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Abstract

We review a manuscript of L.C. Rogers on credit risk modelling. The
point of view in the manuscript is how one should model credit risk and the
implementation of existing models. Since 1999 when it was written, a lot
of new models and new developments have appeared. We’ll discuss some of

these models.

1 Introduction

Credit risk refers to the changes in credit quality of a security issuer or sim-
ply a counterparty. Firms finance their operations through equity and the
issue of debt in the form often of bonds. A bond is simply a long-term debt.
With a zero coupon bond, the firm promises to repay the face value of the
bond at a certain time 7', the maturity date. The price b(t,T) at time T

of such a bond at time ¢ is given by b(t,T) = e V&I where y(t,T) is



the yield of the bond. The price of a bond issued by the U.S. Treasury is
bo(t, T) = e "&NT =) wwhere r(t,T) is the risk-free rate. There’s some chance
that a corporation or a sovereign foreign government will not honour its obli-
gations so investors charge them a higer interest rate, i.e. y(¢,T) > r(t,T).
The difference y(¢t,T) —r(t,T') is the credit spread, the premium required to
hold an investment subject to risk. By term structure of credit spreads, we
mean the correspondance between maturity dates 7' and the credit spreads.
Firms are required by law to pay off their debts first before paying earnings
to shareholders. When a firm stops servicing its obligations, we say that it
defaults: in that case the bond holders take over the firm’s assets. The terms
default risk and credit risk are used interchangeably. Changes in the credit
quality of a firm are indicators of default. The Moody’s and Standard and
Poor’s give bond ratings for most traded bonds. These are judgments about
firm’s business and financial prospects. The best Moody’s bonds are rated
triple-A (Aaa), then come double-A (Aa) bonds. There are no fixed formula
by which these ratings are calculated. Nethertheless, ”since 1971, no bond
that was initially rated triple-A by S & P’s has defaulted in the year after
the issue and fewer than one in a thousand has defaulted in the year after the
issue. At the other extreme, over 2 percent of CCC bonds have defaulted in
their first year and by year 10 about half have done so”, [Brealey & Myers,
2001]. It’s therefore not surprising that the credit spreads of a risky bond is

related to the issuer’s migrations through credit ratings classes.



We are interested in modelling two things, the probability of default and
the price of a risky debt. Although given a model, one can deduce one from
another it’s not so clear how to calibrate or estimate parameters of models

to answer these questions.

There are essentially two approaches to model credit risk: the intensity
based approach in which default is seen as a perfectly unpredictable event
and the structural approach in which default occurs when the firm’s assets
are insufficient to pay debt or fall below a prespecifed level. In the former
category, we’ll pay attention to the models which attempt to model credit
ratings migrations of a firm and in the later we’ll discuss the models which

attempt to introduce jumps in the firm’s assets dynamics.

2 Framework

We use a fixed probability space (2, H, P), equipped with a filtration (F;);>¢
which describes the information flow over time. Each w € () describes a
possible state of the world. Let V;, (Vi(w)) be the price of an asset for
example a bond at time ¢ with a promised payoff X at a terminal time 7.
(Vi)i>o is assumed to be a F-adapted stochastic process which means its

value can be determined given the information available at time t. We have

V, < Ef (Xe_’"(t’T)(T_t) |,7-"t), (1)



where the right hand side is the present value of X. We have strict inequality
otherwise no one will be interested in taking a risky position by holding the
bond. (1) involves a conditional expectation under the probability measure
P which describes the infinitesimals shocks affecting the asset price V;. The
values of V; observed in the market will occur according to the probabilities

given by the law of P. For pricing purposes, it would be easier to have
o= B (e o5, o

where P is a measure equivalent to P. Such a measure exists under the
arbitrage-free condition. Arbitrage exist if an investor can guarantee a risk-
less return higher than the one given by the U.S. treasury by taking simul-
taneous positions in different assets. To get insight into the existence of an
equivalent measure, notice that one can change the expectation of a discrete

random variable > z; p;, by changing the probabilities p;.

