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Abstract

We are interested in solving the system

o ll]-Le] @

by a variant of the augmented Lagrangian algorithm. This type of problem with nonsymréypecally arises in

certain discretizations of the Navier—Stokes equations. HMésea (n, n) matrix,c, F € R”, L is a(m, n) matrix,

andx, G € R™. We assume tha is invertible on the kernel of . Convergence rates of the augmented Lagrangian
algorithm are known in the symmetric case but the proofs in [R. Glowinski, P. LeTallec, Augmented Lagrangian
and Operator Splitting Methods in Nonlinear Mechanics, SIAM, 1989] used spectral arguments and cannot be
extended to the nonsymmetric case. The purpose of this paper is to give a rate of convergence of a variant of the
algorithm in the nonsymmetric case. We illustrate the performance of this algorithm with numerical simulations of
the lid-driven cavity flow problem for the 2D Navier—Stokes equations.
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1. Introduction

We will use the same notatiorfs .) and|| - || for the inner products and norms k' andR™. The
particular inner product will be identified by the types of matrices appearing. The augmented Lagrangian
algorithm for symmetric problems can be derived by minimization arguments. We refer to [8] for de-
tails. It is described as follows: with > 0 andp, > O for all / as parameters, gived? € R” specified
arbitrarily, with A known, compute”’ thenr?*b by

{ (A4+rLTL)c®D + LTAO =F +rL'G,

WD =0 4 o (Le® — G, (2

In [2], we were interested in a variant of this algorithm fgr=p = % foralll, r = % wheree > 0 is
fixed. More precisely, for this choice of the parameters, the algorithm reads

{ (A+2ILTL)c D+ LA = F+ 117G, 3)
1+1) 1 1 1
AHD =50 4 2(Le® - G).
The variant we considered is the following algorithm
(A + %LTL)C(H—]') + LTK(I) =F+ %LTG, 4
AD =0 4 (LD _ ) 4)
&€ )

which can be easily shown to be equivalent to the following sequence of problems

A LT D F

L —eM || 20D | T G—eMA® | ©)
for M = I, wherel is the identity matrix of sizen x m. In generalM is a suitably chosen matrix. In [9],
it was claimed that the later algorithm converges to the solutioh(1) and

e -] < Celle - ],

for a constanC > 0 independent of. We have not however been able to find a proof of this result in the
literature. The main objective of this article is to prove the convergence of the following algorithm

(A4+rL™™ L) + LTAD = F +rLTM G,
AD =00 4 oMLY - G), p >0,

which generalizes (5) and give a convergence rate similar to the one above. A fine study of the conver-
gence rate still appears to be difficult (cf. [8, Remark 2.12 p. 64]).
The algorithm(6) is the Uzawa algorithm applied to the augmented system

{ (A+rL™*L)c+ LTh=F +rLTM*G, @
Lc=G,
and hence can have an improved convergence rate. One other advantage of the augmented Lagrangic
algorithm is to solve compared to (1), systems of smaller size.

However, following [7, p. 15],A, = A + rLTM~L has a condition numbée€(A,) asymptotically
proportional tor, that is

ML)
K(Ar)%rw, whenr — oo,
o

(6)
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o depending only oA and we again denote by || the matrix norm associated with- || on R". This
prevents the choice of extremely large values ef p to get convergence in one step. Our convergence
result and numerical evidence also suggest that one does not have a good convergencesmaiafand

o large. We also see that a judicious choicébtan balance the deterioration of the condition number.

It is reasonable to expect that an inexact Uzawa algorithm applied to (7) might perform as well. How-
ever our numerical experiments for this inexact version with several choicesanél A indicate no
convergence. This is an interesting question which is still under investigation.

Other references for the augmented Lagrangian algorithm are [5-8,3].

The paper is organized as follows. We first give a sufficient condition for solvability of (1) which leads
to a Ladyzhenskaya—BabuSka—Brezzi (LBB) type condition. We then prove the convergence rate. Finally,
we will give numerical experiments for the 2D Navier—Stokes equations.

