Trivariate Spline Approximations of 3D Navier-Stokes Equations

Gerard Awanou
Institute for Mathematics and its Applications

awanou@ima.umn.edu

Overview

The Navier-Stokes Equations
Features of the Spline Method
Trivariate Splines
Discretization of the Stokes Equations
Discretization of the Navier-Stokes Equations
Iterative Method for Solving the Discrete Problem
Computational Experiments
Work in Progress

The Navier-Stokes equations

$$
\left\{\begin{array}{rll}
-\nu \Delta \mathbf{u}+\sum_{j=1}^{3} u_{j} \frac{\partial \mathbf{u}}{\partial x_{j}}+\nabla p=\mathbf{f} & \text { in } \Omega, \tag{1}\\
\operatorname{div} \mathbf{u}=0 & \text { in } \Omega .
\end{array}\right.
$$

The Navier-Stokes equations

$$
\left\{\begin{align*}
-\nu \Delta \mathbf{u}+\sum_{j=1}^{3} u_{j} \frac{\partial \mathbf{u}}{\partial x_{j}}+\nabla p=\mathbf{f} & \text { in } \Omega, \tag{1}\\
\operatorname{div} \mathbf{u}=0 & \text { in } \Omega .
\end{align*}\right.
$$

$$
\begin{gathered}
V_{0}=\left\{\mathbf{v} \in H_{0}^{1}(\Omega)^{3}, \operatorname{div} \mathbf{v}=0\right\} \\
L_{0}^{2}(\Omega)=\left\{u \in L^{2}(\Omega), \int_{\Omega} u=0\right\} \text { and } \\
H^{\frac{1}{2}}(\partial \Omega)=\left\{\tau(u), u \in H^{1}(\Omega)\right\},
\end{gathered}
$$

Existence and Uniqueness

Let Ω be a bounded connected open subset of \mathbb{R}^{3} with a Lipschitz continuous boundary. For $\mathrm{f} \in H^{-1}(\Omega)^{3}$ and $\mathbf{g} \in H^{\frac{1}{2}}(\partial \Omega)^{3}$ satisfying $\int_{\partial \Omega} \mathbf{g} \cdot \mathbf{n}=0$, the problem: find $(\mathbf{u}, p) \in H^{1}(\Omega)^{3} \times L_{0}^{2}(\Omega)$ such that

$$
\left\{\begin{array}{rlrl}
-\nu \Delta \mathbf{u}+\sum_{j=1}^{3} u_{j} \frac{\partial}{\partial x_{j}} \mathbf{u}+\nabla p & =\mathbf{f} & \text { in } \Omega \\
\operatorname{div} \mathbf{u} & =0 & & \text { in } \Omega \\
\mathbf{u} & =\mathbf{g} & \text { on } \partial \Omega
\end{array}\right.
$$

has a solution which is unique provided that ν is sufficiently large.

Features of the spline method

- We shall assume that Ω is a polygonal domain of \mathbb{R}^{3} with a tetrahedral partition \mathcal{T} and use the spline space

$$
S_{d}^{r}(\mathcal{T})=\left\{s \in C^{r}(\Omega),\left.s\right|_{t} \in \mathbb{P}_{d}, \forall t \in \mathcal{T}\right\}
$$

where \mathbb{P}^{d} is the space of polynomials of total degree d. We use the B-form of splines and associate to each component u_{i} of $\mathbf{u}, i=1, \ldots, 3$ a vector of coefficients c_{i}.

Features of the spline method

- We shall assume that Ω is a polygonal domain of \mathbb{R}^{3} with a tetrahedral partition \mathcal{T} and use the spline space

$$
S_{d}^{r}(\mathcal{T})=\left\{s \in C^{r}(\Omega),\left.s\right|_{t} \in \mathbb{P}_{d}, \forall t \in \mathcal{T}\right\}
$$

where \mathbb{P}^{d} is the space of polynomials of total degree d. We use the B-form of splines and associate to each component u_{i} of $\mathbf{u}, i=1, \ldots, 3$ a vector of coefficients c_{i}.

- Smoothness requirements on c. In general, smoothness can be imposed in a flexible way across the domain.

Features of the spline method

- Polynomials of high degrees can be easily used locally to get better approximation properties.

Features of the spline method

- Polynomials of high degrees can be easily used locally to get better approximation properties.
- Weak formulation: Find $\mathbf{u} \in H^{1}(\Omega)^{3}$ such that

$$
\begin{aligned}
\nu \int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v}+\sum_{j=1}^{3} \int_{\Omega} u_{j} \frac{\partial \mathbf{u}}{\partial x_{j}} \cdot \mathbf{v} & =\int_{\Omega} \mathbf{f} \cdot \mathbf{v} \quad \forall \mathbf{v} \in V_{0} \\
\operatorname{div} \mathbf{u} & =0 \quad \text { in } \Omega \\
\mathbf{u} & =\mathbf{g} \quad
\end{aligned} \begin{aligned}
\text { on } \partial \Omega
\end{aligned}
$$

Features of the spline method

- Polynomials of high degrees can be easily used locally to get better approximation properties.
- Weak formulation: Find $\mathbf{u} \in H^{1}(\Omega)^{3}$ such that

$$
\begin{aligned}
\nu \int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v}+\sum_{j=1}^{3} \int_{\Omega} u_{j} \frac{\partial \mathbf{u}}{\partial x_{j}} \cdot \mathbf{v} & =\int_{\Omega} \mathbf{f} \cdot \mathbf{v} \quad \forall \mathbf{v} \in V_{0} \\
\operatorname{div} \mathbf{u} & =0 \quad \text { in } \Omega \\
\mathbf{u} & =\mathbf{g} \quad
\end{aligned} \begin{aligned}
\text { on } \partial \Omega
\end{aligned}
$$

$$
\nu \bar{K} \mathbf{c}+\bar{B}(\mathbf{c}) \mathbf{c}+L^{T} \lambda=\bar{M} \mathbf{F}
$$

$$
L \mathbf{c}=\overline{\mathbf{q}}
$$

Features of the spline method

- The previous system of nonlinear equations is linearized and the resulting linear systems solved by a variant of the augmented Lagrangian algorithm.

