mathbf{c}^{(n)}$ converges to \mathbf{c} as

$$||\mathbf{c} - \mathbf{c}^{(n)}||_{H^1(\Omega)^3} \le \frac{1}{r^{2^{n-1}}} ||\mathbf{c} - \mathbf{c}^{(0)}||_{H^1(\Omega)^3}^{2^n}, \quad n = 1, 2, \dots$$

Presentation at the 10th Annual Conference for African American Researchers in the Mathematical Sciences , June 24, 2004 – p.28/47

Practical computation of c The previous methods all involve to find c solution of a singular system of type

$$\left(\begin{array}{cc} A & L^T \\ L & 0 \end{array}\right) \left(\begin{array}{c} \mathbf{c} \\ \lambda \end{array}\right) = \left[\begin{array}{c} F \\ G \end{array}\right],$$

with A non symmetric.

Under the hypothese that ν is sufficiently large or $||\mathbf{F}||_{L^2(\Omega)^3}$ is sufficiently small, the symmetric part $(A)_s$ of A is positive definite with respect to L in the sense that $x^T(A)_s x \ge 0$ and $x^T(A)_s x = 0$ with Lx = 0 implies x = 0.

We show that the later condition is sufficient for the solution c to be unique. Indeed if (d, β) is another solution we have

$$A(\mathbf{c} - \mathbf{d}) + L^T(\lambda - \beta) = 0.$$

So, with e = c - d,

$$\mathbf{e}^{T}((A)_{s}\mathbf{e} + (A)_{as}\mathbf{e} + L^{T}(\lambda - \beta)) = 0$$
$$L\mathbf{e} = 0.$$

Here $(A)_{as}$ denotes the antisymmetric part of A. We have $\mathbf{e}^T((A)_{as}\mathbf{e} = 0$ 0 and $\mathbf{e}^T L = 0$. Therefore $\mathbf{e}^T(A)_s \mathbf{e} = 0$ with $L \mathbf{e} = 0$. Thus $\mathbf{c} = \mathbf{d}$. This suggests that we can retrieve the solution \mathbf{c} by computing any least squares solution of the system. We consider for l = 0, 1, 2, ..., the sequence of problems

$$\begin{pmatrix} A & L^T \\ L & -\epsilon I \end{pmatrix} \begin{bmatrix} \mathbf{c}^{(l+1)} \\ \lambda^{(l+1)} \end{bmatrix} = \begin{bmatrix} F \\ G - \epsilon \lambda^{(l)} \end{bmatrix}, \quad (1)$$

where $\lambda^{(0)}$ is a suitable initial guess for example $\lambda^{(0)} = 0$, and I is the identity matrix. Let also assume that A is a matrix of size $n \times n$; $c, F \in \mathbb{R}^n$; L is a matrix of size $m \times n$ and $\lambda, G \in \mathbb{R}^m$.

• Theorem

Suppose that the linear system (of the discrete problem) has a unique solution c. Assume that $A_s = \frac{1}{2}(A + A^T)$ the symmetric part of A is positive definite with respect to L, i.e., $x^T A_s x \ge 0$ and $x^T A_s x = 0$ with Lx = 0 implies x = 0. Then, the sequence $(c^{(l+1)})$ defined by the iterative method converges to the solution c for any $\epsilon > 0$. Furthermore,

$$||c - c^{(l+1)}|| \le C\epsilon ||c - c^{(l)}||$$

for some constant C independent of ϵ and l.

• Theorem

Suppose that the linear system (of the discrete problem) has a unique solution c. Assume that $A_s = \frac{1}{2}(A + A^T)$ the symmetric part of A is positive definite with respect to L, i.e., $x^T A_s x \ge 0$ and $x^T A_s x = 0$ with Lx = 0 implies x = 0. Then, the sequence $(c^{(l+1)})$ defined by the iterative method converges to the solution <u>c for any $\epsilon > 0$.</u> Furthermore,

$$||c - c^{(l+1)}|| \le C\epsilon ||c - c^{(l)}||$$

for some constant C independent of ϵ and l.