2. Solvability

In this section, we derive a sufficient condition for the solvability of (1). Let&érand Im(X) denote
the kernel and range of the operadorWe first give a few lemmas:

Lemmal R" =Ker(L) ® Im(LT) andR™ = Ker(L™) & Im(L).
Proof. Itis enough to prove only one of the decompositions. Sinad.hh& R™, we haveR™ = Im(L) ®
Im(L)*, where In{L)* denotes the orthogonal of lth). We need to show that

Im(L)* =Ker(L").

Letg e Im(L)*. Forw e R*, Lw € Im(L), soq " (Lw) = 0. Thereforan"LT¢q = 0 so thatL "¢ is orthog-
onal toR”, thatisLTg =0, i.e.,q € Ker(LT). This argument also shows that K&f) c Im(L)* and the
result follows. O

The following result can be found in [4], we give here a detailed proof for convenience.

Lemma 2. Suppose is an invertible linear operator with positive definite symmetric p&rt= %(A +
A") that satisfies

(Ax,y) <a(Ax, )Y (Agy, )2, forall x,y e R" anda > 1, (8)
then(A~1), is positive definite and satisfy

((A_l)sw, u)) < ((As)_lw, w) < az((A_l)sw, w) for all w e R".
Moreover

(A~%x, y) < ((A) 2%, x) (A0 2y, )2
Proof.

_ (w, y)?
(Ap) tw, w) = su :
( ) yeRE) (Asy, )’)




G.M. Awanou, M.J. Lai / Applied Numerical Mathematics 54 (2005) 122-134 125

and
(w, )= (w, A Ay)" = (A7) "w, Ay)” < @®(A,y, )(A(A™) w, (A7) ),
by (8). So
w, 2 <2IylI3 (A(A™) w, (A7) w)
= IyI3, (A7) "w, AT(A™) Tw) = 1y 13, (A7) w, w),
where| - [|§. = (A;.,.) and we usedAw, w) = (A,w, w) for all w € R". It follows that
(A7 w, w) <o®((A7H) w, w).

On the other hand (using fractional power of symmetric positive definite matrices which can be defined
via singular values decomposition)

(A7), w,w) = (47w, w) = (4724w, (A4)™2w) < |A2A 0| [ (A0~ 2w)|
= A" w], Nlwlla,y2 = (A4 w, A7) w42
= (A" w, w) w1
It follows that
(A, w, w) < ((A) " w, w). 9)
In addition

(Aflx, y) = (Asl/zAle, (As)fl/z)’)

N

< (A7, x)l/z((As)‘ly, y)l/2 using the same arguments as above
_ 1/2 _ 1/2 .
< ((A) 2, x) "5 ((4) 7Yy, y)"® using (9). O

We can now prove the following theorem

Theorem 3. Let A be a matrix which satisfies the conditi¢®) and has a symmetric part, positive
definite with respect td in the sense that' A,x > 0 and x"A,x = 0 with Lx = 0 impliesx = 0. In
addition, assume that € Im(L). Then(1) is solvable and moreover

2
sup (y, Lu)

>calyl? forall y e Im(L), (10)
ueR”? (Aru’ l/t)

wherec; > 0 is a positive constant which dependsoandA, = A +rL"TM L.

Proof. We have

Ac+L"A=F,
Lc=0G,

sorL"M~*Lc¢ =rL"M~1G which gives
(A+rL"M 'L)c+ L"A=F+rL'M™'G.

(11)
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We first show thatd + r LTM~1L is invertible. SinceA is a square matrix, it is enough to show that
(A+rL"M 'L)x=0 = x=0.

We have
x"(A+rL™™'L)x =xT(A, +rL™M 'L)x =x"Agx +r(Lx)" M Y(Lx),

so by the assumptions ofy
xT(A + rLTM_lL)x =0 = x'A,x=0 and (Lx)"MY(Lx)=0.

