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Abstract To a mesh function we associate the natural analogue of the Monge-
Ampère measure. The latter is shown to be equivalent to the Monge-Ampère mea-
sure of the convex envelope. We prove that the uniform convergence to a bounded
convex function of mesh functions implies the uniform convergence on compact
subsets of their convex envelopes and hence the weak convergence of the associa-
ted Monge-Ampère measures. We also give conditions for mesh functions to have
a subsequence which converges uniformly to a convex function. Our result can be
used to give alternate proofs of the convergence of some discretizations for the
second boundary value problem for the Monge-Ampère equation and was used
for a recently proposed discretization of the latter. For mesh functions which are
uniformly bounded and satisfy a convexity condition at the discrete level, we show
that there is a subsequence which converges uniformly on compact subsets to a
convex function. The convex envelopes of the mesh functions of the subsequence
also converge uniformly on compact subsets. If in addition they agree with a con-
tinuous convex function on the boundary, the limit function is shown to satisfy
the boundary condition strongly.
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1 Introduction

Let Ω be a nonempty bounded convex domain of Rd with boundary ∂Ω and let
u be a convex function on Ω. For a locally integrable function R on Rd such that
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R > 0 on the image of Ω by the subdifferential of u, one associates, through the
normal mapping, the R-curvature ω(R, u, .) of the convex function u as a Borel
measure. We define the analogous measures ω(R, uh, .) for mesh functions uh.
We show that this notion of Monge-Ampère measure coincides with the Monge-
Ampère measure of the convex envelope Γ (uh) of the mesh function uh. We give
in Theorem 7, conditions under which the uniform convergence of mesh functions
implies the weak convergence of the associated Monge-Ampère measures. Theorem
7 is key to the proof of convergence of a recently proposed discretization for the
second boundary value problem for the Monge-Ampère equation [3]. It can also
be used, in the case R ≡ 1, to give an alternate proof for the convergence of the
discretization proposed by Benamou and Duval in [7]. The method used in [7]
does not seem to apply to the discretization we proposed in [3]. We study the
compactness of uniformly bounded discrete convex mesh functions c.f. Definition
4 below. When such mesh functions interpolate boundary values of a continuous
convex function, we prove that a uniform limit function satisfies the boundary
condition strongly. This result was used in [2] to give a proof of convergence for a
discretization, proposed by Benamou and Froese in [8], for the Dirichlet problem
for a Monge-Ampère equation with right hand side a sum of Dirac masses.

Our study is motivated by certain discretizations of the Monge-Ampère equa-
tion [2,3]: find a convex function u on Ω such that

ω(1, u, E) = µ(E), (1)

for all Borels sets E ⊂ Ω and with appropriate boundary conditions. In (1), R ≡ 1
and µ is a finite Borel measure. For illustration, let us assume that µ is absolutely
continuous with density f ≥ 0 and f ∈ C(Ω). In general a discretization of (1)
takes the form

M1
h[uh](x) = f(x), (2)

for a discrete Monge-Ampère operator M1
h, mesh points x and an approximate

mesh function uh which is discrete convex. It is then natural to consider the set
function

M1
h[uh](E) =

∑
x∈E

M1
h[uh](x),

for a Borel set E. An approach for convergence is to determine a subsequence
uhk such that M1

hk(uhk)(E) converges to ω(1, u, E) for all Borel sets E with

ω(1, u, ∂E) = 0. However, the set function M1
h[uh] may not define a Borel measure

and this makes such a weak convergence not straightforward. When ω(1, uh, E) ≤
M1
h[uh](E) for all Borel sets E, a step in proving the convergence of the dis-

cretization is to obtain a convergent subsequence for which ω(1, uhk , E) converges
to ω(1, u, E) for all Borel sets E with ω(1, u, ∂E) = 0.

We give conditions on the mesh functions uh such that there is a subsequence
uhk for which Γ (uhk) converges uniformly on compact subsets to a convex function
v. This implies, c.f. Theorem 2 below, that ω(1, Γ (uhk), .) = ω(1, uhk , .) weakly
converges to ω(1, v, .). We prove that the subsequence Γ (uhk) has a further subse-
quence also denoted Γ (uhk) for which uhk converges uniformly to v on on compact
subsets of Ω.

The paper is organized as follows. In the next section we collect some notation
used throughout the paper, recall the notion of R-Monge-Ampère measure and
introduce our discrete analogue. In section 3, we present the connection with the
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Monge-Ampère measure of the convex envelope. This leads to weak convergence
results for our discretization of the normal mapping. In section 4 we discuss the
interplay between the uniform convergence of mesh functions and the uniform con-
vergence of their convex envelopes. Compactness of mesh functions is discussed in
section 5. The treatment of Dirichlet boundary values is reduced to the conver-
gence of a finite difference scheme to the viscosity solution of the Laplace equation
on a bounded Lipschitz domain. This requires a delicate treatment of barriers done
in a recent work [10] which we review in an appendix for the convenience of the
reader.

2 Preliminaries

For x ∈ Rd and S ⊂ Rd we denote by d(x, S) the distance of x to S, by diam(S)
the diameter of S and by d(x, ∂Ω) the distance of x to ∂Ω. For x ∈ Rd, ||x||
denotes the Euclidean norm of x. For a differentiable function v at x ∈ Rd, we
denote by Dv(x) its gradient at x.

Let h be a small positive parameter and let

Zdh = {mh,m ∈ Zd },

denote the orthogonal lattice with mesh length h. Let also (r1, . . . , rd) denote the
canonical basis of Rd. We define

Ωh = Ω ∩ Zdh.

For a function u ∈ C(Ω) its restriction on Ωh is also denoted u by an abuse of
notation. For x ∈ Ωh and e ∈ Zd let

hex = sup{ rh, r ∈ [0, 1] and x+ rhe ∈ Ω }.

Next, let V ⊂ Zd such that { r1, . . . , rd } ⊂ V and such that for e ∈ V , −e ∈ V .
Furthermore, we assume that for each e ∈ V , one can find a basis { e1, . . . , ed } of
Zd such that e1 = e. We define

∂Ωh = {x ∈ ∂Ω,∃y ∈ Ωh and e ∈ V such that x = y + heye }. (3)

For the convergence study in this paper, we want V → Zd. Thus, later we will
simply choose V = Zd. As in [21,19] we denote by Nh the set of nodes, i.e.
Nh = Ωh∪∂Ωh. Let Conv(S) denote the convex hull of the set S. Since Ω is convex
and V contains the elements of the canonical basis of Rd, Nh∩∂ Conv(Nh) = ∂Ωh.

We let Uh denote the linear space of mesh functions, i.e. real-valued functions
defined on Nh.

2.1 R-curvature of convex functions

The material in this subsection is mostly taken from [4,13] to which we refer for
proofs. Let Ω be an open subset of Rd and let us denote by P(Rd) the set of
subsets of Rd.
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Definition 1 Let u : Ω → R. The normal mapping of u, or subdifferential of u is
the set-valued mapping ∂u : Ω → P(Rd) defined by

∂u(x0) = { p ∈ Rd : u(x) ≥ u(x0) + p · (x− x0), for all x ∈ Ω }. (4)

Let |E| denote the Lebesgue measure of the measurable subset E ⊂ Ω. For E ⊂ Ω,
we define

∂u(E) = ∪x∈E∂u(x).

Theorem 1 ([13] Theorem 1.1.13) If u is continuous on Ω, the class

S = {E ⊂ Ω, ∂u(E) is Lebesgue measurable },

is a Borel σ-algebra.

LetR be a locally integrable function on Rd such thatR > 0 on ∂u(Ω). Without
loss of generality, we will assume that R = 0 on Rd \ ∂u(Ω). The R-curvature of
the convex function u is defined as the set function

ω(R, u,E) =

∫
∂u(E)

R(p) dp,

and can be shown to be a Radon measure on S [13, Theorem 1.1.13]. The set
function ω(R, u, .) is also referred to as the R-Monge-Ampère measure associated
with the convex function u.

Definition 2 A sequence µn of Borel measures converges to a Borel measure µ if
and only if µn(B)→ µ(B) for any Borel set B ⊂ Ω with µ(∂B) = 0.

We note that there are several equivalent definitions of weak convergence of
measures which can be found for example in [11, Theorem 1, section 1.9]. It is
known that the uniform limit of convex functions is convex. We have [4, Theorem
9.1]

Theorem 2 Let un be a sequence of convex functions on Ω such that un con-
verges to u uniformly on compact subsets of Ω, then ω(R, un, .) weakly converges
to ω(R, u, .).

We will make use of the following observation

Lemma 1 Let µ be a Borel measure and Hi, i = 1 . . . , N be a sequence of Borel
sets with pairwise intersection of µ-measure zero. Then µ(∪Ni=1Hi) =

∑N
i=1 µ(Hi).

Proof We have ∪Ni=1Hi = H1 ∪ (H2 \H1) ∪ (H3 \ (H2 ∪H1)) ∪ . . . , with the sets
on the right hand side disjoints. Moreover

Hj = [Hj ∩ (Hj−1 ∪Hj−2 ∪ . . . ∪H1)] ∪ [Hj \ (Hj−1 ∪Hj−2 ∪ . . . ∪H1)].

But µ(Hj ∩ (Hj−1∪Hj−2∪ . . .∪H1) ≤ µ
(
∪j−1
k=1Hj ∩Hk

)
≤
∑j−1
k=1 µ(Hj ∩Hk) = 0

and hence
µ(Hj) = µ(Hj \ (Hj−1 ∪Hj−2 ∪ . . . ∪H1).

This implies that µ(∪Ni=1Hi) =
∑N
i=1 µ(Hi).
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It will be convenient to consider an extension to Rd of a convex function on Ω
with the same subdifferential when ∂u(Ω) is convex. The construction is standard
and can be found for example on [9, section 2]. If u is a convex function on Ω, we
extend u to Rd using

ũ(x) = sup{u(y) + q · (x− y), y ∈ Ω, q ∈ ∂u(y) }. (5)

We denote by χu the subdifferential of the extended function on Rd.
A convex function v on Rd is said to be proper if v(x0) <∞ for some x0 ∈ Rd

and v(x) > −∞ for all x ∈ Rd. We will often use the following lemma [1, Corollary
6.10] and [1, Theorem 9.9]

Lemma 2 A proper convex function v which is bounded above on Ω is continuous
on Ω. Moreover for all x ∈ Ω, ∂v(x) 6= ∅.

Lemma 3 The extension ũ of the convex function u on Ω defined by (5) is convex
on Rd and for all x ∈ Ω, ∂u(x) = χu(x). If u is a proper convex function bounded
on Ω with ∂u(Ω) bounded, then ũ is continuous on Rd. For u ∈ C(Ω) convex, we
have ũ = u on Ω.