For a risky bond, default occurs at a random time 7 which is modelled as
a stopping time, i.e. we can determine based on the available information at
time ¢ whether default has occured or not. In general bond holders do not
have all the available information so we let G; be a filtration which encodes
the information available to investors. In general it is known in advance what
will be the payoff if default were to occur. For example a fraction L of the
face value X will be lost. Let L be an JF;-adapted stochastic process which
models the recovery rate and let I;;- be the indicator function of the set

{T < 7}; The price V(¢,T) of a risky bond with terminal horizon 7" and
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payoff X is given by

V(t,T) = E” (X e TDTN (Lpery + (1 - Lr)f{Tzr})\gt> (3)

= EP (X er“’T)(T”Wt) - EP (X er“’T)(Tt)LTI{TzT}Wt)- (4)

The first term in the last equation is the price of a riskless zero-coupon bond
with maturity 7" and face value X.

Models differ in the way they model the recovery process, the timing of
default, i.e how default occurs and the choice of the filtration G;. In addition,
so far we have implicitly assumed constant interest rates. Interest rates do
change with time and the state of the economy. We would like to point out
that not all combinations have been published.

Recovery process [Jarrow,Lando & Turnbull’ 97] assume a constant reco-
very rate, L(t) = 1 — ¢ for all . [Duffie & Singleton’ 95] consider a situation
where the bond losses a fraction L, of its value at default. In [Jarrow &
Turnbull’ 98], on default the bond is replaced by 1 — L, riskless bonds with
the promised payout.

Timing of default Let (G;);>¢ be the filtration generated by the asset price
process V;. In structural approaches, the default time 7 is modelled as a
G;-stopping time, i.e. it is perfectly predictable. This is certainly unrealistic
in the short-run. Intensity based models, as mentioned, model the default
time as an unpredictable event. In that case 7 is certainly not measurable
with respect to G;. It is assumed to be measurable in a larger filtration. In

models which combine both approaches, the filtration is taken as the infor-



mation available to public investors in form for example of noisy accounting
reports (e.g. Enron), [Duffie & Lando’ 01]. It is of interest in these models
to determine if default can be predicted.

We recall that given a filtration (H;), a stopping time 7 is H-predictable if
there’s an increasing sequence of H-stopping time 7, such that 7, < 7 on
7 > 0 and lim 7, = 7. We say that 7, announces 7. A stopping time is

‘H-totally inaccessible if for any H-predictable stopping time S we have
PlweQ71(w) =5(w) < oo} =0.

An inaccessible event is the mathematical formulation of a completely un-
predictable event. An example of totally inacessible event is the first time
a Poisson Process jumps. The jump of a Poisson process is uded below to
model occurrence of default.

Models of interest rates The assumption of constant interest rates al-
though unrealistic is often encountered in the literature. Other models of
interest rates include a HJM framework e.g. [Jarrow & Turnbull’ 95] and a
Vasicek model e.g. [Jarrow & Turnbull’ 98]. HJM stands for Heath-Jarrow-
Morton (c.f [HIM’ 98]). They modelled the entire term structure as a state
variable providing conditions in a general framework that incorporates all
the principles of arbitrage-free pricing and discount bond dynamics. In a
Vasicek model, r(0) is taken as deterministic and r(¢) satisfies the stochastic

differential equation

d?"t =0 th + ﬁ(Too — Tt) dt,
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where W; is a standard Brownian motion and o, 3,7, are constants. This
process can take negative values so a Cox-Ingerson-Ross model should be
used, e.g. [Kim, Ramaswany, & Sundaresan’ 93]. In the later model, r(t)

satisfies the SDE

dry = — (o — 0) (5(t) — aa‘5 ) dt — o\/3(t) AW (2),

where o, 6,0 > 0 and o > 0.