It follows thatxT A,x = 0 andLx = 0. SinceA, is assumed to be symmetric positive definite with respect
to L, we getx = 0. We can therefore write

c=(A+rL™M L) (F+rL™M'G) — (A+rL™M L) "LTh.
SinceLc = G, we see that the solvability of (1) is equivalent to solving

LA+rL™™ L) LA = L(A+rL™M™*L) ™ (F +rLTM7*G) - G,
for ». By Lemma 1, we havé = o+ 1 with Ao € Ker(LT) andi € Im(L). Clearly it is enough to find
A. We show that there is; > 0 such that

YIL(A+rL™™M L) LTy 2 caflyl|%,  forally e Im(L).

This will imply that L(A 4+ rLTM~*L)~1LT is invertible on In{L) and show that (1) is solvable.
SinceA satisfies (8) and because
(Agx,x) < ((As + rLTM_lL)x, x) and (rLTM_le, x) < ((AS + rLTM_lL)x, x),
we have
((A + rLTM_lL)x, y) < a((AX + rLTM_lL)x, x)l/z((AS + rLTM_lL)y, y)l/z,

forall x, y e R" anda = 1. It follows from Lemma 2 that
([(A+rL™™L) ] w, w) > a_lz((As +rL™M L) w,w), forallw eR".

Becaused, is positive definite with respect tb, A, + rLTM 1L is symmetric positive definite and so
L(A;+rL"M~1L)~1LT is symmetric positive definite on Ih) (L7z = 0 andz € Im(L) impliesz = 0)
so that we have

YTL(A,+rL™M L) 'Ly > collyl?, forall y e Im(L), (12)
with ¢g > 0 depending om. This gives
YTL(A+rL™™M L) LTy = (LTy) (A +rL™M L) (LTy)
= (L) [(A+rL™™M L) Y] (LTy) > a—lz(LTy)T(AS +rLTM L) (L)
- O%yTL(AS +rL™M L) Ty > ;—g||y||2, forall y e Im(L).

Recall thatA, = (A +rL"M~1L)~1 and notice that
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LT , 2 ,L 2
yTLA;lLTy = (A;lLTy’ LTy) = Supu = u
uekr (Apu,u)  yern (Ayu,u)

We have therefore proved that
(v, Lu)?
(Ayu,u)
which is a LBB type condition. O

Cco
Sup,cgn EEMW,fNﬂyEW@L

It would be desirable to have more information on the dependencefthe constant; in Theorem 3.
Put

E=A,+rL" ML,

and recall from(12) that LE~*LT is symmetric positive definite on Imj. We letD = LE~'LT consid-
ered as a mapping from Ith) to Im(L) and seek a lower bound of

;
D
R@ﬁJ&;>Q yelm(L), y#0,

whereR(y) is the Raleigh quotient. We have

yILE'LTy y'"LETHEE HL"y (yTLE)E(E'LTy)

R(y) = =
yTy yTy yTy
So
|E~1LTy|2
R(y) = ——21E, (13)
yTy

where we have defined a noim || associated with the symmetric positive definite mafix

lull2 =bGu,u), With b(u,v) =v" Eu.

We have
b(E~1LTy,
|E-LTy|, = sup 2 L)
E
veR” lvlle
v#0
with
b(E~'LTy,v) W'EEILT vILT Ty
(E Lo _ T_2o 22 2T vus0eRrn
lvlle vl e vl e lvlle
So
1,7 yTLU
|E7*LTy| . = sup . (14)
vert V]I E
v#£0

We claim thatL is an invertible mapping from IGLT) to Im(L), cf. Lemma 5 below. Since € Im(L),
there isv in Im(LT) such thaty = Lv. We write|v||> = v v. Then,
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R(y) =

1 ((Lv>T<Lv))2_||Lv||2
ILv]I2\  fvlle Ivll2

_ | Lvl|? _ ILv]?
vTAw+rvTLTM =1Ly vTAw+r|Lvl3,

For an operatoX, ux max denotes the greatest eigenvalueXofFinally, using Raleigh’s principle,

T 2
v AU < gy maxllv]l”

On the other hand, sinoe= Lv #0, | Lv| > nwlu . We therefore have

1/IIL742
ROy > —H= >0
HA,max+ r|IL|

We have
co 1 1/L7Y?
a= 25— — /5.
ac " o pasmax+rilL]l

3. Convergence

In this section, we prove the convergence of the iterative algorithm (6). In the next section we give the
convergence rate.