Proof Note that ũ is convex as a supremum of convex functions and ũ = u on Ω
since for x, y ∈ Ω and q ∈ ∂u(y), u(x) ≥ u(y) + q · (y − x) with equality at x = y.

Next, for x ∈ Ω, since ũ = u on Ω, we immediately get χu(x) ⊂ ∂u(x). Let
p ∈ ∂u(x0), x0 ∈ Ω. we have by definition of ũ, ũ(x) ≥ u(x0) + p · (x − x0) =
ũ(x0) + p · (x− x0) for all x ∈ Rd. Thus ∂u(x0) ⊂ χu(x0). This proves that for all
x ∈ Ω, ∂u(x) = χu(x).

Let x ∈ Rd and U a bounded open set such that x ∈ U . Put L(x) = u(y) + q ·
(x − y) for y ∈ Ω and q ∈ ∂u(y). If u is bounded on Ω with ∂u(Ω) bounded, L
is bounded from below on U and so is ũ. Since ũ is an extension of u, ũ(x0) <∞
for some x0 ∈ Ω. This implies that ũ is a proper convex function. We conclude by
Lemma 2 that for u proper, convex and bounded on Ω, ũ is continuous on Rd.

If u ∈ C(Ω) is convex, it is proper, convex and bounded on Ω. Thus ũ = u on
Ω since ũ is continuous on Rd.

Lemma 4 Let u be a proper bounded convex function on Ω. Assume that Ω∗ =
∂u(Ω) is bounded. Then Ω∗ ⊂ χu(Ω) ⊂ χu(Rd) ⊂ Conv(Ω∗).

Proof We have by Lemma 3, χu(Ω) = ∂u(Ω) = Ω∗ ⊂ Ω∗. Next, for x ∈ Rd \ Ω,
we have

ũ(x) = lim
n→∞

u(yn) + qn · (x− yn) = lim
n→∞

ũ(yn) + qn · (x− yn),

for yn ∈ Ω and qn ∈ ∂u(yn) = χu(yn). Since ∂u(Ω) is bounded, both yn and qn
are bounded sequences. Up to a subsequence yn → y and qn → q for some y ∈ Ω
and q ∈ Ω∗. It is immediate that q ∈ χu(y). By Lemma 3, ũ is continuous on Rd.
Therefore for x ∈ Rd

ũ(x) = max{ ũ(y) + q · (x− y), y ∈ Ω, q ∈ χu(y) ∩Ω∗ }.

We claim that at any point x where ũ is differentiable, Dũ(x) ∈ Ω∗. Let y ∈ Ω and
q ∈ χu(y) ∩Ω∗ such that ũ(x) = ũ(y) + q · (x− y). It is enough to show that q ∈
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χu(x), which implies by the differentiability of ũ at x, χu(x) = { q } = {Dũ(x) }.
For all z ∈ Rd, we have

ũ(z) ≥ ũ(y) + q · (z − y) = ũ(x)− q · (x− y) + q · (z − y) = ũ(x) + q · (z − x).

The claim is proved.
Note that the domain of ũ is Rd and the normal cone to Rd at x, i.e. { p ∈

Rd, p · (x − y) ≤ 0,∀y ∈ Rd } = { 0 }. Also, ũ is lower semicontinuous as the
supremum of a family of continuous functions. It is therefore a closed function, i.e.
its epigraph { (x,w) ∈ Rd, ũ(x) ≤ w } is closed. By [23, Theorem 25.6], for x ∈ Rd,
χu(x) is the closure of the convex hull of the set S(x) of limits of sequences of the
form Dũ(xk), xk → x and ũ differentiable at xk. The theorem is stated in terms
of the sum of S(x) and the normal cone to the domain of ũ at x.

We have shown that S(x) ⊂ Ω∗. Thus χu(x) = ConvS(x) ⊂ Conv(Ω∗) =
Conv(Ω∗) where we use the fact that the convex hull of a compact subset of Rd
is closed. We conclude that χu(Rd) ⊂ Conv(Ω∗).

Next, we show that Ω∗ ⊂ χu(Ω). Let p ∈ Ω∗ and pn ∈ Ω∗ such that pn → p.
Furthermore, let xn ∈ Ω such that pn ∈ ∂u(xn) = χu(xn). We have for all z ∈ Rd
ũ(z) ≥ ũ(xn) + pn · (z − xn). Up to a subsequence xn → x, x ∈ Ω and we have
p ∈ χu(x), using the continuity of ũ. We conclude that

Ω∗ ⊂ χu(Ω) ⊂ χu(Rd) ⊂ Conv(Ω∗).

2.2 Convex envelopes

For a function u : Ω → R, recall that the convex envelope Γ (u) of u is the largest
convex function majorized on Ω by u. If we assume that u(x) ≥ C for all x ∈ Ω
for a constant C, then Γ (u) ≥ C and thus Γ (u) is a proper convex function on Ω.
It can be shown that for all x ∈ Ω

Γ (u)(x) = sup
L affine

{L(x) : L(y) ≤ u(y) ∀y ∈ Ω },

using supporting hyperplanes L(y) = v(x) + p · (y − x) for p ∈ ∂Γ (u)(x), x ∈ Ω.
As in [21,19] we consider the convex envelope of the mesh function uh defined

by

Γ (uh)(x) = sup
L affine

{L(x) : L(y) ≤ uh(y) for all y ∈ Nh }. (6)

Without loss of generality we may assume that Ωh is non empty. Thus for x0 ∈ Ωh
we have Γ (uh)(x0) ≤ uh(x0). Since Ωh is finite, we can find α ∈ R such that
α ≤ uh(x) ∀x ∈ Ωh. Thus Γ (uh)(x) ≥ α ∀x ∈ Rd. As the supremum of convex
functions, Γ (uh) is convex on Rd. We conclude that Γ (uh) is a proper convex
function. We have

Γ (uh)(x) ≤ uh(x) ∀x ∈ Nh. (7)

If x ∈ Conv(Nh), we can write x =
∑N
i=1 λiyi with yi ∈ Nh and λi ∈ [0, 1] for all i

and an integer N . We then have Γ (uh)(x) ≤
∑N
i=1 λiΓ (uh)(yi) ≤

∑N
i=1 λiuh(yi).
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A D

B C

Fig. 1 Convex envelope of the points A(−1.5, 1), B(−1, 0), C(1, 0) and D(1.5, 1) as a piecewise
linear convex function on [−1.5, 1.5]. The canonical extension as a piecewise linear convex
function on R is shown. Without the extension, the convex envelope is infinite on R\[−1.5, 1.5].

This shows that Γ (uh) is bounded on Conv(Nh). Note that the definition (6) of
the convex envelope allows an ”infinite slope” at points of Rd not in Conv(Nh).

We will denote by Γ̃ (uh) the extension to Rd of Γh(u) with the procedure
described by (5). See Figure 1.

As a proper bounded convex function on Conv(Nh), Γ (uh) is continuous on the
interior of Conv(Nh) by Lemma 2. Now, recall that Conv(Nh) is polyhedral. By
[23, Theorem 10.2], Γ (uh) is upper semicontinuous at any point of ∂ Conv(Nh). As
a supremum of affine functions, Γ (uh) is lower semicontinuous on Conv(Nh). We

conclude that Γ (uh) is continuous and by Lemma 3 Γ (uh) = Γ̃ (uh) on Conv(Nh).

Lemma 5 For a mesh function uh such that uh = g on ∂Ωh for a convex function
g on Rd, we have Γ (uh) = uh on ∂Ωh.

Proof Recall that a face F of a convex set C is such that if x ∈ F and y, z ∈ C
such that x = λy + (1− λ)z, 0 < λ < 1, we have y, z ∈ F .

Let x ∈ ∂Ωh and F a face of Conv(Nh) such that x ∈ F . By [24, Theorem 1],
F = Conv(B) for B ⊂ ∂Ωh. Let Γ (uh|B) denote the convex envelope of uh over
B, i.e. the largest convex function majorized by uh = g on B. Since g is convex
on Rd, we have Γ (uh|B) = g on B. By [24, Corollary 2], the restriction of Γ (uh)
to F is equal to Γ (uh|B). This proves that Γ (uh) = uh = g on ∂Ωh.

We will also need the discrete convex envelope Γh(u) of a function u on Ω, i.e.
for x ∈ Ω

Γh(u)(x) = sup
L affine

{L(x) : L(y) ≤ u(y) ∀y ∈ Nh }. (8)

In other words, Γh(u)(x) is the convex envelope of the restriction to Nh of the
function u. We reserve the notation Γ (u) for the convex envelope of a function u
on Ω.

Theorem 3 Let u be a function on Ω which is convex on Ω. Then

u(y) = Γ (u)(y) = Γh(u)(y), y ∈ Nh.
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Proof By definition Γh(u)(y) ≤ u(y), y ∈ Nh. Note that, a priori, this inequality
does not necessarily hold on Ω. If L is affine with L(y) ≤ u(y) for all y ∈ Ω, we
also have L(y) ≤ u(y) for all y ∈ Nh. Thus Γ (u)(x) ≤ Γh(u)(x) for all x ∈ Nh.
But since u is convex on Ω, Γ (u)(x) = u(x) for all x ∈ Ω. Thus for all y ∈ Nh,
u(y) = Γ (u)(y) ≤ Γh(u)(y) ≤ u(y). This proves the result.

2.3 Discrete normal mapping and convexity

For a mesh function uh ∈ Uh, the discrete normal mapping of uh at the point
x ∈ Ωh is defined as

∂huh(x) = { p ∈ Rd, uh(y) ≥ uh(x) + p · (y − x)∀y ∈ Nh }.

We note that ∂huh(x) may be empty. As in [18], for e ∈ Zd, vh ∈ Uh and x ∈ Ωh
we define

∆euh(x) =
2

hex + h−ex

(
uh(x+ hexe)− uh(x)

hex
+
uh(x− h−ex e)− uh(x)

h−ex

)
. (9)

Recall that the set of directions V used in the next definition was used for the
definition of ∂Ωh.

Definition 3 We say that a mesh function uh is discrete convex if and only if
∆euh(x) ≥ 0 for all x ∈ Ωh and e ∈ V ⊂ Zd.

The above definition is motivated by discretizations of the Monge-Ampère
operator for smooth convex functions, i.e. ω(1, u, E) =

∫
E

detD2u(x) dx. Here

detD2u(x) is the determinant of D2u(x) =

(
∂2u(x)/∂xi∂xj

)
i,j=1,...,d

, x =

(x1, . . . , xd). For the discretization proposed in [12] the discrete Monge-Ampère
operator is taken as

Mh[uh](x) = inf
(e1,...,ed)∈W

d∏
i=1

max{∆eiuh(x), 0 }
||ei||2

, x ∈ Ωh,

where

W = { (e1, . . . , ed), ei ∈ Zd, i = 1, . . . , d, (e1, . . . , ed) is an orthogonal basis ofRd }.