3 Intensity based models

Using the Doob-Meyer decomposition, there exists an increasing G;-measurable
process A with Ay = 0 such that I;;<;; — A" is a martingale, where A] = Ax,

is the process A stopped at 7. If A is absolutely continuous with respect to

t
A, = / hyds,
0

for some non-negative process h = (hs)s>0, hs also called intensity of 7 can

the Lebesgue measure, i.e. if

be interpreted as a hazard rate, i.e. as the instanteneous rate of default:
hy = lim ~Plr € (¢ + h)|G]
P aen 7 ’ H
Under technical conditions, it can be shown that
P(r > t) = E[e” Joh ),
Differentiating this relation gives us an expression for the density of 7:

P(r € dt) = E[hye Jo v v,
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We illustrate these results in the case h; is identically constant in which
case 7 is modelled as the first time a Poisson process jumps. We then give
pricing formulas under these conditions with a constant recovery rate and a
fractional recovery rate. We finally apply this methodology to the case where
the firm credit ratings change.

Case of a Poisson Process: h, =\

We recall that a Poisson process (NV;);>o is a non-decreasing process with

right-continuous path with values in N such that:
[ ] NO = 0

o forany 0 < 51 < t; < 59 < ty... < s, < ty, the random variables
X; = N(t;) — N(s;) are independent and the distributions of each X;

depends only on the length t; — s;
e for allt > 0, N; — Ni- is either 0 or 1.

It can be shown that this definition uniquely determines a Poisson Process
up to a parameter A and that the increments X; have a Poisson distribution

with parameter \(¢; — s;) for s; < ¢;, i.e.

1
P(Ntz - Nsi = k) = E)\k(tz — Si)ke_)\(ti_si).

We let 7 be the first time the Poisson Process N jumps, [Jarrow & Turnbull’
95] so {7 > t} implies N; = 0. The occurence of default, state 1 is a disruption

from the firm original state 0. We have:
P({r>1t})=P(N;,— Ny =0) = e .
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This says that 7 is exponentially distributed with density f(t) = Ae™*. Now

Plre(tt+h)r>t) = L EGLEEh)

P(r>t)
f(t)h
s,

which implies that
1
lim —P =\
lim (re(t,t+h)r>t)=A

We now show that Ij;<;; — At is a martingale. The underlying filtration G;

is the filtration generated by N. We have

e N, — A\t is G;-measurable

o E(|Ny|) = E(Ny) = At since Ny — N is Poisson distributed with para-

meter \t. It follows that N; — At is integrable.

e By the independent increment assumption, N; — Ny is independent of

N, for any 0 < s <t, so
E(N; — N |Gg) = E(Ny — Ng) = E(Ny) — E(Ns) = At — As.
It follows that
E(N; — At|Gs) = E(Ns — As|Gs) = Ny — As.

Pricing formulas

We recall the expression (4) of the price of a risky bond
V(t, T) — Eﬁ (Xe—T'(t,T)(T—t) |gt> _ Eﬁ (Xe—”‘(t,T)(T—t) LTI{TZT} |gt)

= Vilt, )~ B (XL 16



We assume that L, = L is a constant. If 7 < ¢, then the price of the bond
is V(t,T) = (1= L)Vy(¢t,T), where Vy(t,T) is the price of the risk-free bond.

Now for 7 > ¢, there’s still posssibility of default so
. T s
V(t,T)=Vy(t,T) - E¥ (Xe_’"(t’T)(T_t) / L(hye™ J¢ b d“)ds|gt>,
t
using the density of 7. This simplifies under the assumption h, = X to
i T
V(t,T) = Vo(t,T) — LE¥ (Xer(t’T)(Tt) / )\e’\(St)\Qt>
t
=Vo(t,T) — LEF (Xer(t’T)(Tt)(—e’\(Tt) + 1)\gt>

= Vo(t,T) — L(—e 2T L 1)V (¢, T)

= (1= L+ LeT D)V (¢, 7).
We therefore write
V(t,T)=(1—L+Le "™ DI )Vo(t, T).