Theorem 4. Suppose that the linear systdft) has a unigque solution and thatA; the symmetric part
of A is positive definite with respect #o. Moreover, assume that is symmetric positive definite. Then,
the sequencé") defined in(6) converges to the solutianof (1) for r > 4.

Proof. Clearly (6) is solvable sinca, is invertible. WithA® given one computes successively™> and
L0+

The original problem (1),

Ac+L"A=F,
Lc=0G,
can be rewritten as
i (A+rL™™™*L)c+ LTA=F +rLTM™1G,

A=)+ pM~YLc—G). (15)

Let u*D = c(+D — ¢ andp?*+D = 10+ — 1. We have, using (15) and (6),

(A+rL™M L)Y+ LTp? =0, (16)
and

Y = O 4 a0, (a7)
We deduce from (17) that

| p+? ”]2‘4 = (Mp™D, pV) = (Mp® + pLu®™D, p® 4+ pM1LuY),
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which gives

”p(z+1) HZ _ ”pm H; + (Mp(l), ,oM_lLu(Hl)) + (pLu(H-l), pa)) +,02(Lu(1+1), M_lLu(l+1))

_ ”pm H; +2p(p?, Lu(l+1)) +,02(Lu(l+1), M_lLu(l+l)),

sinceM ! is symmetric and hence

||P(l)||§4 — || p+? ||12M =—2p(p?, Lu®D) = p2(Lu™V, M~1Lu+D), (18)
It follows from (16) that

(Au(l+1), M(z+1)) + r(LTM—lLu(Hl)’ u<z+1)) _ _(p(n’ Lu(l+1)),
and hence by substituting this into (18), we get

[ = 1" 21 = 20 (a2, 002) - (2rp = ) (L, M2 )

= 2p(AuD, u D) 4 (2rp — p?) | Lu D |2 .

Therefore for > g sinceA; is nonnegative,

L A S PR
ie.,

[P 2], <P, forallz, (19)

and the sequencf|p® |y} is seen to be decreasing. If for somhe| p® |1y — Ip"* ||y = 0, then
(Au™D 0+ = L+ = 0 and we have!+*P = 0, sinceA, is symmetric positive definite with
respect toL, and hence convergence. Otherwise, the sequence being bounded below by 0 converges;
hence|| p®||? — || p“*tP||? converges to 0 which implies that,u®, ) and | Lu?|? converge to O.
Since A, +rL"M~1L is positive definite, it follows that” converges to 0 and finally” converges

toc. O

4. Convergencerate
To show the convergence rate, we will need the following lemma.

Lemma 5. The mappingd. : Im(LT) — Im(L) and LT : Im(L) — Im(LT") are bijections with bounded
inverses.

Proof. We show that_ is one—one on IfL.T). This is immediate sincéx = 0 with x € Im(LT) implies
x e Im(LT) nKer(L) = {0} by Lemma 1. As a linear mapping between finite dimensional spéckeas
a bounded inverse on In) and there exist& > 0 such that for ang € Im(L), there exists, € Im(LT)
such thatLv, = g with

1
llvgll < k—ollgll- (20)

A similar proof applies td.". This completes the proof.o
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We would like to elaborate on this last inequality. he¢ R" andg = Lv € Im(L) so there isv, €
Im(LT) for which g = Lv,. That is,Lv = Lv,. It follows thatv, = v + v for somev, € Ker(L). We
therefore have

lv+ voll < L L]l L
v+l < —J|Lv|| =

" %o ko
for anyv + vp € Im(LT). It follows that

vl < —||Lv||——sup(q’ »)

, forallvelm(L"). (21)
ko gere gl

The same arguments applieditd show that

1 1 LT
gl < —ILTqll=— SUDJ, forallg e Im(L). (22)
ko ko vern ||V

We have the following theorem:

Theorem 6. Suppose that the linear syst€i) has a unigue solution and thatA, the symmetric part of
A is positive definite with respect fo. Moreover, assume thatl is symmetric positive definite. Then,

e 0] < Clle—e

for a positive constant’ which depends onand p but independent df Moreover forr = p = %
e e P |

for a positive constanf’ independent afande.