If x ∈ Ωh, f(x) > 0 and Mh[uh](x) = f(x), it is necessary to have ∆eiuh(x) > 0
for all i with (e1, . . . , ed) ∈W .

One may also define discrete convexity by requiring that ∂huh(x) 6= ∅ for
all x ∈ Ωh. For p ∈ ∂huh(x), we have (uh(x) − uh(x − h−ex e))/h−ex ≤ p · e ≤
(uh(x+hexe)−uh(x))/hex. This implies that∆euh(x) ≥ 0. However, a mesh function
may satisfy ∂huh(x) = ∅ with ∆euh(x) ≥ 0 for all e ∈ Zd.
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3 Monge-Ampère measures for mesh functions

In this section we relate the discrete normal mapping of a mesh function to the
normal mapping of its convex envelope. Recall that for x ∈ Rd, χu(x) denotes the

subdifferential of the extension of the convex function u. Also, Γ̃ (uh) denotes the
convex extension of Γ (uh).

Lemma 6 If x ∈ Conv(Nh), for p ∈ χΓ (uh)(x) there exists y ∈ Nh such that
p ∈ χΓ (uh)(x) ∩ χΓ (uh)(y) and uh(y) = Γ (uh)(y).

Proof Recall that Γ (uh) = Γ̃ (uh) on Conv(Nh). Since p ∈ χΓ (uh)(x), using (7)
and with

L1(y) = Γ̃ (uh)(x) + p · (y − x),

we have
uh(y) ≥ Γ (uh)(y) = Γ̃ (uh)(y) ≥ L1(y), ∀y ∈ Nh.

Define
a = min{uh(y)− L1(y), y ∈ Nh }.

We have a ≥ 0. Assume that a > 0 and consider the linear function

L2(z) =
a

2
+ Γ̃ (uh)(x) + p · (z − x).

We claim that uh ≥ L2 on Nh but L2(x) = a/2+ Γ̃ (uh)(x) > Γ̃ (uh)(x). This gives

a contradiction since we should have Γ̃ (uh)(x) = Γ (uh)(x) ≥ L2(x). We have

uh(y)− L1(y) ≥ a, ∀y ∈ Nh,

and thus

uh(y) ≥ a+ Γ̃ (uh)(x) + p · (y − x)

≥ a

2
+ Γ̃ (uh)(x) + p · (y − x) = L2(y).

We conclude that a = 0 and there exists y0 ∈ Nh such that a = uh(y0)−L1(y0) =
0. Note that this implies that uh(y0) = Γ (uh)(y0), that is

uh(y0)− L1(y0) = Γ (uh)(y0)− L1(y0) = 0. (10)

We now show that p ∈ χΓ (uh)(y0). Let z ∈ Rd. We have using (10) and p ∈
χΓ (uh)(x)

Γ (uh)(y0) + p · (z − y0) = Γ (uh)(y0) + p · (z − x) + p · (x− y0)

= Γ (uh)(y0) + Γ (uh)(x) + p · (z − x)

− Γ (uh)(x)− p · (y0 − x)

= Γ (uh)(y0) + L1(z)− L1(y0) = L1(z) ≤ Γ̃ (uh)(z),

which shows that p ∈ χΓ (uh)(y0).

Lemma 7 Let uh ∈ Uh
1. If for x ∈ Ωh, Γ (uh)(x) = uh(x), then ∂Γ (uh)(x) = ∂huh(x)
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2. If x ∈ Ωh and Γ (uh)(x) 6= uh(x), then ∂huh(x) = ∅ and for any p ∈ χΓ (uh)(x)
there exists y ∈ Nh, y 6= x such that p ∈ χΓ (uh)(x) ∩ χΓ (uh)(y)

3. If x ∈ (Conv(Nh))◦ but x /∈ Zdh, then for p ∈ χΓ (uh)(x) there exists y ∈ Nh, y 6=
x such that p ∈ χΓ (uh)(x) ∩ χΓ (uh)(y).

Proof We start with the proof of the first statement. Assume that x ∈ Ωh and
Γ (uh)(x) = uh(x).
Let p ∈ ∂huh(x). We have uh(y) ≥ uh(x) + p · (y−x)∀y ∈ Nh. Consider the affine
function L(z) = uh(x) + p · (z−x). Since L(y) ≤ uh(y) for all y ∈ Nh, we have for
all z ∈ Conv(Nh)

Γ (uh)(z) ≥ L(z) = uh(x) + p · (z − x) = Γ (uh)(x) + p · (z − x),

i.e. p ∈ ∂Γ (uh)(x). Thus ∂huh(x) ⊂ ∂Γ (uh)(x).
Conversely, if p ∈ ∂Γ (uh)(x), as Γ (uh) is continuous on Conv(Nh), we have for
all y ∈ Nh, Γ (uh)(y) ≥ uh(x) + p · (y − x). By (7), this gives p ∈ ∂huh(x) and
completes the proof of the first claim.

Next, we prove the second statement. We first show that if x ∈ Ωh and
∂huh(x) 6= ∅, then Γ (uh)(x) = uh(x).
Let p ∈ ∂huh(x). Since uh(y) ≥ L(y) = uh(x)+p · (y−x) for all y ∈ Nh, we obtain
Γ (uh)(x) ≥ L(x) = uh(x) which by (7) gives Γ (uh)(x) = uh(x).
To conclude the proof of the second statement, assume that x ∈ Ωh and Γ (uh)(x) 6=
uh(x). By Lemma 6 there exists y ∈ Nh such that p ∈ χΓ (uh)(x) ∩ χΓ (uh)(y) and
uh(y) = Γ (uh)(y). Thus y 6= x since Γ (uh)(x) 6= uh(x).

Finally the third statement follows from Lemma 6 since for x ∈ (Conv(Nh))◦

and x /∈ Zdh we have x /∈ Nh.

Remark 1 If we define a mesh function uh to be nodal convex at x ∈ Ωh when
∂huh(x) 6= ∅, then for a nodal convex mesh function at x ∈ Ωh, we have Γ (uh)(x) =
uh(x) by Lemma 7 (2). It is also proven in [21, Lemma 2.1] that for a mesh function
uh which is nodal convex at all x ∈ Ωh, ∂Γ (uh)(x) = ∂huh(x) for all x ∈ Ωh.

For a subset E ⊂ Ω, we define

∂huh(E) = ∪x∈E∩Zdh∂huh(x),

and define the discrete R-curvature of uh as the set function

ω(R, uh, E) =

∫
∂huh(E)

R(p) dp.

Theorem 4 We have for uh ∈ Uh and a subset E ⊂ (Conv(Nh))◦ ⊂ Ω, ∂huh(E) =
∂Γ (uh)(E) up to a set of measure 0 and thus

ω(R, uh, E) = ω(R,Γ (uh), E).

Proof It is enough to show that for E ⊂ (Conv(Nh))◦ ⊂ Ω, up to a set of measure
0, we have ∂huh(E) = ∂Γ (uh)(E). By Lemma 7, for x ∈ Ωh, either ∂huh(x) is
empty or ∂huh(x) = ∂Γ (uh)(x). Thus ∂huh(E) ⊂ χΓ (uh)(E).

For the reverse inclusion, let x ∈ E. If x ∈ Ωh and Γ (uh)(x) = uh(x), by
Lemma 7, ∂Γ (uh)(x) = ∂huh(x) ⊂ ∂huh(E). If x ∈ Ωh and Γ (uh)(x) 6= uh(x) or
x ∈ (Conv(Nh))◦ \Ωh, by Lemma 7

∂Γ (uh)(x) ⊂ { p ∈ Rd, p ∈ χΓ (uh)(y) ∩ χΓ (uh)(z), y, z ∈ Conv(Nh), y 6= z }.
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By Lemma [13, 1.1.12] (applied on a bounded domain Ω̃ such that Ω ⊂ U ⊂ Ω̃
for an open set U), the set on the right of the above inclusion is contained in a set
of measure 0. This completes the proof.

As in [21], we define the contact set of the mesh function uh as

C−h (uh) = {x ∈ Ωh, Γ (uh)(x) = uh(x) }.

By Theorem 4, ∪x∈Ωh∂huh(x) = ∪x∈C−
h (uh)∂Γ (uh)(x) up to a set of measure

0. By Lemma [13, 1.1.12] we have for x 6= y, |∂Γ (uh)(x)∩ ∂Γ (uh)(y)| = 0. It thus
follows from Lemma 1 that ω(1, uh, Ωh) =

∑
x∈C−

h (uh) |∂Γ (uh)(x)| and thus by

Lemma 7

ω(1, uh, Ωh) =
∑

x∈C−
h (uh)

|∂Γ (uh)(x)| =
∑

x∈C−
h (uh)

|∂huh(x)| =
∑
x∈Ωh

|∂huh(x)|.

(11)
The discrete Aleksandrov-Bakelman-Pucci maximum principle [20] can be stated

as follows.

Lemma 8 Let uh ∈ Uh such that uh ≥ 0 on ∂Ωh. Then for x ∈ Ωh

uh(x) ≥ −C(d)

[
diam(Ω)d−1d(x, ∂Ω)ω(1, uh, Ωh)

] 1
d

,

for a positive constant C(d) which depends only on d.

Note that ω(R, uh, E) = ω(R, uh, {x }) for |E| sufficiently small and x ∈ E.
We will make the abuse of notation

ω(R, uh, x) = ω(R, uh, {x }).

Definition 4 We refer to ω(1, vh, Ωh) as Monge-Ampère mass of the mesh func-
tion vh.

It can be shown that the maximum of a discrete convex convex function occurs
on ∂Ωh. Mesh functions with Monge-Ampère masses uniformly bounded have
a uniform lower bound by Lemma 8. Therefore discrete convex mesh functions
with uniformly bounded Monge-Ampère masses are uniformly bounded when their
boundary values are uniformly bounded.

We now give a geometric proof of a refined version of Lemma 7 (2)–(3) based
on the observation that the graph of the convex envelope Γ (uh) coincides on
Conv(Nh) with the lower part of the convex polyhedron which is the convex hull
S of the points (x, uh(x)) ∈ Rd+1, x ∈ Nh. It follows immediately that Γ (uh) is
continuous on Conv(Nh).

The lower faces of S form the graph of the convex envelope of uh over Conv(Nh).
We recall that a lower face F is a face such that for x ∈ F , x− (0, . . . 0, λ) /∈ S for
all λ > 0. The projections onto Rd of the vertices of the lower faces of S form a
convex decomposition of Conv(Nh). Each element of the decomposition is a con-
vex hull of projections onto Rd of vertices of lower faces of S. Each vertex of the
decomposition is a point x ∈ Nh where Γ (uh)(x) = uh(x). Each element C of
the decomposition can be further subdivided into simplices with vertices among
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the vertices of C. This results in a triangulation of Conv(Nh) on which Γ (uh) is
piecewise linear. We will refer to such a triangulation as an induced triangulation.