If 7 > t, the credit spread is simply given by

1
T —

1

log(L + (1 — L)eMT—9
T_tog( + ( )e ),

Vo(t, T)
7lo8l V(t,T) )=2-

which is seen to be a decreasing function of 1" — ¢.
We now drop the assumption of constant interest rate and constant hazard
rate and constant recovery rate. This situation is considered in [Duffie &
Singleton’ 95]; They found that the price of the bond at time ¢ < 7 is given
by

V(t,T) = B[Xe i stholo)ds|g ]
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where L, is the fraction lost at default.
We show here how this result may be obtained. If the fraction lost on

default were 1, the price would be for t < 7
E[Xe" I " Lrsy|G] = E[Xe~ I (rotho)ds |Gy

Another way to interpret this result is that it is the price of a bond if 0 is
received at default when the hazard rate is h;. To receive a fraction 1 — L of
the face value at default is equivalent from a pricing perspective to receive X
with probability 1 — L, and 0 with probability L,. The later situation may
be viewed as 0 recovery with hazard rate h;Ls; which gives the result above.
Models for credit ratings migrations:

The use of credit ratings transition matrices in credit risk modelling started
with the seminal work of Jarrow, Lando and Turnbull, [JLT’ 97]. [Kijima
& Komoribayashi’ 98] improved the estimation of risk premia in [JLT’ 97].
[Arvanitis, Gregory & Laurent’ 99] provide a framework in which changes in
ratings have memory. In the extension of [Das & Tufano’ 96|, the price of a
risky bond does not depend only on the credit class.

The main objections to this model that remain are that there’s no strong
evidence that credit ratings transitions are Markovian. On the other hand
it’s hard to estimate the transition probabilities. The later problem has been
adressed in [Israel, Rosenthal & Wei’ 01]. We now describe the JLT model
following [Kijima & Komoribayashi’ 98|.

JLT model: Let X; represent the credit rating at time ¢ of a bond issued

by a firm. (X;);>o is assumed to be a time-homogeneous Markov chain on
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the state space M = {1,2,... K, K+ 1}, where state 1 represents the highest
credit class, state K the lowest and state K+1 is default. For simplicity, state
K+1 is assumed to be absorbing. Let @ = (¢;;), i, = 1... K + 1 be the

transition matrix of X, where
Qij:P(Xt—kl:j‘Xt:i)a Z,] EM, t:0,1,2,...,
and P is the real word measure. Since state K41 is absorbing

dK+1,K+1 = la 9K +1,j = Oa .7 = 15 .- ',K

For pricing purposes, we consider the corresponding Markov process X =
{X,,t=0,1,2,...} of credit rating under the risk-neutral probability P. X

needs not be Markovian and its transition probabilities are written
Gij = P(Xee1 = j|Xe =4), 4, €M, t=0,1,2,...

We denote by r(t) the default-free spot interest rate under P and assume
that the recovery rate § is constant. Vi(¢,7T) still denotes the price of the
default free bond and Vj(¢,T) is the price of a bond in credit class j, j # 0.
We also assume that X and r(t) are independent. This assumption is relaxed
in the extension of [Lando’ 98]. The probability of default given that the firm

is in the credit class j is ¢ x+1. The price of a risky bond is

T
Vi(t,T) = Ele™ e "8I oy + 6117 <1y) | X 75 > £
= E[e_ ftTr(s)dS|Xt, Tj > t]E[I{Tj>T} + 5I{Tj§T}|Xt; Tj > t)}

=Vo(t,T)(6 + (1 = ) P(7j > T| Xy, 7; > t)).
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In general

dij = Tij 4ij, 4, J € M,
where the 7;; are the risk premium adjustments. In the JLT model, it is
assumed that m;;(t) = m;(t) for j # ¢. This leads to negative values of

7;(0) when ¢; k41 is sufficient small so Kijima and Komoribayashi assume

4 Structural models

The hazard rate models described in the previous section model the default as
a completely unpredictable event. Default in reality is related to a financial
data which may be related to traded data. From that point of view, it’s
certainly not completely unpredictable. However since the hazard rate is
introduced ad hoc, it’s always possible to calibrate it to fit economic data.