Proof. We writeu*V = 4¢+D 4 70+ with 4¢+Y e Ker(L) andiz’™ e Im(LT). Using (21), we have
kol a® V] < | Lu™*P],

where we used the inner produat ., .) instead of the canonical one. Using (17), we have

1 1

Jo
o)
| M]]
kol @2 < = =(Ip ™ s +127]):
where we used the equivalence of normgRsh By (19) we have| p*2 |, < || p | which gives
_ 2| M|
(1+1) )
s < Loy,

We next give a bound oa’*+? . SinceA + rL"M 1L is invertible, A is invertible on Ke(L). Indeed if
Ax =0 andLx =0, then(A + rLTM~1L)x = 0 which implies thatr = 0. Therefore there igg > 0
such that

(UOv Aﬁ(H—l)) ,UTAu(H-l) _ 'UTAIZ(H_]')
(+1) || sup = sup 0 0

voeKer(L) [lvoll voeKer(L) [lvoll

Olo”l/t
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However, from (16), we havau*D = —LTp® — r LTM~1Lu"*+Y which implies
v AuD = I LT p® — rpf LTM Ly Y
= —(Lvo) ' p® — r(Lvo) "M~ 1Lu™P =0,
for vo € Ker(L). Thus,

—vg AutY 20A10M1,

"< sup hana ] <« =211,

(070) || u
voeKer(L) llvoll

We therefore have
D || < [l70+D FHD | < 2 Al L imil ol
2 < a2+ a2 < 2 ( +1) M|,
We now give a bound ofip® ||, in terms of|lu®||. First we establish thap e Im(L). Solving for
1™ in (16) and substituting in (17), we get
P = (1= pML(A+rL™M L) 'LT) .

It follows that M (p/*Y — p®) is in the range of.. Since
k+1

p(l+l) — Z p(j) _ p(j*l) + p(O)

we haveMp® e Im(L) providedMp© = MA — Mo € Im(L) which is possible by a suitable choice of
Ao. One way to do this is to first notice that by (11), we may assumeitedi(L). So if M = I, where
I is the identity matrix ofR”, we may choosgg in Im(L). Otherwise, we can choogé in such a way
thatM maps Im(L) into Im(L).
It follows from (22) that
TrT,,0)
L'p
kol Mp?[ 1 = ko[ PV, < sUP —T——
vern ]l
Combining the equations in (16) and (17), we get
(A+rL™M 'L —pL™ML)u® + LTp" =0,
thusv"LTp® = —vT(A+rL™ ML — pL"M~2L)u®. Therefore,

||Ar [
[P < == 11

whereA, , = A + (r — p)L"M~L. It follows that

Al [ Ar,ll
+1) P 0)
s < 2 (B2 1)y 1t o,

Forr=p, A,,=Aandforr = p =1, we get
Je =P < Cefle =],

for a positive constant independent of ande. O
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5. Numerical experiments

In this section, we first present a spline discretization of the 2D Navier—Stokes equations in velocity-
pressure formulation. A simple iterative algorithm is used to linearize the nonlinear equations. We have
applied the algorithm described here to the solutions of the linear systems which arise and display the
maximum number of the iterations that was necessary to fully solve the problem for various choices of
the parameters andp.

Let 2 =J,.,t be a polygonal domain iR?. Given two integers/ > 0 and 0< r < d, we consider
the spline space of degrdeand smoothness

Sp(A) :={s € C"(2): s|; € Py, Vi € A},

whereP, denotes the space of polynomials of degree less than or églias possible to represent in a
unique fashion such a spline by a vector of coefficients Rireet of the spline.