Features of the spline method

- The previous system of nonlinear equations is linearized and the resulting linear systems solved by a variant of the augmented Lagrangian algorithm.
- The mass and stiffness matrices can be assembled easily and these processes can be done in parallel.

Features of the spline method

- The previous system of nonlinear equations is linearized and the resulting linear systems solved by a variant of the augmented Lagrangian algorithm.
- The mass and stiffness matrices can be assembled easily and these processes can be done in parallel.
- The pressure is computed by solving a Poisson equation with Neumann boundary conditions.

Trivariate Splines

Let $d \geq 1$ and $r \geq 0$ be two fixed integers. Given a bounded domain Ω of \mathbf{R}^{3} with piecewise planar boundary, let \mathcal{T} be a tetrahedral partition of Ω.

$$
\begin{gathered}
S_{d}^{r}(\Omega)=\left\{p \in C^{r}(\Omega), p_{\mid t} \in P_{d}, \forall t \in \mathcal{T}\right\} . \\
p(x, y, z)=\sum_{0 \leq i+j+k \leq d} \alpha_{i j k} x^{i} y^{j} z^{k},
\end{gathered}
$$

Barycentric coordinates

Given a non-degenerate tetrahedron $T=\left\langle v_{1}, v_{2}, v_{3}, v_{4}\right\rangle$, any point $v=(x, y, z)$ can be written uniquely in the form
$v=b_{1} v_{1}+b_{2} v_{2}+b_{3} v_{3}+v_{4} b_{4}$ with $b_{1}+b_{2}+b_{3}+b_{4}=1$.

B-form of splines

Bernstein polynomials of degree d

$$
B_{i j k l}^{d}(v)=\frac{d!}{i!j!k!l!} b_{1}^{i} b_{2}^{j} b_{3}^{k} b_{4}^{l}, \quad i+j+k+l=d .
$$

They are polynomials of degree d since each b_{i} is a linear polynomial. The set $\mathcal{B}^{d}=\left\{B_{i j k l}^{d}(x, y, z), i+j+k+l=d\right\}$ is a basis for the space of polynomials P_{d}.
We recall that the dimension of P_{d} is $\binom{d+3}{3}$.
As a consequence any spline s in S_{d}^{r} can be written uniquely

$$
s_{\mid T}=\sum_{i+j+k+l=d} c_{i j k l}^{T} B_{i j k l}^{d},
$$

since $s_{\mid T}$ is a polynomial of degree d.
$n t h=$ number of tetrahedra, $m=\operatorname{dim} P_{d}$ and $N=m * n t h$.

Bivariate splines

The restriction of a trivariate polynomial of degree d on a face of a tetrahedron is a bivariate polynomial and can be written in B-form

$$
\sum_{i+j+k=d} \widetilde{c}_{i j k} \widetilde{B}_{i j k}^{d}(v)
$$

where

$$
\widetilde{B}_{i j k}^{d}=\frac{d!}{i!j!k!} b_{1}^{i} b_{2}^{j} b_{3}^{k}
$$

For example, given the trivariate spline on a tetrahedron T
$p=\sum_{i+j+k+l=d} c_{i j k l} B_{i j k l}^{d}, \quad q=\sum_{i+j+k=d} c_{i j k 0} B_{i j k 0}^{d}$ can be considered as a bivariate polynomial.

Interpolation

There is a unique polynomial p of degree d that interpolates any given function f on a tetrahedron $T=\left\langle v_{1}, v_{2}, v_{3}, v_{4}\right\rangle$ at the domain points $\xi_{i j k l}=\frac{i v_{1}+j v_{2}+k v_{3}+l v_{4}}{d}$.
This gives rise to an interpolation operator $\Pi_{d} . \Pi_{d}(f)$ will denote both the spline interpolant and its B-net.
We can also define a boundary interpolation operator Π_{d}^{b} since a bivariate polynomial p of degree d is uniquely determined on a triangle $\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ by its values at the domain points $\xi_{i j k}=\frac{i v_{1}+j v_{2}+k v_{3}}{d}$. Note that here the domain points have three indices.
We have for a spline s with B-net c according to our notations

$$
R c=\Pi_{d}^{b}(s)
$$

Derivatives

We want to give formulas for the directional derivatives of p in a direction defined by a vector \mathbf{u} joining the points v_{1} and v_{2}. Let $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ with components the difference of the barycentric coordinates of v_{1} and v_{2}. $D_{\mathbf{u}} p$ can be written in B-form as a polynomial of degree $d-1$.

$$
\begin{gathered}
D_{\mathbf{u}} p=d \sum_{i+j+k+l=d-1} c_{i j k l}^{(1)}(\mathbf{a}) B_{i j k l}^{d-1}, \quad \text { where } \\
c_{i j k l}^{(1)}(\mathbf{a})=a_{1} c_{i+1, j, k, l}+a_{2} c_{i, j+1, k, l}+a_{3} c_{i, j, k+1, l}+a_{4} c_{i+1, j, k, l+1} .
\end{gathered}
$$

It's not difficult to see that there are matrices D_{1}, D_{2} and D_{3} such that if c encodes the B-net of $s, D_{i} c, i=1, \ldots, 3$ encode respectively the B-net of $\frac{\partial s}{\partial x_{i}}$.