Let T (Γ (uh)) denote a triangulation induced on Conv(Nh) by Γ (uh). We will
need below the following theorem

Theorem 5 [17, Theorem 3] Let S be a finite set and fs be convex for each
fixed s ∈ S on X ⊂ Rd and continuous in some neighborhood of x0 ∈ X. Let
f(x) = sup{ fs(x), s ∈ S } and define S(x) = { s ∈ S, fs(x) = f(x) }. Then

∂f(x0) = Conv

(
∪s∈S(x0) ∂fs(x0)

)
.

Lemma 9 We have for x ∈ Rd

Γ̃ (uh)(x) = max{L(x), L = Γ (uh)|T , T ∈ T (Γ (uh)) }. (12)

Proof The left hand side of (12) defines a convex function F (x) on Rd. By con-
struction we have

Γ̃ (uh)(x) = Γ (uh)(x) = F (x), x ∈ Conv(Nh).

By the definition (5) of convex extension, we have

F (x) ≤ Γ̃ (uh)(x) ∀x ∈ Rd. (13)

Let y ∈ (Conv(Nh))◦ and p ∈ ∂Γ (uh)(y). Recall that if Z ⊂ Rd is compact,
Conv(Z) is closed. By Theorem 5, p is in the convex hull of the constant gradients
DΓ (uh)|T for T ∈ T (Γ (uh)) containing y. That is, we can find elements Ti, i =
1, . . . , N , Ti ∈ T (Γ (uh)) for all i and λi ∈ [0, 1], i = 1, . . . , N such that

∑N
i=1 λi = 1

and

p =
N∑
i=1

λiDΓ (uh)|Ti .

We have for x ∈ Rd

Γ (uh)(y) + p · (x− y) = Γ (uh)(y) +
N∑
i=1

λiDΓ (uh)|Ti · (x− y)

=
N∑
i=1

λi

(
Γ (uh)(y) +DΓ (uh)|Ti · (x− y)

)

≤
N∑
i=1

λiF (x) = F (x),

where we observed that Γ (uh)(y) + DΓ (uh)|Ti · (x − y) is the restriction to Ti
of Γ (uh). By (13) and the definition of convex extension, we obtain F (x) ≤
Γ̃ (uh)(x) ≤ F (x) ∀x ∈ Rd.

Theorem 6 For all x ∈ (Conv(Nh))◦ and p ∈ ∂Γ (uh)(x), ∃y ∈ Nh such that
p ∈ χΓ (uh)(x) ∩ χΓ (uh)(y) and Γ (uh)(y) = uh(y). Thus ∂Γ (uh)((Conv(Nh))◦) ⊂
χΓ (uh)(Nh). If x ∈ Ωh and Γ (uh)(x) 6= uh(x), we can choose y ∈ Nh such that

y 6= x. Moreover χΓ (uh)(Rd) ⊂ Conv
(
χΓ (uh)(Nh)

)
.
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Proof Let x ∈ Ωh such that Γ (uh)(x) 6= uh(x). Let y be a vertex of an element
T of an induced triangulation such that x ∈ T . By construction y ∈ Nh. Since
Γ (uh)(x) 6= uh(x) and x ∈ Ωh, x cannot be a vertex of T . Thus x 6= y. If x ∈ T ◦
then for p ∈ ∂Γ (uh)(x), p is the gradient of the linear function on T which is
the restriction on T of the convex envelope. We conclude that p ∈ ∂Γ (uh)(x) ∩
χΓ (uh)(y). If x ∈ ∂T and x is not a vertex of T , we have

Γ (uh)(x) = max{L(x), L = Γ (uh)|T , T ∈ ω(x) },

where ω(x) is the union of the elements of T (Γ (uh)) which contain x. But ω(x) ⊂
ω(y) for a vertex y. Thus p ∈ ∂Γ (uh)(x) ∩ χΓ (uh)(y) as well using Theorem 5.

If x ∈ Ωh, we can choose y = x. If x ∈ (Conv(Nh))◦ and x /∈ Ωh, the same
argument gives the existence of a vertex y ∈ Nh such that for p ∈ ∂Γ (uh)(x),
p ∈ ∂Γ (uh)(x) ∩ χΓ (uh)(y). We conclude that

∂Γ (uh)((Conv(Nh))◦) ⊂ χΓ (uh)(Nh).

Using the representation (12) and Theorem 5, we have

χΓ (uh)(Nh) ⊂ Conv{DΓ (uh)|T , T ∈ T (Γ (uh)) }.

Therefore ∂Γ (uh)((Conv(Nh))◦) is bounded and by Lemma 4

χΓ (uh)(Rd) ⊂ Conv

(
∂Γ (uh)((Conv(Nh))◦)

)
⊂ Conv

(
χΓ (uh)(Nh)

)
.

But for each x ∈ Ωh, χΓ (uh)(x) is a closed set and thus χΓ (uh)(Nh) is closed

as a finite union of closed sets and hence compact. Therefore χΓ (uh)(Rd) ⊂
Conv

(
χΓ (uh)(Nh)

)
. This completes the proof.

Remark 2 Let x ∈ Conv(Ωh) and T an element of an induced triangulation
T (Γ (uh)) such that x ∈ T and Γ (uh) is linear on T . Then if xi, i = 1, . . . , d
denote the vertices of T , we have x =

∑d+1
i=1 λixi, λi ≥ 0,

∑d+1
i=1 λi = 1. Moreover

Γ (uh)(xi) = uh(xi) for all i. We have Γ (uh)(x) =
∑d+1
i=1 λiΓ (uh)(xi) since Γ (uh)

is linear on T .

4 Convergence of mesh functions and their convex envelopes

In this section we study the connection between the convergence of mesh functions
and the convergence of their convex envelopes.

Definition 5 Let uh ∈ Uh for each h > 0. We say that uh converges to a function
u uniformly on Ω if and only if for each sequence hk → 0 and for all ε > 0, there
exists h−1 > 0 such that for all hk, 0 < hk < h−1, we have

max
x∈Nhk

|uhk(x)− u(x)| < ε.
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We note that if uhk converges uniformly on Ω to a bounded function u, then
Γ (uhk) is locally uniformly Lipschitz for hk sufficiently small.

Put m = min{u(x), x ∈ Ω } and M = max{u(x), x ∈ Ω }. For hk sufficiently
small, we have m−1 ≤ uhk(x) ≤M +1 for all x ∈ Nhk . As m−1 is convex we get
Γ (uhk) ≥ m−1. If L is affine and L(x) ≤M+1 for all x ∈ Nhk , then L(x) ≤M+1
for all x ∈ Rd. This gives Γ (uhk) ≤ M + 1. Thus Γ (uhk) is uniformly bounded.
Since Γ (uhk) is convex, Γ (uhk) is locally uniformly Lipschitz, c.f. for example [22,
Theorem C].

Lemma 10 Assume that uh converges to a convex function u uniformly on Ω.
Assume also that u is bounded. Then Γ (uh) converges to u uniformly on compact
subsets of Ω.

Proof Let ε > 0 and h−1 > 0 such that for all hk, 0 < hk < h−1 and x ∈ Nhk

uhk(x)− ε

2
< u(x) < uhk(x) +

ε

2
. (14)

From (7), we get

Γ (uhk)(x)− ε

2
≤ uhk(x)− ε

2
< u(x), x ∈ Nhk .

But Γ̃ (uhk)− ε/2 is a convex function. Thus, by definition of the discrete convex
envelope (8), we obtain

Γ (uhk)(x)− ε

2
≤ Γh(u)(x), x ∈ Nhk . (15)

Recall from Remark 2 that for every x ∈ Conv(Ωh), we can find xi ∈ Nhk , i =
1, . . . , d + 1 such that uhk(xi) = Γ (uhk)(xi) for all i and x =

∑d+1
i=1 λixi, λi ≥ 0,∑d+1

i=1 λi = 1. Moreover, Γ (uhk) is linear on the convex hull of {xi, i = 1, . . . , d+1 }.
Thus

Γ (uhk)(x) =

d+1∑
i=1

λiΓ (uhk)(xi) =

d+1∑
i=1

λiuhk(xi).

It follows from (14) and the convexity of u that

u(x) ≤
d+1∑
i=1

λiu(xi) <

d+1∑
i=1

λiuhk(xi) +
ε

2
= Γ (uhk)(x) +

ε

2
. (16)

By Theorem 3, since u is convex, for x ∈ Nhk , u(x) = Γ (u)(x) = Γh(u)(x). We
conclude from (15) and (16) that

Γ (uhk)(x)− ε

2
≤ u(x) < Γ (uhk)(x) +

ε

2
.

Thus u − Γ (uhk) converge uniformly to 0 on Ω, as mesh functions, i.e. in the
sense of Definition 5. We next prove that u− Γ (uhk) converges uniformly to 0 on
compact subsets of Ω as functions on Ω.

Let K be a compact subset of Ω. We may assume that K ⊂ (Conv(Nhk))◦.
By Lemma 2, u is continuous on K and hence uniformly continuous on K. Given
δ > 0, there exists α > 0 such that

|y − x| < α =⇒ |u(y)− u(x)| < δ

4
, x, y ∈ K.
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Assume now that the convergence is not uniform on K. We may assume that the
sequence hk is chosen such that for all x ∈ Conv(Nhk), one can find y ∈ Nhk such
that |y−x| < α. By assumption, there exists δ > 0 such that for all k, there exists
xk ∈ K with |u(xk)−Γ (uhk)(xk)| > δ. Let yk ∈ Nhk ∩K such that |yk−xk| < α.
By the local equicontinuity of Γ (uhk), we may assume that

|Γ (uhk)(xk)− Γ (uhk)(yk)| ≤ δ

4
.

Put a = u(yk) − Γ (uhk)(yk), b = u(xk) − u(yk) and c = Γ (uhk)(yk) −
Γ (uhk)(xk). Since |a| ≥ |a+ b+ c| − |b| − |c|, we get

|u(yk)− Γ (uhk)(yk)| ≥ |u(xk)− Γ (uhk)(xk)| − |u(xk)− u(yk)|

− |Γ (uhk)(yk)− Γ (uhk)(xk)| ≥ δ − δ

4
− δ

4
=
δ

2
.

A contradiction. This completes the proof.

Theorem 7 Assume that uh converges to a convex function u uniformly on Ω.
Assume also that u is bounded. Then ω(R, uh, .) weakly converges to ω(R, u, .).

Proof From Lemma 10, Γ (uh) converges to u uniformly on compact subsets of Ω.
The result then follows from Theorems 4 and 2.