• Proof

We first show that $c^{(l+1)}$ and $\lambda^{(l+1)}$ are well-defined. Let us first rewrite the iterative method system as follows.

$$Ac^{(l+1)} + L^T \lambda^{(l+1)} = F \quad \text{and} (1)$$
$$Lc^{(l+1)} - \epsilon \lambda^{(l+1)} = G - \epsilon \lambda^{(l)} \quad (2)$$

Multiplying (2) on the left by L^T and substituing $L^T \lambda^{(l+1)}$ into (1) and rewriting (2), we get

$$(A + \frac{1}{\epsilon}L^T L)c^{(l+1)} = -L^T \lambda^{(l)} + F + \frac{1}{\epsilon}L^T G \quad (3)$$
$$\lambda^{(l+1)} + \frac{1}{\epsilon}Lc^{(l+1)} = \lambda^{(l)} + \frac{1}{\epsilon}G.$$

To show that the iterative method system is solvable under the hypotheses of the theorem, we need only to show that $A + \frac{1}{\epsilon}L^T L$ is invertible. Since A is a square matrix, it is enough to show that

$$(A + \frac{1}{\epsilon}L^T L)x = 0 \Rightarrow x = 0.$$

That is,

$$0 = x^T (A + \frac{1}{\epsilon} L^T L) x = x^T (A_s + \frac{1}{\epsilon} L^T L) x = x^T A_s x + \frac{1}{\epsilon} (Lx)^T (Lx)$$

since $x^T A_a x = 0$. It follows that

$$x^T A_s x = 0$$
 and $(Lx)^T (Lx) = 0$.

By the assumptions on A, i.e., A_s is assumed to be symmetric positive definite with respect to L, we get x = 0. Hence, the new iterative linear system is invertible and $c^{(l+1)}$ and $\lambda^{(l+1)}$ are well-defined. We now show that $c^{(l+1)}$ converges to c. Let also $u^{(l+1)} = c^{(l+1)} - c$ and $p^{(l+1)} = \lambda^{(l+1)} - \lambda$. We have

$$\begin{cases} (A + \frac{1}{\epsilon} L^T L) u^{(l+1)} + L^T p^{(l)} = 0 \\ p^{(l+1)} = p^{(l)} + \frac{1}{\epsilon} L u^{(l+1)}. \end{cases}$$

$$\|p^{(l)}\|^2 - \|p^{(l+1)}\|^2 = \frac{2}{\epsilon} (A_s u^{(l+1)}, u^{(l+1)}) + \frac{1}{\epsilon^2} \|L u^{(l+1)}\|^2.$$

We conclude that since A_s is nonnegative,

$$||p^{(l)}||^2 - ||p^{(l+1)}||^2 \ge 0,$$

and the sequence $\{\|p^{(l)}\|\}\$ is seen to be decreasing.

Being bounded below by 0, it converges; hence $||p^{(l)}||^2 - ||p^{(l+1)}||^2$ converges to 0 which implies that $(A_s u^{(l+1)}, u^{(l+1)})$ and $||Lu^{(l+1)}||^2$ converge to 0. Since $A_s + \frac{1}{\epsilon}L^T L$ is positive definite, it follows that $u^{(l+1)}$ converges to 0 and finally $c^{(l+1)}$ converges to c.