The structural models we describe in this section rely on the dynamics
of the firm’s assets. In these models, investors can observe the firm’s assets
and hence will not be surprised by default. Merton’s model (cf. [Merton’
74]) is discussed below. To avoid this situation, attempts have been made to
include jumps in the firm’s financial assets value (cf. [Zhou’ 97]). We'll show
that with this model, default is still a predictable event. For a discussion
of pros and cons of hazard rate and structural models, we refer to [Duffie &
Singleton’ 95|, [Duffie & Singleton’ 95| and the review papers of [Cooper &
Martin’ 96] and [Lando’ 97].
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Several stochastic differential equations are used in the literature to de-

scribe a firm’s assets. [Merton’ 74] used a log Brownian motion

dV,
7; = odW, + rdt,

with constant interest rate r and constant volatility o. [Leland & Toft’ 96|
used
dV;

775 = O'th + (7' — 5)dt,

where 7 is the interest rate, o a positive constant and § the constant rate of
dividends payed to shareholders. Another structural approach is the one of

[Kim, Ramaswany, & Sundaresan’ 93]. They used

ave _ odW; + (o — y)dt,
Vi

for constants, o, « and . We discuss Merton’s model.

The Merton model:

We assume that the firm is financed by equity and bonds and is not allowed
to pay dividends nor issue new debt equal or higher. Therefore at maturity
the bondholders receive min{Vy, K} = K—max(0, K — V) where K is the
amount of debt. We let G, = o(V;, s < t). The price of the risky bond at

time t < T is
V(t,T) = Ele ™ (K —max(0, K — V7))|G)] = Ke ™" — P(t,V}, K),

where P(t,V;, K) is the value of a put option with strike price K and maturity

T. The value of a call option C(t, V;, K) with the same characteristics is given
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by Black-Scholes call option formula
C(t, Vs, K) = N(dy)V; — N(dg)Ke "9,

where N is the cumulative normal distribution, V; the value of the bond at

time ¢ and

K —r(T—t)
d; = logw/i\/eTTIf ) +oVT —t/2, and dy =d; — oVT — 1.

We next use the call-put parity:

C(t, Vs, K) — P(t,Vi, K) =V, — Ke "),
SO
V(t,T) = (1= N(d))Vs + N(dp)Ke "
= N(—d1)V; + N(dy)Ke "1,

The credit spread is simply given by

1
Tt

1
(log (Ke—r(T—t)) —log V(t,T)) = T3 (log (Ke—r(T—t))_

log(Ke’(Tt)(éN(—dl) + N(d2))) )

where d = V;/Ke "™t We see that the credit spread is

—log(N (~h) + N(dy)]

A jump diffusion model:
In an attempt to simulate the possibility of default at maturity, [Zhou’ 97]
considered the following SDE

% = (4= \o)dt + odW, + (IT = 1)V,
t
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where u, A\,v and o are constants, Y is a Poisson process with intensity A;
IT > 0 is the jump amplitude with expected value equal tov+1. W, Y and II
are independent and II is a i.i.d log-normal random variable such that In(II)
has distribution N(p,,02). The default time is set as 7 =inf{¢,V; < Vg}.
If we let, 7, =inf{t,V; < Vg + %}, there’s a positive probability that 7,

converges to 7, since 7 can cross the default boundary Vg via a continous

crossing. Unless changes in V; consist only of jumps, 7 is totally inaccessible.

5 Integrating both approaches

The managers certainly know when default is imminent so the structural
approach describes well how they view default. From the investors point
of view, default comes by surprise so an intensity based approach should be
used to describe how they experience default. [Duffie & Lando’ 01] linked the
two approaches by considering that investors receive noisy accounting reports
Y, = Vi, + Uy, at discrete times ¢4,k = 1,...n, U, being an independent
noise random variable. [Kusuoka’ 99] extends the work of Duffie and Lando
to continuous time using continuous time filtering theory. More recently,
[Cetin, Jarrow, Protter & and Yildirim’ 02] have taken a different approach:

They considered that bond investors have just less information.
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6 Conclusion

There are other models which do not fit in the previous frameworks. In his
manuscript, L.C. Rogers mention the works of [Hull & White’ 95|, [Beume,
Hilberink, & Vellekoop’ 98] and [Wong’ 98]. The current research directions
seem to be more complicated structural models with incomplete information
or information reduction. Perhaps in these frameworks, one should consider
the correlation of default of different firms, consider proportional losses at
default and the pricing of convertible bonds. A path which seems not to have

been taken is to use filtering theory for modelling credit ratings migrations.
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