Integration

There's a matrix G such that if p and q have B-nets c and d,

$$
\int_{\Omega} p q=c^{T} G d
$$

Smoothness conditions

Let $t=\left\langle v_{1}, v_{2}, v_{3}, v_{4}\right\rangle$ and $t^{\prime}=\left\langle v_{1}, v_{2}, v_{3}, v_{5}\right\rangle$ be two tetrahedra with common face $\left\langle v_{1}, v_{2}, v_{3}\right\rangle$. Then s is of class C^{r} on $t \cup t^{\prime}$ if and only if

$$
c_{i j k m}^{t^{\prime}}=\sum_{\mu+\nu+\kappa+\delta=m} c_{i+\mu, j+\nu, \gamma+\kappa, \delta}^{t} B_{\mu, \nu, \kappa, \delta}^{l}\left(v_{5}\right), m=0, \ldots, r, i+j+k=d-m
$$

This suggests that there's a (l, N) matrix H such that s is in $C^{r}(\Omega)$ if and only if

$$
H c=0
$$

Discretization

The weak form of the Navier-Stokes equations is: Find $\mathbf{u} \in H^{1}(\Omega)^{3}$ such that

$$
\begin{aligned}
\nu \int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v}+\sum_{j=1}^{3} \int_{\Omega} u_{j} \frac{\partial \mathbf{u}}{\partial x_{j}} \cdot \mathbf{v} & =\int_{\Omega} \mathbf{f} \cdot \mathbf{v} \quad \forall \mathbf{v} \in V_{0} \\
\operatorname{div} \mathbf{u} & =0 \quad \text { in } \Omega \\
\mathbf{u} & =\mathbf{g} \quad
\end{aligned} \begin{array}{ll}
\text { on } \partial \Omega
\end{array}
$$

where

$$
V_{0}=\left\{\mathbf{v} \in H_{0}^{1}(\Omega)^{3}, \operatorname{div} \mathbf{v}=0\right\} .
$$

We now consider spline approximations of the velocity vector field \mathbf{u}. Let $d \geq 1$ and $r \geq 0$ be two given integers.

Let also $\mathcal{S} \subset S_{d}^{0}(\mathcal{T})$ be a spline subspace over a tetrahedral partition \mathcal{T} of Ω consisting of spline functions which are C^{r} inside Ω and C^{0} near the boundary $\partial \Omega$.

- Recall that there is a matrix H such that if $s \in \mathcal{S}$ with B-coefficient vector \mathbf{c}, then

$$
H \mathbf{c}=0 .
$$

Let also $\mathcal{S} \subset S_{d}^{0}(\mathcal{T})$ be a spline subspace over a tetrahedral partition \mathcal{T} of Ω consisting of spline functions which are C^{r} inside Ω and C^{0} near the boundary $\partial \Omega$.

- Recall that there is a matrix H such that if $s \in \mathcal{S}$ with B-coefficient vector \mathbf{c}, then

$$
H \mathbf{c}=0 .
$$

- Also recall that there is a matrix R which maps \mathbf{c} to the B-coefficients of s on the boundary of Ω and $R \mathbf{c}=G$ represents the boundary condition, i.e., $s=g$ on the boundary approximately.
- Finally there are matrices D_{1}, D_{2} and D_{3} such that if c encodes the B-net of $s, D_{i} c, i=1, \ldots, 3$ encode respectively the B-net of $\frac{\partial s}{\partial x_{i}}$.
- Finally there are matrices D_{1}, D_{2} and D_{3} such that if c encodes the B-net of $s, D_{i} c, i=1, \ldots, 3$ encode respectively the B-net of $\frac{\partial s}{\partial x_{i}}$.
- $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ velocity vector
$\mathrm{s}_{\mathbf{u}}=\left(s_{1}, s_{2}, s_{3}\right)$ spline approximating vector
$s_{i} \in \mathcal{S}$ satisfying $H \mathbf{c}_{i}=0, R\left(\mathbf{c}_{i}\right)=G\left(g_{i}\right)$ for $i=1,2,3$.
$\operatorname{div} \mathbf{u}=0$ is discretized as $D_{1} \mathbf{c}_{1}+D_{2} \mathbf{c}_{2}+D_{3} \mathbf{c}_{3}=0$
- Finally there are matrices D_{1}, D_{2} and D_{3} such that if c encodes the B-net of $s, D_{i} c, i=1, \ldots, 3$ encode respectively the B-net of $\frac{\partial s}{\partial x_{i}}$.
- $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ velocity vector
$\mathbf{s}_{\mathbf{u}}=\left(s_{1}, s_{2}, s_{3}\right)$ spline approximating vector
$s_{i} \in \mathcal{S}$ satisfying $H \mathbf{c}_{i}=0, R\left(\mathbf{c}_{i}\right)=G\left(g_{i}\right)$ for $i=1,2,3$.
div $\mathbf{u}=0$ is discretized as $D_{1} \mathbf{c}_{1}+D_{2} \mathbf{c}_{2}+D_{3} \mathbf{c}_{3}=0$
- Let

$$
\bar{H}=\left(\begin{array}{ccc}
H & 0 & 0 \\
0 & H & 0 \\
0 & 0 & H
\end{array}\right), \quad \bar{R}=\left(\begin{array}{ccc}
R & 0 & 0 \\
0 & R & 0 \\
0 & 0 & R
\end{array}\right),
$$