Sketch of proof of convergence rate

We prove that

 $||c - c^{(l+1)}|| \le C\epsilon ||c - c^{(l)}||,$

Recall that $u^{(l+1)} = c^{(l+1)} - c$ and $p^{(l+1)} = \lambda^{(l+1)} - \overline{\lambda}$. We showed that

 $||p^{(l+1)}|| \le ||p^{(l)}||, \text{ for all } l$

i.e. that $(p^{(l)})$ is a decreasing sequence. We also have

$$\begin{cases} (A + \frac{1}{\epsilon} L^T L) u^{(l+1)} + L^T p^{(l)} = 0 \\ p^{(l+1)} = p^{(l)} + \frac{1}{\epsilon} L u^{(l+1)}, \end{cases}$$

from which it follows that

$$Au^{(l+1)} + L^T p^{(l+1)} = 0$$

We write $u^{(l+1)} = \hat{u}^{(l+1)} + \overline{u}^{(l+1)}$ with $\hat{u}^{(l+1)} \in \text{Ker}(L)$ and $\overline{u}^{(l+1)} \in \text{Im}(L^T)$. Note that $L : \text{Im}(L^T) \to \text{Im}(L)$ has a bounded inverse, so there exists $k_0 > 0$ such that

$$\|\overline{u}^{(l+1)}\| \le \frac{1}{k_0} \|Lu^{(l+1)}\|,$$

from which it follows that

$$\|\overline{u}^{(l+1)}\| \le \frac{2\epsilon}{k_0} \|p^{(l)}\|$$

To get a bound on $\|\hat{u}^{(l+1)}\|$, we notice that A is invertible on Ker(L) since $A + \frac{1}{\epsilon}L^T L$ is invertible. This gives for some $\alpha_0 > 0$,

Putting together, we obtain

 $||u^{(l+1)}|| \le C\epsilon ||p^{(l)}||$, for some constant C > 0

To finish, we need a bound on $||p^{(l)}||$ in terms of $||u^{(l)}||$. It can be shown that one can choose λ_0 such that $p^{(l)} \in \text{Im}(L)$ and since $L^T : \text{Im}(L) \to \text{Im}(L^T)$ has a bounded inverse,

$$||p^{(l)}|| \le \frac{1}{k_0} ||L^T p^{(l)}||.$$

This completes the proof since $L^T p^{(l)} = -Au^{(l)}$.

the 3D Stokes Equations

Let $\Omega \subset \mathbb{R}^3$ be a cube with sides of length 1. We consider the vector field $\mathbf{u} = (u_1, u_2, u_3)$ with a pressure p.

$$u_{1} = -\exp(x + 2y + 3z)$$
$$u_{2} = 2 \exp(x + 2y + 3z)$$
$$u_{3} = -\exp(x + 2y + 3z)$$
$$p = x(1 - x)z(1 - z).$$

degrees	u_1	u_2	u_3	p
3	3.3633×10	5.9431×10	4.0397×10	1.3466×10^{3}
4	1.7010×10	4.4374×10	3.5368×10	3.8562×10^2
5	2.3804	7.3711	5.9629	9.8470×10^{1}
6	3.9620×10^{-1}	1.2238	1.0311	2.7404×10^{1}
7	6.7456×10^{-2}	1.9789×10^{-1}	1.6260×10^{-1}	6.8411
Rate	$1.56 \times 10^7 \ d^{-9.8294}$	$3.22 \times 10^7 d^{-9.6203}$	$2.32 \times 10^7 d^{-9.5463}$	$8.50 imes 10^6 \ d^{-7.13}$

Table 1 Approximation Errors from Trivariate Spline Spaces on \mathcal{I}_1

Table 2 Approximation Errors from Trivariate Spline Spaces on \mathcal{I}_2

degrees	u_1	u_2	u_3	p
3	1.5083×10	1.8709×10	1.5222×10	4.4382×10^2
4	9.4142×10^{-1}	2.2094	1.8373	3.5278×10^{1}
5	9.1619×10^{-2}	2.2322×10^{-1}	2.0176×10^{-1}	5.8199
6	8.5128×10^{-3}	2.3520×10^{-2}	1.9276×10^{-2}	7.1884×10^{-1}
Rate	$9.31 \times 10^6 d^{-11.5631}$	$1.24 \times 10^7 d^{-11.1692}$	$1.09 \times 10^7 \ d^{-11.1901}$	$1.05 \times 10^7 \ d^{-9}$