If uh only converges uniformly on compact subsets, we give below conditions
under which ω(R, uh, .) weakly converges. In some situations discussed in section
5 one deals with sequences for which both uh and Γ (uh) converge uniformly on
compact subsets. We recall that for a family of sets Ak

lim sup
k

Ak = ∩n ∪k≥n Ak and lim inf
k

Ak = ∪n ∩k≥n Ak.

For Lemmas 11 and 12 below, we consider a compact K ⊂ Ω and an open set
U such that K ⊂ U ⊂ U ⊂ Ω. Let ΓU (uh) denote the convex envelope of uh on U .
If uh → u on U , by Lemma 10, ΓU (uh) converges uniformly to u on K. We have

Γ (uhk) ≤ ΓU (uhk) on U and on U ∩Nhk , Γ (uhk) ≤ ΓU (uhk) ≤ uhk . (17)

Lemma 11 Assume that uh → u uniformly on compact subsets of Ω, with u
convex and continuous. Then for K ⊂ Ω compact and any sequence hk → 0, up
to a set of measure zero

lim sup
hk→0

∂Γ (uhk)(K) ⊂ ∂u(K).

Proof Let U be open such that K ⊂ U ⊂ U ⊂ Ω. By [13, Lemma 1.2.2]

lim sup
hk→0

∂ΓU (uhk)(K) ⊂ ∂u(K).

Let x ∈ K and p ∈ ∂Γ (uhk)(x). If Γ (uhk)(x) = ΓU (uhk)(x), using (17) we obtain
p ∈ ∂ΓU (uhk)(x) ⊂ ∂ΓU (uhk)(K).

Assume that Γ (uhk)(x) 6= ΓU (uhk)(x). By Theorem 6, there exists y ∈ Nh such
that p ∈ ∂Γ (uhk)(x)∩∂χΓ (uhk )(y) and Γ (uhk)(y) = uhk(y). If y ∈ K, this implies

by (17) that Γ (uhk)(y) = ΓU (uhk)(y) and hence p ∈ ∂ΓU (uhk)(K). If y /∈ K,
x 6= y and p is contained in a set of measure 0. Thus, up to a set of measure zero,
∂Γ (uhk)(K) ⊂ ∂ΓU (uhk)(K). The result then follows.
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Recall from Lemma 3 that the extension ũ of u given by (5) satisfies ũ = u on
Ω and that for all x ∈ Ω, χu(x) = ∂u(x).

Lemma 12 Assume that uh → u uniformly on compact subsets of Ω, with u
convex and continuous. Assume that K is compact and U is open with K ⊂ U ⊂
U ⊂ Ω and that for any sequence hk → 0, a subsequence kj and zkj ∈ Nhkj with

zkj → z0 ∈ ∂Ω, we have

lim inf
j→∞

ũ(zkj ) ≤ lim sup
j→∞

uhkj (zkj ). (18)

Then, up to a set of measure zero, for any sequence hk → 0

∂u(K) ⊂ lim inf
hk→0

∂Γ (uhk)(U).

Proof The proof is analogous to the proof of [14, Lemma 3.3]. By [13, Lemma
1.1.3], ∂u(U) is bounded, and since u is bounded on U and Ω bounded, ũ is finite
on U . Define

W = { p ∈ Rd, p ∈ ∂ũ(x1) ∩ ∂ũ(x2), for somex1, x2 ∈ Rd, x1 6= x2 }.

By [13, Lemma 1.1.12], |W | = 0. Let p ∈ ∂v(K) \W . By definition of W , there
exists a unique x0 ∈ K such that p ∈ ∂ũ(x0) and for all x ∈ Rd, x 6= x0 we have
p /∈ ∂ũ(x). We claim that

ũ(x) > ũ(x0) + p · (x− x0), x ∈ Rd, x 6= x0, (19)

that is, ũ(x0) + p · (x − x0) is a strictly supporting hyperplane to the graph of ũ
at x0. Otherwise, the plane would touch the graph at another point x1 and would
be a support at x1 as well, contradicting the assumption that p /∈W . We refer to
[13, p. 7] for an analytical proof.

By [13, Lemma 1.2.2]

∂u(K) \W ⊂ lim inf
hk→0

∂ΓU (uhk)(U).

This means that there exists k0 such that for all k ≥ k0, one can find xk ∈ U and
p ∈ ∂ΓU (uhk)(xk). Thus

uhk(x) ≥ ΓU (uhk)(x) ≥ ΓU (uhk)(xk) + p · (x− xk), ∀x ∈ U ∩Nhk , (20)

where we used the continuity of ΓU (uhk) and (17). We now claim that (20) actually
holds for all x ∈ Nhk when k ≥ k0. Otherwise one can find a subsequence kj and
zkj ∈ (Ω \ U) ∩Nhkj such that

uhkj (zkj ) < ΓU (uhkj )(xkj ) + p · (zkj − xkj ). (21)

Since Ω is bounded, up to a subsequence, we may assume that zkj → z0 ∈ Ω \U .
We show that

ũ(z0) ≤ ũ(x0) + p · (z0 − x0). (22)

Case 1: z0 ∈ Ω \ U . Let Q be a compact subset such that U ⊂ Q and zkj ∈ Q
for j sufficiently large. Using the uniform convergence of uh to u on Q, the uniform
continuity of u on Q, the uniform convergence of ΓQ(uh) to u on Q, and taking
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limits in (21), we obtain u(z0) ≤ u(x0) + p · (z0 − x0). Since both x0 and z0 are in
Ω, this gives (22).

Case 2: z0 ∈ ∂Ω \ U . Now we have

lim sup
j→∞

uhkj (zkj ) ≤ ũ(x0) + p · (z0 − x0),

where we used the uniform convergence of ΓU (uh) to u on U . Note that ũ is lower
semi-continuous as the supremum of affine functions. Thus, using the assumption
(18), we obtain

lim sup
j→∞

uhkj (zkj ) ≥ lim inf
j→∞

ũ(zkj ) ≥ ũ(z0).

Hence (22) also holds in this case.

Finally we note that (22) contradicts (19) and therefore (21) cannot hold, i.e.
(20) actually holds for all x ∈ Nhk when k ≥ k0. But this implies that Γ (uhk)(x) ≥
ΓU (uhk)(xk)+p·(x−xk),∀x ∈ Conv(Nhk) and k ≥ k0. In particular, for x = xk, we
have Γ (uhk)(xk) ≥ ΓU (uhk)(xk) ≥ Γ (uhk)(xk), where we used (17). We conclude
that Γ (uhk)(x) ≥ Γ (uhk)(xk) + p · (x − xk),∀x ∈ Conv(Nhk) and k ≥ k0, i.e.
p ∈ ∪n ∩k≥n ∂Γ (uhk)(U). This concludes the proof.

Corollary 1 Assume that uh → u uniformly on Ω, with u convex and continuous
on Ω. Assume that K is compact and U is open with K ⊂ U ⊂ U ⊂ Ω. Then, up
to a set of measure zero, for any sequence hk → 0

∂u(K) ⊂ lim inf
hk→0

∂Γ (uhk)(U).

Proof By Lemma 12, it is enough to show that (18) holds. The proof follows
from [14, Remark 3.2]. Put aj = uhkj (zkj ) − u(zkj ) and bj = u(zkj ). Recall that

lim supj(aj + bj) ≥ lim supj aj + lim infj bj . This gives

lim sup
j→∞

uhkj (zkj ) ≥ lim sup
j→∞

(uhkj − u)(zkj ) + lim inf
j→∞

u(zkj ) = lim inf
j→∞

u(zkj ).

Since u ∈ C(Ω), we have ũ = u on Ω. This completes the proof.

It follows immediately from Corollary 1, Lemmas 11 and 12, an equivalence
criteria of weak convergence of measures, c.f. for example [11, Theorem 1, section
1.9], and Theorem 4, that if uh → u uniformly on Ω, with u convex and continuous
on Ω, then ω(R, uh, .) = ω(R,Γ (uh), .) tend to ω(R, u, .) weakly.

Theorem 8 Assume that uh → u uniformly on compact subsets of Ω, with u
convex and continuous. We also assume that ω(1, uh, Ωh) ≤ C for a constant C
independent of h, and uh = g on ∂Ωh where g ∈ C(Ω) is convex. Then (18) holds
and as a consequence ω(R, uh, .) tend to ω(R, u, .) weakly.
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Proof We prove in Theorem 14 below, that under the assumptions of the theorem,
u ∈ C(Ω) and u = g on ∂Ω. (Note that the discrete convexity assumption of
uh and the uniform boundedness of uh in Theorem 14 only allows to have a
subsequence which converges uniformly on compact subsets of Ω to a continuous
convex function).

Thus, for zkj ∈ Nhkj with zkj → z0 ∈ ∂Ω, we have lim infj→∞ u(zkj ) = g(z).

As in the proof of Theorem 14 and using the continuity of g and uh = g on ∂Ωh

g(z) ≤

{
lim sup{uhkj (zkj ), zkj ∈ Ωhkj }
lim sup{uhkj (zkj ), zkj ∈ ∂Ωhkj }.

We conclude that lim infj→∞ u(zkj ) = g(z) ≤ lim supj→∞ uhkj (zkj ), i.e. (18)

holds, as u ∈ C(Ω) and thus ũ = u on Ω.
The weak convergence result then follows from Lemmas 11 and 12, and an

equivalence criteria of weak convergence of measures, c.f. for example [11, Theorem
1, section 1.9].

5 Compactness of mesh functions with Monge-Ampère masses
uniformly bounded

We use C for a constant which may change at occurrences. In this section, we are
interested in conditions under which a family of mesh functions has a subsequence
which converges uniformly on Ω or uniformly on compact subsets of Ω. In both
cases, we will also have uniform convergence on compact subsets of the convex
envelopes.

We note that if |uh| ≤M for a constant M independent of h, |Γ (uh)| ≤M on
Conv(Nh). See section 4 for a similar argument.

Theorem 9 Assume that |uh| ≤ M for a constant M independent of h. Then,
there is a subsequence hk such that Γ (uhk) converges uniformly on compact subsets
to a convex function v on Ω.

Proof Let hn = 1/2n, a decreasing sequence such that hn → 0. Put Di =
(Conv(Ωhi))

◦. For i > j, Dj ( Di and ∪∞i=1Di = Ω. Since Γ (uh) is uniformly
bounded and convex, for each i, Γ (uhj ) is uniformly Lipschitz on Di for j > i+ 1.
By the Arzela-Ascoli theorem, there is a subsequence hni(k) such that Γ (uhni(k))

converges uniformly on Di as k →∞. We may assume that hni(k) is a subsequence
of hni−1(k). For the diagonal sequence hnk(k), Γ (uhnk(k)

) converges uniformly on
compact subsets of Ω to a function which is convex on Ω as a uniform limit of
convex functions.