$$
\begin{gathered}
\mathbf{G}=\left(G\left(g_{1}\right), G\left(g_{2}\right), G\left(g_{3}\right)\right)^{T} \quad \bar{D}=\left[\begin{array}{lll}
D_{1} & D_{2} & D_{3}
\end{array}\right] . \\
\bar{H} \mathbf{c}=0, \bar{R} \mathbf{c}=\mathbf{G} \text { and } \bar{D} \mathbf{c}=0 \\
L=\left[\begin{array}{lll}
\bar{H}^{T} & \bar{R}^{T} & \bar{D}^{T}
\end{array}\right]^{T} \text { and } \overline{\mathbf{G}}=\left[\begin{array}{lll}
0 & \mathbf{G}^{T} & 0
\end{array}\right]^{T},
\end{gathered}
$$

$$
\begin{gathered}
\mathbf{G}=\left(G\left(g_{1}\right), G\left(g_{2}\right), G\left(g_{3}\right)\right)^{T} \quad \bar{D}=\left[\begin{array}{lll}
D_{1} & D_{2} & D_{3}
\end{array}\right] . \\
\bar{H} \mathbf{c}=0, \bar{R} \mathbf{c}=\mathbf{G} \text { and } \bar{D} \mathbf{c}=0 \\
\quad L=\left[\begin{array}{lll}
\bar{H}^{T} & \bar{R}^{T} & \bar{D}^{T}
\end{array}\right]^{T} \text { and } \overline{\mathbf{G}}=\left[\begin{array}{lll}
0 & \mathbf{G}^{T} & 0
\end{array}\right]^{T},
\end{gathered}
$$

- In other words, if we let

$$
S_{g}=\left\{\mathbf{c} \in\left(\mathbb{R}^{N}\right)^{3}, L \mathbf{c}=\overline{\mathbf{G}}\right\},
$$

we are seeking for a solution in S_{g}. We approximate elements of V_{0} by vectors $\mathbf{d}=\left(d_{1}, d_{2}, d_{3}\right)$ in

$$
S_{0}=\left\{\mathbf{d} \in\left(\mathbb{R}^{N}\right)^{3}, L \mathbf{d}=0\right\} .
$$

$$
\begin{aligned}
& a(\mathbf{u}, \mathbf{v})=\int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v} \\
& b(\mathbf{w} ; \mathbf{u}, \mathbf{v})= \sum_{j=1}^{3} \int_{\Omega} w_{j} \frac{\partial \mathbf{u}}{\partial x_{j}} \cdot \mathbf{v} . \\
& \int_{\Omega} \mathrm{fv} \\
& M^{t}=\left(\int_{t} B_{\alpha}^{d} B_{\beta}^{d}\right)_{|\alpha|=d,|\beta|=d}, \text { local mass matrix }
\end{aligned}
$$

M is the global mass matrix
$K^{t}=\left(\int_{t} \nabla B_{\alpha}^{d} \nabla B_{\beta}^{d}\right)_{|\alpha|=d,|\beta|=d}$, local stiffness matrix
K global stiffness matrix

Continuous	Discrete
$\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$	$\mathbf{c}=\left(c_{1}, c_{2}, c_{3}\right)$
$\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$	$\mathbf{d}=\left(d_{1}, d_{2}, d_{3}\right)$
$\mathbf{u} \in \mathcal{S} \subset S_{d}^{r}(\Omega)$	$\bar{H} \mathbf{c}=0$
$\operatorname{div} \mathbf{u}=0$	$\bar{D} \mathbf{c}=0$
$\mathbf{u}=\mathbf{g}$ on $\partial \Omega$	$\bar{R} \mathbf{c}=\mathbf{G}$
$\mathbf{u} \in \mathcal{S}_{g}$	$L \mathbf{c}=\overline{\mathbf{G}}$
$\int_{\Omega} f_{i} v_{j}$	$d_{j}^{T} M F_{i}$
$\int_{\Omega} \mathbf{f} \mathbf{v}$	$\mathbf{d}^{T} M \mathbf{F}$
$a(\mathbf{u}, \mathbf{v})=\int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v}$	$\mathbf{c}^{T} \bar{K} \mathbf{d}$
$b(\mathbf{w} ; \mathbf{u}, \mathbf{v})=\sum_{j=1}^{3} \int_{\Omega} w_{j} \frac{\partial \mathbf{u}}{\partial x_{j}} \cdot \mathbf{v}$	$\mathbf{d}^{T} \bar{B}(\mathbf{e}) \mathbf{c}$

Corollary of the Lax-Milgram lemma
Let V be a real Hilbert space with norm denoted by $\|\cdot\|_{V}$, $(u, v) \longrightarrow a(u, v)$ a real bilinear form on $V \times V, l$ an element of the dual of V and let us denote the duality pairing between V and its dual V^{\prime} by $<,>$. If a is continuous, symmetric and is elliptic on V i.e. there is $\alpha>0$ such that $a(v, v) \geq \alpha\|v\|_{V}^{2}$ for all $v \in V$, then, the problem:
Find $u \in V$ such that

$$
a(u, v)=<l, v>
$$

has one an only one solution which minimizes the following functional over V

$$
J(v)=\frac{1}{2} a(v, v)-\langle l, v\rangle .
$$

Under the same hypotheses as in the theorem on the Navier-Stokes equations, the Stokes equations:

$$
\left\{\begin{aligned}
-\nu \Delta \mathbf{u}+\nabla p & =\mathbf{f} \text { in } \Omega \\
\operatorname{div} \mathbf{u} & =0 \text { in } \Omega \\
\mathbf{u} & =\mathbf{g} \text { on } \partial \Omega
\end{aligned}\right.
$$

have a unique solution \mathbf{u} in $H^{1}(\Omega)^{3}$ and a pressure p in $L^{2}(\Omega)$ unique up to an additive constant. These equations are derived under the assumption that the velocity is sufficiently small to ignore the nonlinear $\operatorname{term} \mathbf{u} \cdot \nabla \mathbf{u}(\mathbf{x}, t)$.