Presentation at the 10th Annual Conference for African American Researchers in the Mathematical Sciences , June 24, 2004 – p.41/47

 L^2 norm of the error versus degree on \mathcal{T}_1 (rate 1.6777×10^7 $d^{-9.8962}$) and \mathcal{T}_2 (rate $7.7013 \times 10^6 d^{-11.8503}$)

Presentation at the 10th Annual Conference for African American Researchers in the Mathematical Sciences , June 24, 2004 – p.42/47

H^1 norm of the error versus degree on \mathcal{T}_1 (rate 1.6777×10^7 $d^{-9.8962}$) and \mathcal{T}_2 (rate $7.7013 \times 10^6 d^{-11.8503}$)

Presentation at the 10th Annual Conference for African American Researchers in the Mathematical Sciences , June 24, 2004 – p.43/47

Lid Driven Cavity Flow Problem

3D fluid profile in the x - y plane

Presentation at the 10th Annual Conference for African American Researchers in the Mathematical Sciences , June 24, 2004 - p.44/47

	1
).9
	J. 3
().8
().7
	0.6
).5
().4
(0.3
).2
	J.Z
	D.1
	С

1			1							1						1			
			I		I		I	1		I		I		I		I	I		
		•	•	•	•	•		•	-	-	-							-	1
0.9	_	•	•				· .	-	-	*	Ľ	e e	- <	-~	-~			-	-
		•	、	、	`			-	*	~							_ ←	-	
0.0						_							~	_					
0.8	_	,	Ň	ì								<u> </u>	K	K	~	~~		-	
		`	`	`	•	• •		Ł	Ľ			<u> </u>	Ł	K	~			-	
0.7	_	`		~	•	* *		Ł	Ľ	Ľ			\leftarrow	~	~	_<		+-	_
		、		•	4	← ←								~	~	_		+	
								Ł	~	~ ~	~ 4	~~	<						
0.6	_	`	•	*	*	← «		←	<u> </u>	~~~	~<	~	\prec	\prec	~	-<		-	1
			•	•	←	← ←		<─	<u> </u>	←~<		\prec	<	<	_<	_←	_ ←	-	
0.5	_	-	-	-	-	← ←		←	← •	← <	_<		<	-<	-	_←	_ ←	+	_
							_	~	< ·	~ <	_<	F					_	-	
		-	-	-															
0.4	_	•	-	~	-	← ◆	_ ←	<	\leftarrow	<_ <	_~	\sim	<	<	<	_ ←		-	-
			-	~	*	• •		≮	≮		< <	<	\langle	-	_	_←	_ <_	÷-	
0.3	_	,	,	~	~	<u> </u>		€	►	<u> </u>	~ <	<	\langle	<	_	_ <-		+	_
0.0									K			\sim	\sim	\leq	<	_			
		,	1	-	-	~ ·											_	-	1
0.2	_		,	-	1	-		•	*				-	$\langle \langle \langle \rangle$	\leftarrow	_ ←		-	-
				,	,			-	•	•	~ •		~	_<	~	- <-		-	
0.1			,							~	•	~ ~	~ <	_ ←	_ <			-	
0.1															-	-	-	-	
		·			•	•			•	-	-	•	< ·	← ⋖				-	
0	Ļ			_					4	0.5	-			07					
(J		0.1		0.2		0.3	0.4	7	0.5		0.6		0.7		0.8	0.9		1

3D fluid profile in the y - z plane

Presentation at the 10th Annual Conference for African American Researchers in the Mathematical Sciences , June 24, 2004 – p.45/47

3D fluid profile in the x - z plane

Presentation at the 10th Annual Conference for African American Researchers in the Mathematical Sciences , June 24, 2004 – p.46/47

Work in Progress

• Time dependent Navier-Stokes

Work in Progress

- Time dependent Navier-Stokes
- Extension to variational inequalities

Work in Progress

- Time dependent Navier-Stokes
- Extension to variational inequalities
- Thank You!