The next lemma gives conditions under which there is a subsequence whose
convex envelopes converge uniformly on Ω. The assumption that χΓ (uh)(Nh) is
uniformly bounded can be verified for certain discretizations of the second boun-
dary value problem for the Monge-Ampère equation.

Let Ω̃ be a rectangular domain and U an open set such that

Ω ⊂ U ⊂ Ω̃.
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Theorem 10 Assume that |uh| ≤ M for a constant M independent of h and

χΓ (uh)(Nh) is uniformly bounded. Then, Γ̃ (uh) is uniformly bounded on Ω and

uniformly Lipschitz on Ω. As a consequence, there is a subsequence hk such that
Γ (uhk) converges uniformly to a convex function v on Ω.

Proof Recall from Theorem 6 that ∂Γ (uh)((Conv(Nh))◦) ⊂ χΓ (uh)(Nh). Since
χΓ (uh)(Nh) is uniformly bounded, there is a constant C independent of h such
that for all p ∈ ∂Γ (uh)((Conv(Nh))◦), ||p|| ≤ C. As |uh| ≤ M for a constant M
independent of h, Γ (uh) is uniformly bounded. From the definition (5) of convex

extension, Γ̃ (uh) is uniformly bounded on Ω̃. As a convex function, Γ̃ (uh) is
uniformly Lipschitz on Ω. The result follows from the Arzela-Ascoli theorem as in
the proof of Theorem 9.

We now discuss uniform convergence properties of a subsequence of uh. We
make the additional assumption that uh is discrete convex. We first construct an
interpolant of uhk defined on Ω.

We recall that a triangulation is conforming if it is a partition of Ω̃ into convex
hulls of d + 1 points, and the intersection of two elements is the convex hull of
0 ≤ k < d+ 1 points.

Lemma 13 For a mesh function uh, one can find a conforming triangulation T̃h
of Ω̃ such that each element of Nh is a vertex of an element of T̃h and Conv(Nh)

is the union of elements of T̃h and any boundary vertex of Conv(Nh) is an element

of Nh. Moreover Γ̃ (uh) is piecewise linear on T̃h.

Proof Let T̃ (Γ (uh)) denote a triangulation induced by Γ̃ (uh) on Ω̃. Recall that

Γ̃ (uh) is piecewise linear on T̃ (Γ (uh)). Recall also that T (Γ (uh)) denote a trian-
gulation induced by Γ (uh) onto Conv(Nh). We use the points of Nh which are not
vertices of T (Γ (uh)) to create a conforming triangulation of Conv(Nh) by subdi-
viding elements of T (Γ (uh)). This gives a triangulation Th of Conv(Nh) with set
of vertices equal to Nh and Γ (uh) is piecewise linear on Th. Finally elements of

T̃ (Γ (uh)) are subdivided to form a triangulation of Ω̃ \Conv(Nh) with vertices in

the union of Ω̃ ∩ Zdh and the boundary vertices of Th. This results in the desired
triangulation T̃h of Ω̃.

Let I(uh) be the piecewise linear continuous function which is equal to uh on

Nh and equal to Γ̃ (uh) at the other vertices of T̃h. By construction I(uh) = Γ (uh)
on the boundary of Conv(Nh) when uh = Γ (uh) on ∂Ωh. We note that I(uh) may
not be convex.

Lemma 14 Let uh be discrete convex. The univariate piecewise linear interpolant
U of uh on the line L through x0 ∈ Ωh and direction e ∈ V is convex.

Proof We define for x ∈ L ∩Ω

∂U(x) = { q ∈ R, U(y)− U(x) ≥ qe · (y − x) for all y ∈ L ∩Ω }.
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For x ∈ L ∩Ωh, put x+ = x+ hexe and x− = x− h−ex e. We claim that

∂U(x) =
1

||e||2

[
uh(x)− uh(x−)

h−ex
,
uh(x+)− uh(x)

hex

]
, x ∈ L ∩Ωh

∂U(y) =
1

hex||e||2
(uh(x+)− uh(x)) for y ∈ (x, x+), x ∈ L ∩Ωh

∂U(y) =
1

h−ex ||e||2
(uh(x)− uh(x−)) for y ∈ (x−, x), x ∈ L ∩Ωh.

Since for x ∈ L ∩ Ωh, U is linear on [x, x+] and [x−, x], for y ∈ (x, x+) or y ∈
(x−, x), ∂U(y) is reduced to at most one point. Let x ∈ L ∩ Ωh. We show that
p = (uh(x+)− uh(x))/(hex||e||2) ∈ ∂U(x). The other cases are similar.

Let k, l ≥ 0 be integers such that x+khe ∈ Ωh, x+(k+1)he 6∈ Ωh, x−lhe ∈ Ωh
and x− (l + 1)he 6∈ Ωh. We have by discrete convexity

uh(x+ khe+ hex+khee)− uh(x+ khe)

hex+khe

≥ uh(x+ khe)− uh(x+ (k − 1)he)

h
≥

. . . ≥ uh(x+ h)− uh(x)

h
≥ uh(x)− uh(x− h)

h
≥ . . . ≥

uh(x− (l − 1)he)− uh(x− lhe)
h

≥
uh(x− lhe)− uh(x− lhe− h−ex−lhee)

h−ex−lhe
.

Using the above equation and an induction argument we have for 0 ≤ r ≤ k,
uh(x+rhe)−uh(x) ≥ k(uh(x+h)−uh(x)) and for 0 ≤ s ≤ l, uh(x−sh)−uh(x) ≥
(−s)(uh(x+h)−uh(x)). This gives for all z ∈ L∩Ωh, uh(z)−uh(x) ≥ pe · (z−x).
With a similar argument, this also holds for z = x + khe + hex+khee and z =
x− lhe− h−ex−lhee. We conclude that p = (uh(x+)− uh(x))/(hex||e||2) ∈ ∂U(x).

Since ∂U(x) 6= ∅ for all x ∈ L ∩Ω, U is convex. To see this, let x1, x2 ∈ L ∩Ω
and λ ∈ (0, 1). Put x = λx1 + (1− λ)x2 and choose p ∈ ∂U(x). We have

U(x1) ≥ U(x) + pe · (x1 − x)

U(x2) ≥ U(x) + pe · (x2 − x).

Therefore λU(x1) + (1 − λ)U(x2) ≥ U(x). Since U is continuous, this also holds
for λ ∈ [0, 1].

Theorem 11 Let uh be a family of discrete convex functions such that |uh| ≤M
for a constant M independent of h. The interpolant I(uh) is locally uniformly Lip-
schitz on Ω. As a consequence there is a subsequence hk such that both Γ (uhk) and
uhk converge uniformly on compact subsets of Ω to continuous convex functions
on Ω.

Proof Let K be a compact subset of Ω and choose hK such that K ⊂ Conv(ΩhK ).
Let δK > 0 such that the δK neighborhood of Conv(ΩhK ) is contained in Ω.
Given x0 ∈ ΩhK , by Lemma 14, we have |uh(x) − uh(y)| ≤ 2M/δK ||x − y|| for
all x, y ∈ ΩhK , x = x0 + αhe, y = x0 + βhe for some integers α and β and e an
element of the canonical basis of Rd.
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Let us now assume that y = x+
∑d
i=1mihri for integers mi, i = 1, . . . , d. We

have

uh(x)− uh(y) =

d−1∑
k=0

uh

(
x+

k∑
i=1

mihri

)
− uh

(
x+

k+1∑
i=1

mihri

)
,

where
∑0
i=1mihri = 0. We obtain |uh(x) − uh(y)| ≤ 2Mh/δK

∑d−1
k=0 |mk+1| =

2M/δK ||x− y||1 ≤ 2Md/δK ||x− y|| where ||.||1 denotes the 1-norm. We conclude
that uh is uniformly Lipschitz on Conv(ΩhK ). We claim that the interpolant I(uh)
is thus locally uniformly Lipschitz on Ω.

As in the proof of Theorem 9, we obtain a subsequence hk such that I(uhk)
and hence uhk converges uniformly on compact subsets a function w ∈ C(Ω). We
prove in Lemma 16 below that w is convex. Applying again Theorem 9, we have
a subsequence also denoted hk such that Γ (uhk) converges uniformly on compact
subsets of Ω to a continuous convex function on Ω.

To see that I(uh) is uniformly Lipschitz on Conv(ΩhK ), we first note that
I(uh) is uniformly Lipschitz on each element T with vertices in Conv(ΩhK ). Let
〈v1, . . . , vd+1〉 denote the vertices of T . There exists ζi ∈ T such that for all
i = 2, . . . , d + 1, I(uh)(vi) − I(uh)(v1) = DI(uh)(ζi) · (vi − v1). Since I(uh) is
linear on T , DI(uh)(ζi) = DI(uh)(ζ2) ≡ p for all i. Now,

|I(uh)(vi)− I(uh)(v1)| = |uh(vi)− uh(v1)| ≤ C||vi − v1||, i = 2, . . . , d+ 1.

Therefore |p · (vi − v1)| ≤ C||vi − v1||, i = 2, . . . , d+ 1. Since T is non degenerate,
we obtain ||p|| ≤ C with C independent of h. Again, by the linearity of I(uh) on
T , we can find a vector b ∈ Rd such that for all x ∈ T , I(uh)(x) = p · x+ b. This
implies that for all x, y ∈ T , |I(uh)(x)− I(uh)(y)| ≤ C||y − x||.

Next, let x, y ∈ Conv(ΩhK ). Put x1 = x and xN+1 = y. The line through x

and y intersects a sequence of elements T1, . . . , TN of T̃h with x1 ∈ T1 and xN+1 ∈
TN . We may assume that Ti ⊂ Conv(ΩhK ) for i = 1, . . . , N by taking a further
subdivision of the triangulation obtained from Lemma 13. Let xi, i = 2, . . . , N be
points on the line such that xi ∈ ∂Ti−1 ∩ ∂Ti. As I(uh) is linear on Ti for all i, we
have |I(uh)(xi) − I(uh)(xi−1)| ≤ C||xi − xi−1|| for all i. Since the points xi are
colinear, ||y−x|| =

∑N+1
i=2 ||xi−xi−1||, from which the uniform Lipschitz property

on Conv(ΩhK ) follows.

A priori, the subsequences from Theorem 11 may converge to different limits
as there could be points x where uh(x) > Γ (uh)(x). We will give below conditions
under which the limits are the same.

Theorem 12 Assume that |uh| ≤ M for a constant M independent of h and
χΓ (uh)(Nh) is uniformly bounded. Assume furthermore that uh is uniformly Lip-

schitz on Ω. Then I(uh) is uniformly bounded on Ω and uniformly Lipschitz on
Ω. As a consequence, there is a subsequence hk such that both Γ (uhk) and uhk
converge uniformly to a convex function v on Ω.