The weak form of the equations is: Find \mathbf{u} in $H^{1}(\Omega)^{3}$ such that div $\mathbf{u}=0$ and $\nu \int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v}=\int_{\Omega} \mathbf{f} \cdot \mathbf{v}, \quad \forall \mathbf{v} \in V_{0}$,

$$
V_{0}=\left\{\mathbf{v} \in H_{0}^{1}(\Omega)^{3} \text { such that } \operatorname{div} \mathbf{v}=0\right\}
$$

In this case, the velocity vector \mathbf{u} is is the unique minimizer in

$$
V=\left\{\mathbf{v} \in H^{1}(\Omega)^{3} \text { such that } \operatorname{div} \mathbf{v}=0\right\}
$$

of the functional

$$
J(\mathbf{u})=\frac{\nu}{2} \int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{u}-\int_{\Omega} \mathbf{f} \cdot \mathbf{u}
$$

If we let \mathbf{c} encode the B-net of the approximant, the discrete problem is: Minimize

$$
J(\mathbf{c})=\frac{\nu}{2} \mathbf{c}^{T} \bar{K} \mathbf{c}+\mathbf{F}^{T} \bar{M} \mathbf{c}
$$

over $\left(\mathbb{R}^{N}\right)^{3}$ under the constraint $L \mathbf{c}=\overline{\mathbf{G}}$.

By the theory of Lagrange multipliers, there is a vector of Lagrange multipliers λ such that

$$
\left\{\begin{aligned}
\nu \bar{K} \mathbf{c}+L^{T} \lambda & =\bar{M} \mathbf{F}, \\
L \mathbf{c} & =\overline{\mathbf{G}} .
\end{aligned}\right.
$$

Computation of the pressure term

Assuming that \mathbf{u} is smooth and taking the divergence of the equation

$$
-\nu \Delta \mathbf{u}+\nabla p=\quad \mathbf{f} \text { in } \Omega
$$

we get

$$
-\Delta p=-\operatorname{div} \mathbf{f}
$$

since $\operatorname{div} \mathbf{u}=0$. Here, the pressure is the minimizer over

$$
L_{0}^{2}(\Omega)=\left\{p \in L^{2}(\Omega), \int_{\Omega} p=0\right\}
$$

of

$$
Q(v)=\frac{1}{2} \int_{\Omega}|\nabla v|^{2}-\int_{\Omega}(-\operatorname{div} \mathbf{f}) v-\int_{\partial \Omega}(\mathbf{f} \cdot \mathbf{n}+\nu(\Delta \mathbf{u}) \cdot \mathbf{n}) v
$$

Discretization for the pressure in Navier-Stokes equations is similar.

Discreukauon of une NavierStokes equations

Find \mathbf{c} in $\mathbf{R}^{3 N}$ satisfying $L \mathbf{c}=\overline{\mathbf{G}}$ with $\overline{\mathbf{G}}$ encoding the side conditions and

$$
\nu \mathbf{c}^{T} \bar{K} \mathbf{d}+(\bar{B}(\mathbf{c}) \mathbf{c})^{T} \mathbf{d}=\mathbf{d}^{T} \bar{M} \mathbf{F}
$$

for all \mathbf{d} in $\mathbf{R}^{3 N}$ with constraints $L \mathbf{d}=0$.
Here, \bar{K} and \bar{M} are the stiffness and mass matrices respectively;
$(\bar{B} \mathbf{c}) \mathbf{d}$ encodes the nonlinear term. If one considers the following linear functional in d,

$$
J(\mathbf{d})=\left(\nu \mathbf{c}^{T} \bar{K}+(\bar{B}(\mathbf{c}) \mathbf{c})^{T}+\mathbf{F}^{T} \bar{M}\right) \mathbf{d},
$$

we have $J(\mathbf{d})=0$ for all \mathbf{d} satisfying $L \mathbf{d}=0$.

This implies the existence of a Lagrange multiplier λ such that $J(\mathbf{d})+\lambda^{T} L \mathbf{d}=0$.

$$
\nu \mathbf{c}^{T} \bar{K}+(\bar{B}(\mathbf{c}) \mathbf{c})^{T}+\lambda^{T} L=\mathbf{F}^{T} \bar{M}
$$

In summary, the discrete solution c must satisfy

$$
\begin{aligned}
\nu \mathbf{c}^{T} \bar{K}+(\bar{B}(\mathbf{c}) \mathbf{c})^{T}+\lambda^{T} L & =\mathbf{F}^{T} \bar{M} \\
L \mathbf{c} & =\overline{\mathbf{G}}
\end{aligned}
$$

This can be written

$$
\begin{aligned}
\nu \bar{K} \mathbf{c}+\bar{B}(\mathbf{c}) \mathbf{c}+L^{T} \lambda & =\bar{M} \mathbf{F} \\
L \mathbf{c} & =\overline{\mathbf{G}} .
\end{aligned}
$$

This has a unique solution c provided the viscosity ν is sufficiently large.

Linearization

A simple iteration algorithm Starting with an initial guess $\mathbf{c}^{(0)}$ which can be computed by solving the Stokes equations, we consider the sequence of problems

$$
\begin{aligned}
\nu \bar{K} \mathbf{c}^{(n+1)}+\bar{B}\left(\mathbf{c}^{(n)}\right) \mathbf{c}^{(n+1)}+L^{T} \lambda^{(n+1)} & =\bar{M} \mathbf{F} \\
L \mathbf{c}^{n+1} & =\overline{\mathbf{G}},
\end{aligned}
$$

The following convergence result is similar to one of the convergence results of [Karakashian'82].
The previous system has a unique solution $\mathbf{c}^{(n+1)}$ and the unique solution \mathbf{c} is such that

$$
\left\|\mathbf{c}^{(n+1)}-\mathbf{c}\right\|_{H^{1}(\Omega)^{3}} \leq \gamma_{1}\left\|\mathbf{c}^{(n)}-\mathbf{c}\right\|_{H^{1}(\Omega)^{3}}
$$

for a constant $\gamma_{1}<1$. As a consequence $\mathbf{c}^{(n+1)}$ converges to \mathbf{c}.