We refer to [2] for the 3D case and [10] in the 2D case for additional details. The weak form of the
steady state Navier—Stokes equations is: EirdH*(£2)? such that

3
ou
v [ Vu-Vv —v= [ f.-v, VveV,,
./ +Z/u]3x/ / °
2 =l ' 2

divu=0 ing2,
u=g onas,
where

Vo={ve Hy(£2)% divv=0},

andas? is the boundary of2. We approximate elements u§ by vectorsd in RV (each component af

is approximated by a spline with coefficient vectofiff), which represent smooth splingéd = 0, are
zero on the boundar®d = 0 and satisfy the divergence-free conditidid = 0. Let us describe these
elements as vectorsin R?" satisfyingLd = 0 for some matrix_. If we let c encode the coefficients of
the approximant of the velocity field, the discrete problem is:

Find cin RV satisfyingLc= G with G encoding the boundary conditions and

ve'Kd + (B(o)c)'d = d"MF,

foralldin R2N with constraintL.d = 0. Here,K andM are the stiffness and mass matrices, respectively;
(B(c)c)"d encodes the nonlinear term.
Using functional arguments, it can be shown that there exists a Lagrange multiplieh that:

vKc+ B(c)c+ LA = MF, Lc=G.
If we putA = vK + B(c), we showed in [1] that the previous problem is solvable andAha symmetric
positive definite with respect tb for v sufficiently large. The system of nonlinear equations is linearized
as follows:
Let (c©,1@) be the solution of the linear problem (i.e., the associated Stokes equations) and for
n=0,1,..., define(c”t A"*D) as the solution of

VRS 1 B(cM)e Y 4 LAY Z 37F, LY =G,
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Because we are not using a basis to represent the discrete solution, the stiffnes&nmasiixgular. We

have used the algorithm described in this paper to solve at each step the previous system of equations.
The termination criterion for these steps is to require the maximum nodfidf — c® to be less than

10710, For the augmented Lagrangian iterations we use the same criterion over successive iterations. We

display in Tables 1-3 the maximum number of iterations (over all steps) when this algorithm is applied

Table 1
Number of iterations for andp with r = p

10 1% 108 10% 10° 106

r

0 10 10 108 104 10° 108
Iterations 7 4 3 3 4 2
Table 2
Number of iterations fop = 2 x r and various-
r 10 1% 103 104 10° 108
p=2xr 2x10 2x 107 2 x 103 2 x 104 2x 10° 2x 108
Iterations N/A N/A 3 3 4 4
Table 3
Number of iterations for large and variouso
r 108 108 108 108 108
0 10° 104 108 102 10
Iterations 1 4 3 4 3
1 T = T - T = T T T —
\ ' -, - — — — _— —> —> —> —s  — \
09 i 1 t 1 i -~ ]
- — — — — —_ - N \J/
0.8F t t / V4 v - - — — - - N \ \[/ |
t t ? 7 v ” -~ - - - N \
0.7F o)
t 1 ? t t ’ , . . . j j
0.6kF t t t t t 1 ' . X , , ) |/ / _
t t i i A \ N - B , y / /
05h N / i
t \ N\ AN ~ - _ P . J/ / ;
04F 1 \ \ N N ~ ~ -— — - % J / ; 4
N AN ~ ~ ~ ~ -— — — - v ;
0.3f i
N ~ ~ -~ ~ -~— -— — — - v .
02 . N . i
01 T T i ’ :
% of1 012 053 oi4 ois oie 017 o‘.s 019 1

Fig. 1. 2D cavity flow velocity profile.
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to the lid driven cavity flow problem at Reynolds number 400. We used7 andr = 0 in which caseA
has size 9216 9216 and L has size 69089216. The actual mesh consists of 128 triangles obtained by
uniformly refining 3 times a triangulation of the square into two triangles. Each triangle was subdivided
into 4 triangles by connecting the midpoint of the edges.

In Table 2, N/A stands for not available. We did not get a fast convergence for these values.

The numerical results in Table 3 suggest that for this specific problem, the eheit€® andp = 10°
is optimal. We finally display the velocity profile (cf. Fig. 1) wher= p = 10° was used.

6. Conclusion

In this paper, we have mainly given a convergence rate of a variant of the augmented Lagrangian algo-
rithm. We intend to undertake a study of the optimal choice of the parametas, when this algorithm
is applied to the incompressible Navier—Stokes equations filling a gap left by earlier researchers. We also
intend to investigate further inexact versions of this algorithm.
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