Proof As in the proof of Theorem 11, the interpolant I(uh) is uniformly Lipschitz

on Conv(Nh). Next, we note that Γ̃ (uh) is uniformly Lipschitz on Ω̃. Indeed, by
Theorem 6, χΓ (uh)(Rd) ⊂ Conv

(
χΓ (uh)(Nh)

)
and is therefore uniformly bounded.
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By [13, Lemma 1.1.6] Γ̃ (uh) is uniformly Lipschitz on Ω̃. We reproduce here the
proof.

Since χΓ (uh)(Rd) is bounded, for all x ∈ Ω̃ and p ∈ χΓ (uh)(x), ||p|| ≤ C with

C independent of h. For x, y ∈ Ω̃ and p ∈ χΓ (uh)(x), Γ̃ (uh)(y) − Γ̃ (uh)(x) ≥
p · (y−x) ≥ −||p|| ||y−x|| ≥ −C ||y−x||. Reversing the roles of x and y, we obtain

Γ̃ (uh)(y)− Γ̃ (uh)(x)| ≤ C||y − x|| for all x, y ∈ Ω̃.

By construction, I(uh) = Γ (uh) on Ω1 = ∪{T ∈ T̃h, T 6⊂ Conv(Nh) }.
Since Γ̃ (uh) is uniformly Lipschitz on Ω̃, for all x, y ∈ Ω1, we have |I(uh)(x) −
I(uh)(y)| ≤ C||y − x||. It remains to consider the case x ∈ Ω1 and y ∈ Conv(Nh).
We consider the line through x and y. It intersects ∂ Conv(Nh) at a point z.

We have by construction I(uh)(z) = Γ (uh)(z) because the triangulation of

Lemma 13 is a subdivision of a triangulation induced by Γ̃ (uh) on Ω̃. Thus
|I(uh)(x) − I(uh)(y)| ≤ |I(uh)(x) − I(uh)(z)| + |I(uh)(z) − I(uh)(y)| ≤ ||x −
z||+ ||z − y|| = ||x− y|| where we used the uniform Lipschitz property on Ω1 and
Conv(Nh) as well as the colinearity of x, y and z.

We conclude that I(uh) is uniformly Lipschitz on Ω, and uniformly bounded
on Ω since |uh| ≤M .

Using Theorem 10 we obtain a subsequence uhk such that Γ (uhk) converges
uniformly to a convex function v on Ω. By the Arzela-Ascoli theorem, we have
a further subsequence also denoted uhk such that uhk converges uniformly to a
function w on Ω. As a uniform limit of the continuous functions I(uhk), w ∈ C(Ω).
We show below in Lemma 16, that w is convex on Ω. By Theorem 10, Γ (uhk)
converges to w uniformly on compact subsets of Ω. Thus v = w on Ω and since v
and w are continuous as uniform limit of continuous functions Γ (uhk) and I(uhk),
v = w on Ω.

The Lipschitz continuity of uh on Ω holds for certain discretizations of the se-
cond boundary value problem for the Monge-Ampère equation. For the Dirichlet
problem, the following lemma gives conditions under which uh is Lipschitz con-
tinuous on Ω. The condition that χΓ (uh)(Nh) is uniformly bounded may not be
necessary since Dirichlet boundary values are prescribed. With Lemma 15 below,
one obtains a subsequence uhk which converges uniformly on Ω.

Lemma 15 Let uh be a family of discrete convex functions such that χΓ (uh)(Nh)
is uniformly bounded. Assume that uh = Γ (uh) on ∂Ωh. There exists a constant
C independent of h such that for all x, y ∈ Nh, we have

|uh(x)− uh(y)| ≤ C||y − x||,

with C independent of h.

Proof A related proof can be found in [7, Proposition 4.3]. Recall first from Theo-

rem 10 that Γ̃ (uh) is Lipschitz continuous on Ω We first prove that the Lipschitz
continuity property holds for x, y ∈ Ωh.

Let x ∈ Ωh and e ∈ V such that x± he ∈ Ωh. Since ∆evh(x) ≥ 0, we have

vh(x+ he)− vh(x) ≥ vh(x)− vh(x− he).

Therefore for integers k and l such that k ≥ l, x+ khe and x+ lhe are in Ωh

vh(x+ khe)− vh(x+ (k − 1)he) ≥ vh(x+ (l + 1)he)− vh(x+ lhe). (23)
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Let k be the maximum integer such that x+ (k+ 1)he /∈ Ωh and assume that l is
the smallest integer such that x + (l − 1)he /∈ Ωh. Then both x + khe + hex+khee

and x + lhe − h−ex+lhee are on ∂Ωh. By the Lipschitz continuity of Γ̃ (uh) on Ω,
the assumption that uh = Γ (uh) on ∂Ωh, (7), ∆euh(x + khe) ≥ 0, (23) and
∆euh(x+ lhe) ≥ 0, we have

C||e|| ≥
Γ (uh)(x+ khe+ hex+khee)− Γ (uh)(x+ khe)

hex+khe

=

uh(x+ khe+ hex+khee)− Γ (uh)(x+ khe)

hex+khe

≥

uh(x+ khe+ hex+khee)− uh(x+ khe)

hex+khe

≥ uh(x+ khe)− uh(x+ (k − 1)he)

h
≥

uh(x+ (l + 1)he)− uh(x+ lhe)

h
≥
uh(x+ lhe)− Γ (uh)(x+ lhe− h−ex+lhee)

h−ex+lhe

≥

Γ (uh)(x+ lhe)− Γ (uh)(x+ lhe− h−ex+lhee)

h−ex+lhe

≥ −C||e||. (24)

We conclude that for an integer m such that x+mhe ∈ Ωh, we have |uh(x+mhe)−
uh(x)| ≤ C|m|h||e||. Put y = x +

∑d
i=1mihri where we recall that (r1, . . . , rd)

denotes the canonical basis of Rd and each ri is in V by assumption. We obtain
for x, y ∈ Ωh,

|uh(y)− uh(x)| ≤ Ch
d∑
i=1

|mi| = C||y − x||1 ≤ C||y − x||,

where ||.||1 denotes the 1-norm.

Next, again by the assumption that uh = Γ (uh) on ∂Ωh and the Lipschitz

continuity Γ̃ (uh) on Ω, for x, y ∈ ∂Ωh

|uh(y)− uh(x)| = |Γ (uh)(y)− Γ (uh)(x)| ≤ C||y − x||.

Finally, assume that x ∈ Ωh and y ∈ ∂Ωh. Let z ∈ Ωh such that y = z + heze for
some e ∈ V . Arguing as for (24), we obtain |uh(y)− uh(z)| ≤ Chez||e||. Put e = e1

and let {e1, . . . , ed } be a basis of Zd. We can write z = x +
∑d
i=1mihei and so

y = m1he1 + heze1 +
∑d
i=2mihei. Arguing as above, we obtain |uh(y)− uh(x)| ≤

C||y − x|| in this case as well. This completes the proof.

Next, we state a result which is implicit in convergence studies of the Monge-
Ampère equation. As indicated in the preliminaries, the set of directions is now
taken to be V = Zd and we focus on the limit h→ 0.

Lemma 16 Take V = Zd \ { 0 } and let uh be discrete convex. If uh converges
uniformly on compact subsets of Ω to a function u ∈ C(Ω), u is convex on Ω.

Proof Let e ∈ Zd and x0 ∈ Ωh. We recall from Lemma 14 that the univariate
piecewise linear interpolant U of uh on the line L through x0 and direction e is
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convex. Fix x, y ∈ Ω and let for θ ∈ [0, 1], ux,y(θ) = u(θy+(1−θ)x). The convexity
of ux,y would imply that

u(θy + (1− θ)x) = ux,y(θ) ≤ θux,y(1) + (1− θ)ux,y(0) = θu(y) + (1− θ)u(x).

It is therefore enough to show that ux,y is convex. Put ζ = y − x. We have
ux,y(θ) = u(x+ θζ). Let xh ∈ Ωh such that xh → x and choose ζh ∈ Zdh such that
ζh → ζ. Denote by Lh the line through xh and direction ζh.

Given α, β, θ ∈ (0, 1), let ah and bh be points on Lh∩Nh of minimum distance
to xh + αζh and xh + βζh respectively. As h→ 0, ah → x+ αζ and bh → x+ βζ.
Now, let ch ∈ Lh ∩Nh of minimum distance to xh + θαζh + (1− θ)βζh. As h→ 0,
ch → x+ θαζ + (1− θ)βζ.

Recall that the piecewise linear interpolant of uh on the line Lh is convex. That
is, for θh ∈ [0, 1] such that ch = θhah + (1− θh)bh we have

uh(ch) ≤ θhuh(ah) + (1− θh)uh(bh).

Up to a subsequence θh → θ′ ∈ [0, 1]. By the uniform convergence of uh to u and
the continuity of u, we obtain

u(x+ θαζ + (1− θ)βζ) ≤ θ′u(x+ αζ) + (1− θ′)u(x+ βζ).

Since ch = θhah+(1−θh)bh we get x+θαζ+(1−θ)βζ) = θ′(x+αζ)+(1−θ′)(x+βζ)
which gives θ = θ′ when α 6= β and ζ 6= 0. The cases α = β and ζ = 0 are trivial.

We have shown that uxy is convex. This implies that u is convex on Ω.

We now prove that if in addition to the assumptions of Theorem 11, uh = g
on ∂Ωh for a convex function g ∈ C(Ω) and ω(1, uh, Ωh) is uniformly bounded,
there are subsequences Γ (uhk) and uhk converging uniformly on compact subsets
of Ω to the same convex function v ∈ C(Ω). Moreover v = g on ∂Ω. Recall the
discrete Laplacian

∆hvh(x) =
d∑
i=1

∆rivh(x).

For x ∈ Ω define

U(x) = sup{L(x), L ≤ g on ∂Ω,L affine }, (25)

the convex envelope with boundary data g. We have by [16, Theorem 5.2]

Theorem 13 For g ∈ C(Ω), the function U defined by (25) is in C(Ω) and U = g
on ∂Ω.

Theorem 14 Let uh be a family of discrete convex functions which is uniformly
bounded and with Monge-Ampère masses uniformly bounded. Assume that uh = g
on ∂Ωh for a convex function g ∈ C(Ω). There is a subsequence hk such that
Γ (uhk) and uhk converge uniformly on compact subsets of Ω to a convex function
v ∈ C(Ω). Moreover v = g on ∂Ω.
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Proof We recall that by Lemma 5, since uh = g on ∂Ωh for a convex function
g ∈ C(Ω) which can then be extended to Rd as a convex function, we have Γ (uh) =
uh = g on ∂Ωh. By Theorem 11 there is a subsequence hk such that Γ (uhk) and
uhk converge uniformly on compact subsets of Ω to continuous convex functions
u and v respectively. We show that u = v = g on ∂Ω.