Newton's iterations We are interested in the sequence $\mathbf{c}^{(n+1)}$ defined by

$$
\begin{array}{r}
\nu \bar{K} \mathbf{c}^{(n+1)}+\bar{B}\left(\mathbf{c}^{(n)}\right) \mathbf{c}^{(n+1)}+\widetilde{B}\left(\mathbf{c}^{(n)}\right) \mathbf{c}^{(n+1)}+L^{T} \lambda^{(n+1)}= \\
\bar{M} \mathbf{F}+\bar{B}\left(\mathbf{c}^{(n)}\right) \mathbf{c}^{(n)} \\
L \mathbf{c}^{(n+1)}=\overline{\mathbf{G}} .
\end{array}
$$

\widetilde{B} is defined such that $\widetilde{B}(\mathbf{c}) \mathbf{d}=\bar{B}(\mathbf{d}) \mathbf{c}$. We have the following convergence result
There exists $r>0$ such that if $\left\|\mathbf{c}-\mathbf{c}^{(0)}\right\|_{H^{1}(\Omega)^{3}}<r$, there is a unique $\mathbf{c}^{(n+1)}$ solution of the system and $\left\|\mathbf{c}-\mathbf{c}^{(n)}\right\|_{H^{1}(\Omega)^{3}}<r$ for all n with $\left\|\mathbf{c}-\mathbf{c}^{(n+1)}\right\|_{H^{1}(\Omega)^{3}} \leq \frac{1}{r}\left\|\mathbf{c}-\mathbf{c}^{(n)}\right\|_{H^{1}(\Omega)^{3}}$. Moreover, if there's $\eta<1$ such that $\left\|\mathbf{c}-\mathbf{c}^{(0)}\right\|_{H^{1}(\Omega)^{3}}=r \eta$, then $\mathbf{c}^{(n)}$ converges to \mathbf{c} as

$$
\left\|\mathbf{c}-\mathbf{c}^{(n)}\right\|_{H^{1}(\Omega)^{3}} \leq \frac{1}{r^{2^{n-1}}}\left\|\mathbf{c}-\mathbf{c}^{(0)}\right\|_{H^{1}(\Omega)^{3}}^{2^{n}}, \quad n=1,2, \ldots
$$

Practical computation of c The previous methods all involve to find c solution of a singular system of type

$$
\left(\begin{array}{cc}
A & L^{T} \\
L & 0
\end{array}\right)\binom{\mathbf{c}}{\lambda}=\left[\begin{array}{l}
F \\
G
\end{array}\right]
$$

with A non symmetric.
Under the hypothese that ν is sufficiently large or $\|\mathbf{F}\|_{L^{2}(\Omega)^{3}}$ is sufficiently small, the symmetric part $(A)_{s}$ of A is positive definite with respect to L in the sense that $x^{T}(A)_{s} x \geq 0$ and $x^{T}(A)_{s} x=0$ with $L x=0$ implies $x=0$.

We show that the later condition is sufficient for the solution \mathbf{c} to be unique. Indeed if (\mathbf{d}, β) is another solution we have

$$
A(\mathbf{c}-\mathbf{d})+L^{T}(\lambda-\beta)=0 .
$$

So, with $\mathbf{e}=\mathbf{c}-\mathbf{d}$,

$$
\begin{aligned}
\mathbf{e}^{T}\left((A)_{s} \mathbf{e}+(A)_{a s} \mathbf{e}+L^{T}(\lambda-\beta)\right) & =0 \\
L \mathbf{e} & =0 .
\end{aligned}
$$

Here $(A)_{a s}$ denotes the antisymmetric part of A. We have $\mathbf{e}^{T}\left((A)_{a s} \mathbf{e}=\right.$ 0 and $\mathbf{e}^{T} L=0$. Therefore $\mathbf{e}^{T}(A)_{s} \mathbf{e}=0$ with $L \mathbf{e}=0$. Thus $\mathbf{c}=\mathbf{d}$. This suggests that we can retrieve the solution \mathbf{c} by computing any least squares solution of the system.

We consider for $\mathrm{l}=0,1,2, \ldots$, the sequence of problems

$$
\left(\begin{array}{cc}
A & L^{T} \tag{1}\\
L & -\epsilon I
\end{array}\right)\left[\begin{array}{l}
\mathbf{c}^{(l+1)} \\
\lambda^{(l+1)}
\end{array}\right]=\left[\begin{array}{c}
F \\
G-\epsilon \lambda^{(l)}
\end{array}\right],
$$

where $\lambda^{(0)}$ is a suitable initial guess for example $\lambda^{(0)}=0$, and I is the identity matrix. Let also assume that A is a matrix of size $n \times n$; $c, F \in \mathbb{R}^{n} ; L$ is a matrix of size $m \times n$ and $\lambda, G \in \mathbb{R}^{m}$.

- Theorem

Suppose that the linear system (of the discrete problem) has a unique solution c. Assume that $A_{s}=\frac{1}{2}\left(A+A^{T}\right)$ the symmetric part of A is positive definite with respect to L, i.e., $x^{T} A_{s} x \geq 0$ and $x^{T} A_{s} x=0$ with $L x=0$ implies $x=0$. Then, the sequence $\left(c^{(l+1)}\right)$ defined by the iterative method converges to the solution c for any $\epsilon>0$. Furthermore,

$$
\left\|c-c^{(l+1)}\right\| \leq C \epsilon\left\|c-c^{(l)}\right\|
$$

for some constant C independent of ϵ and l.

- Theorem

Suppose that the linear system (of the discrete problem) has a unique solution c. Assume that $A_{s}=\frac{1}{2}\left(A+A^{T}\right)$ the symmetric part of A is positive definite with respect to L, i.e., $x^{T} A_{s} x \geq 0$ and $x^{T} A_{s} x=0$ with $L x=0$ implies $x=0$. Then, the sequence $\left(c^{(l+1)}\right)$ defined by the iterative method converges to the solution c for any $\epsilon>0$. Furthermore,

$$
\left\|c-c^{(l+1)}\right\| \leq C \epsilon\left\|c-c^{(l)}\right\|
$$

for some constant C independent of ϵ and l.

- Proof

We first show that $c^{(l+1)}$ and $\lambda^{(l+1)}$ are well-defined. Let us first rewrite the iterative method system as follows.

$$
\begin{gather*}
A c^{(l+1)}+L^{T} \lambda^{(l+1)}=F \quad \text { and }(1) \\
L c^{(l+1)}-\epsilon \lambda^{(l+1)}=G-\epsilon \lambda^{(l)} \tag{2}
\end{gather*}
$$

Multiplying (2) on the left by L^{T} and substituing $L^{T} \lambda^{(l+1)}$ into (1) and rewriting (2), we get

$$
\begin{align*}
\left(A+\frac{1}{\epsilon} L^{T} L\right) c^{(l+1)} & =-L^{T} \lambda^{(l)}+F+\frac{1}{\epsilon} L^{T} G \tag{3}\\
\lambda^{(l+1)}+\frac{1}{\epsilon} L c^{(l+1)} & =\lambda^{(l)}+\frac{1}{\epsilon} G .
\end{align*}
$$

To show that the iterative method system is solvable under the hypotheses of the theorem, we need only to show that $A+\frac{1}{\epsilon} L^{T} L$ is invertible.

Since A is a square matrix, it is enough to show that

$$
\left(A+\frac{1}{\epsilon} L^{T} L\right) x=0 \Rightarrow x=0
$$

That is,

$$
0=x^{T}\left(A+\frac{1}{\epsilon} L^{T} L\right) x=x^{T}\left(A_{s}+\frac{1}{\epsilon} L^{T} L\right) x=x^{T} A_{s} x+\frac{1}{\epsilon}(L x)^{T}(L x)
$$

since $x^{T} A_{a} x=0$. It follows that

$$
x^{T} A_{s} x=0 \text { and }(L x)^{T}(L x)=0 .
$$

By the assumptions on A, i.e., A_{s} is assumed to be symmetric positive definite with respect to L, we get $x=0$. Hence, the new iterative linear system is invertible and $c^{(l+1)}$ and $\lambda^{(l+1)}$ are well-defined.

We now show that $c^{(l+1)}$ converges to c. Let also $u^{(l+1)}=c^{(l+1)}-c$ and $p^{(l+1)}=\lambda^{(l+1)}-\lambda$. We have

$$
\begin{gathered}
\left\{\begin{aligned}
\left(A+\frac{1}{\epsilon} L^{T} L\right) u^{(l+1)}+L^{T} p^{(l)} & =0 \\
p^{(l+1)} & = \\
& p^{(l)}+\frac{1}{\epsilon} L u^{(l+1)} .
\end{aligned}\right. \\
\left\|p^{(l)}\right\|^{2}-\left\|p^{(l+1)}\right\|^{2}=\frac{2}{\epsilon}\left(A_{s} u^{(l+1)}, u^{(l+1)}\right)+\frac{1}{\epsilon^{2}}\left\|L u^{(l+1)}\right\|^{2} .
\end{gathered}
$$

We conclude that since A_{s} is nonnegative,

$$
\left\|p^{(l)}\right\|^{2}-\left\|p^{(l+1)}\right\|^{2} \geq 0
$$

and the sequence $\left\{\left\|p^{(l)}\right\|\right\}$ is seen to be decreasing.

Being bounded below by 0 , it converges; hence $\left\|p^{(l)}\right\|^{2}-\left\|p^{(l+1)}\right\|^{2}$ converges to 0 which implies that $\left(A_{s} u^{(l+1)}, u^{(l+1)}\right)$ and $\left\|L u^{(l+1)}\right\|^{2}$ converge to 0 . Since $A_{s}+\frac{1}{\epsilon} L^{T} L$ is positive definite, it follows that $u^{(l+1)}$ converges to 0 and finally $c^{(l+1)}$ converges to c.

Sketch of proof of convergence rate

We prove that

$$
\left\|c-c^{(l+1)}\right\| \leq C \epsilon\left\|c-c^{(l)}\right\|,
$$

Recall that $u^{(l+1)}=c^{(l+1)}-c$ and $p^{(l+1)}=\lambda^{(l+1)}-\lambda$. We showed that

$$
\left\|p^{(l+1)}\right\| \leq\left\|p^{(l)}\right\|, \quad \text { for all } l
$$

i.e. that $\left(p^{(l)}\right)$ is a decreasing sequence. We also have

$$
\left\{\begin{aligned}
\left(A+\frac{1}{\epsilon} L^{T} L\right) u^{(l+1)}+L^{T} p^{(l)} & =0 \\
p^{(l+1)} & =p^{(l)}+\frac{1}{\epsilon} L u^{(l+1)},
\end{aligned}\right.
$$

from which it follows that

$$
A u^{(l+1)}+L^{T} p^{(l+1)}=0
$$

We write $u^{(l+1)}=\hat{u}^{(l+1)}+\bar{u}^{(l+1)}$ with $\hat{u}^{(l+1)} \in \operatorname{Ker}(L)$ and $\bar{u}^{(l+1)} \in$ $\operatorname{Im}\left(L^{T}\right)$. Note that $L: \operatorname{Im}\left(L^{T}\right) \rightarrow \operatorname{Im}(L)$ has a bounded inverse, so there exists $k_{0}>0$ such that

$$
\left\|\bar{u}^{(l+1)}\right\| \leq \frac{1}{k_{0}}\left\|L u^{(l+1)}\right\|
$$

from which it follows that

$$
\left\|\bar{u}^{(l+1)}\right\| \leq \frac{2 \epsilon}{k_{0}}\left\|p^{(l)}\right\|
$$

To get a bound on $\left\|\hat{u}^{(l+1)}\right\|$, we notice that A is invertible on $\operatorname{Ker}(L)$ since $A+\frac{1}{\epsilon} L^{T} L$ is invertible. This gives for some $\alpha_{0}>0$,

$$
\left\|\hat{u}^{(l+1)}\right\| \leq \frac{1}{\alpha_{0}} \sup _{v_{0} \in \operatorname{Ker}(L)} \frac{\left(v_{0}, A \hat{u}^{(l+1)}\right)}{\left\|v_{0}\right\|}=\sup _{v_{0} \in \operatorname{Ker}(L)} \frac{-v_{0}^{T} A \bar{u}^{(l+1)}}{\left\|v_{0}\right\|} \leq\|A\|\left\|\bar{u}^{(l+1)}\right\|
$$

Putting together, we obtain

$$
\left\|u^{(l+1)}\right\| \leq C \epsilon\left\|p^{(l)}\right\|, \quad \text { for some constant } \mathrm{C}>0
$$

To finish, we need a bound on $\left\|p^{(l)}\right\|$ in terms of $\left\|u^{(l)}\right\|$. It can be shown that one can choose λ_{0} such that $p^{(l)} \in \operatorname{Im}(L)$ and since $L^{T}: \operatorname{Im}(L) \rightarrow \operatorname{Im}\left(L^{T}\right)$ has a bounded inverse,

$$
\left\|p^{(l)}\right\| \leq \frac{1}{k_{0}}\left\|L^{T} p^{(l)}\right\| .
$$

This completes the proof since $L^{T} p^{(l)}=-A u^{(l)}$.

Computauonal Experments on the 3D Stokes Equations

Let $\Omega \subset \mathbb{R}^{3}$ be a cube with sides of length 1 . We consider the vector field $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ with a pressure p.

$$
\begin{aligned}
u_{1} & =-\exp (x+2 y+3 z) \\
u_{2} & =2 \exp (x+2 y+3 z) \\
u_{3} & =-\exp (x+2 y+3 z) \\
p & =x(1-x) z(1-z) .
\end{aligned}
$$

Table 1 Approximation Errors from Trivariate Spline Spaces on \mathcal{I}_{1}

degrees	u_{1}	u_{2}	u_{3}	p
3	3.3633×10	5.9431×10	4.0397×10	1.3466×10^{3}
4	1.7010×10	4.4374×10	3.5368×10	3.8562×10^{2}
5	2.3804	7.3711	5.9629	9.8470×10^{1}
6	3.9620×10^{-1}	1.2238	1.0311	2.7404×10^{1}
7	6.7456×10^{-2}	1.9789×10^{-1}	1.6260×10^{-1}	6.8411
Rate	$1.56 \times 10^{7} d^{-9.8294}$	$3.22 \times 10^{7} d^{-9.6203}$	$2.32 \times 10^{7} d^{-9.5463}$	$8.50 \times 10^{6} d^{-7.13}$

Table 2 Approximation Errors from Trivariate Spline Spaces on \mathcal{I}_{2}

degrees	u_{1}	u_{2}	u_{3}	p
3	1.5083×10	1.8709×10	1.5222×10	4.4382×10^{2}
4	9.4142×10^{-1}	2.2094	1.8373	3.5278×10^{1}
5	9.1619×10^{-2}	2.2322×10^{-1}	2.0176×10^{-1}	5.8199
6	8.5128×10^{-3}	2.3520×10^{-2}	1.9276×10^{-2}	7.1884×10^{-1}
Rate	$9.31 \times 10^{6} d^{-11.5631}$	$1.24 \times 10^{7} d^{-11.1692}$	$1.09 \times 10^{7} d^{-11.1901}$	$1.05 \times 10^{7} d^{-9}$

L^{2} norm of the error versus degree on \mathcal{T}_{1} (rate 1.6777×10^{7} $\left.d^{-9.8962}\right)$ and $\mathcal{T}_{2}\left(\right.$ rate $\left.7.7013 \times 10^{6} d^{-11.8503}\right)$

H^{1} norm of the error versus degree on $\mathcal{T}_{1}\left(\right.$ rate 1.6777×10^{7} $\left.d^{-9.8962}\right)$ and $\mathcal{T}_{2}\left(\right.$ rate $7.7013 \times 10^{6} d^{-11.8503}$)

Lid Driven Cavity flow Problem

3D fluid profile in the $x-y$ plane

3D fluid profile in the $y-z$ plane

3D fluid profile in the $x-z$ plane

Work in Progress

- Time dependent Navier-Stokes

Work in Progress

- Time dependent Navier-Stokes
- Extension to variational inequalities

Work in Progress

- Time dependent Navier-Stokes
- Extension to variational inequalities . Thank You!