We first prove that for ζ ∈ ∂Ω, limx→ζ v(x) ≥ g(ζ) by arguing as in the proof
of [16, Lemma 5.1]. Let ε > 0. By Theorem 13 there exists an affine function L
such that L ≤ g on ∂Ω and L(ζ) ≥ g(ζ) − ε. Put zh = uh − L. Since uh = g on
∂Ωh, we have zh ≥ 0 on ∂Ωh.

Now let x ∈ Ω and xh ∈ Ωh such that xh → x. Since uh converges to v
uniformly on compact subsets ofΩ, zh converges to z uniformly on compact subsets
of Ω and thus zh(xh)→ v(x)−L(x) := z(x). Assume that z(x) < 0. By the discrete
Aleksandrov’s maximum principle Lemma 8 applied to zh we have

(−zh(xh))d ≤ Cd(xh, ∂Ω)(diam(Ω))d−1ω(1, uh, Ωh)

≤ Cd(xh, ∂Ω)ω(1, uh, Ωh) ≤ C||xh − ζ||ω(1, uh, Ωh).

By the assumption on the Monge-Ampère masses, ω(1, uh, Ωh) ≤ C with C inde-
pendent of h. Then

(−zh(xh))d ≤ C||xh − ζ||. (26)

Taking the limit as hk → 0 in (26), we obtain for each x ∈ Ω for which z(x) < 0

(−z(x))d ≤ C||x− ζ||.

In summary

either z(x) ≥ −C||x− ζ||
1
d or z(x) ≥ 0, x ∈ Ω.

We conclude that

v(x) ≥ L(x)− C||x− ζ||
1
d onΩ.

Taking the limit as x → ζ we obtain limx→ζ v(x) ≥ L(ζ) ≥ g(ζ) − ε. Since ε is
arbitrary, we have limx→ζ v(x) ≥ g(ζ).

Next, we prove that limx→ζ v(x) ≤ g(ζ). Let wh denote the solution of the
problem

∆hwh = 0 on Ωh with wh = g on ∂Ωh. (27)

Since the above problem is linear, for existence and uniqueness of wh, it is enough
to prove uniqueness, i.e. the problem ∆hsh = 0 on Ωh with sh = 0 on ∂Ωh has
the unique solution sh = 0. This follows from the discrete maximum principle for
the discrete Laplacian [15, Theorem 4.77]. Indeed, as ∆hsh ≥ 0 on Ωh with sh = 0
on ∂Ωh we obtain sh ≤ 0 on Ωh. Using ∆hsh ≤ 0, we obtain sh ≥ 0 on Ωh. This
shows that sh = 0, proving existence and uniqueness of wh.

Since uh is discrete convex, we have ∆huh ≥ 0. Therefore ∆h(uh − wh) ≥ 0
on Ωh with uh − wh = 0 on ∂Ωh. Again, by the discrete maximum principle for
the discrete Laplacian [15, Theorem 4.77], we have uh − wh ≤ 0 on Ωh.

Since a convex domain is Lipschitz, we can apply the results of [10, section
6.2 ] and claim that wh converges uniformly on compact subsets to the unique
viscosity solution of ∆w = 0 on Ω with w = g on ∂Ω, c.f. section 6 for additional
details. This gives v(x) ≤ w(x) on Ω. It is also proved in [10] that w ∈ C(Ω). We
conclude that limx→ζ v(x) ≤ g(ζ). Thus v ∈ C(Ω) and v = g on ∂Ω.
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Now, from Theorem 4, we have ω(1, Γ (uh), Ωh) = ω(1, uh, Ωh) ≤ C. We can
then apply the same arguments to Γ (uh) as a mesh function, to obtain u ∈ C(Ω)
and u = g on ∂Ω. Again, by Theorem 4 we have ω(1, u, .) = ω(1, v, .). By unicity of
the solution of the Dirichlet problem for the Monge-Ampère equation [16, Theorem
1.1], we have u = v on Ω.

6 Appendix

In [10] convergence of numerical schemes for discrete approximations to visco-
sity solutions of the Dirichlet problem for dynamic programming principles for
the p-Laplacian is given. The proof is based on a numerical analysis approach,
the Barles-Souganidis framework which consists in checking stability, consistency
and monotonicity of the numerical scheme. It is known that the Barles-Souganidis
framework requires the so-called strong uniqueness property for the differential
equation, which is a comparison principle for equations with the boundary condi-
tion in the viscosity sense. In [10] the strong uniqueness property for the Laplace
equation is proved for smooth domains and convergence of the numerical scheme
on a bounded Lipschitz domain is obtained through barriers on appropriate shrin-
king rings. We review below their approach for the standard discretization of the
Laplace equation.

Recall thatΩ ⊂ Rd is a bounded Lipschitz domain and g ∈ C(∂Ω). We consider
the problem

−∆u = 0 in Ω

u = g on ∂Ω.
(28)

We define for h > 0 the following sets:
Outer boundary strip: Γh = {x ∈ Rd \Ω, d(x, ∂Ω) ≥ h } and put O = Γ1.
Inner boundary strips: Ih = {x ∈ Ω, d(x, ∂Ω) ≤ h } and put I = I1.

Extended domain: Ω̃ = Ω ∪ O and extended computational domain Ω̃h =
Ωh ∪O.

Let G be a continuous extension of g to Ω̃. Note that ∂Ωh ⊂ O. Given a
mesh function uh, we extend it to Ωh ∪ O by uh(x) = G(x) for all x ∈ O \ ∂Ωh.
Analogous to [10, (2.9)], we consider the discrete problem: find a mesh function
uh such that

−∆huh = 0 on Ωh

uh = G on O.
(29)

A mesh function solves (27) if and only if it solves (29).
In [10] a notion of viscosity solution of (28) is first given. The authors therein

recall the existence and uniqueness of such a viscosity solution. They then intro-
duce a generalized version of viscosity solution where the boundary condition is
assumed in a weaker sense. That notion has become known as boundary condition
in the viscosity sense.

An upper semi-continuous function on Ω is a viscosity subsolution of (28) if
whenever x0 ∈ Ω and φ ∈ C2(Ω) satisfy

φ(x0) = u(x0), (u− φ)(x) < (u− φ)(x0) for x 6= x0,
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we have

−∆φ(x0) ≤ 0 if x0 ∈ Ω (30)

u(x0)− g(x0) ≤ 0 if x0 ∈ ∂Ω. (31)

If the condition (31) at the boundary is replaced by

min{−∆φ(x0), u(x0)− g(x0) } ≤ 0, x0 ∈ ∂Ω, (32)

the function u is said to be a generalized viscosity subsolution of (28).
A lower semi-continuous function on Ω is a viscosity supersolution of (28) if

whenever x0 ∈ Ω and φ ∈ C2(Ω) satisfy

φ(x0) = u(x0), (u− φ)(x) > (u− φ)(x0) for x 6= x0,

we have

−∆φ(x0) ≥ 0 if x0 ∈ Ω (33)

u(x0)− g(x0) ≥ 0 if x0 ∈ ∂Ω. (34)

If the condition (34) at the boundary is replaced by

max{−∆φ(x0), u(x0)− g(x0) } ≥ 0, x0 ∈ ∂Ω, (35)

the function u is said to be a generalized viscosity supersolution of (28).
A function u ∈ C(Ω) is a viscosity solution of (28) if it is both a viscosity

subsolution and a viscosity supersolution of (28). Note that for this notion the
boundary condition is taken in the usual sense.

Theorem 15 [10, Theorem 3.4] Let Ω ⊂ Rd be a bounded Lipschitz domain and
g ∈ C(∂Ω). If u is a viscosity subsolution of (28) and v a supersolution of (28),
then u ≤ v on Ω.

The authors in [10] proved the strong uniqueness property for smooth domains.

Proposition 1 [10,5] Let Ω ⊂ Rd be a C2 domain and g ∈ C(∂Ω). Let u and
v be respectively generalized viscosity subsolution and supersolution of (28). Then
u ≤ v in Ω.

Using standard arguments we review below, the above proposition allows for
Ω a C2 domain to claim the convergence of the solution uh of (29) to the viscosity
solution of (28). We define for a C2 function φ on ΩE

S(h, x, φ(x), φ) =

{
−
∑d
i=1∆eiφ(x), x ∈ Ω

φ(x)−G(x), x ∈ O,

with the operator ∆e defined as for (9). We write (28) in the standard form

S(h, x, uh(x), uh) = 0, x ∈ Ω̃h with a slight abuse of notation. We have the follow-
ing analogues of [10, (2.11)–(2.12)].

If uh solves (28), we have

inf
O
G ≤ uh(x) ≤ sup

O
G, x ∈ Ωh. (36)
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Let u1
h and u2

h solve

−∆hu1
h ≤ 0 in Ωh and u1

h = G1 on O

−∆hu2
h ≥ 0 in Ωh and u2

h = G2 on O,

with G1 ≤ G2. Then
u1
h ≤ u2

h on Ω̃h. (37)

Equation (36) says that the scheme is stable. It is a consequence of properties of
the matrix of the discrete linear problem (28) [15, Theorem 4.77]. The proof is
analogous to [15, Remark 4.37].

Equation (37) is the discrete comparison principle. Again, it is a consequence
of [15, Theorem 4.77]. The proof is analogous to [15, Theorem 4.38 b].

Next, we recall the monotonicity of the scheme, i.e. if uh ≤ vh on Ω̃h with
uh(x) = vh(x) we have S(h, x, uh(x), uh) ≤ S(h, x, vh(x), vh).

Next, we describe the form of consistency of the scheme needed to prove con-
vergence when the boundary condition is taken in the viscosity sense. For x ∈ Ω
and φ ∈ C2(ΩE)

lim sup
h→0,y→x,ζ→0

S(h, y, φ(y) + ζ, φ+ ζ) =

{
−∆φ(x) if x ∈ Ω
max{−∆φ(x), φ(x)−G(x) } if x ∈ ∂Ω.

and

lim inf
h→0,y→x,ζ→0

S(h, y, φ(y) + ζ, φ+ ζ) =

{
−∆φ(x) if x ∈ Ω
min{−∆φ(x), φ(x)−G(x) } if x ∈ ∂Ω.

For x ∈ Ω, we have the usual consistency property. For x ∈ ∂Ω, one can approach
x with points y in either Ω or O.

Theorem 16 Assume that Ω is a C2 domain. The solution uh of (29) converges
uniformly on Ω to the viscosity solution of (28).

Proof Since the scheme is stable, consistent and monotone, it follows from Propo-
sition 1 and the framework in [6] that the solution uh of (29) converges uniformly
on Ω to the viscosity solution of (28).

ut

To handle the case Ω Lipschitz, a delicate treatment at the boundary is done in
[10] using barriers on appropriate shrinking rings. Denote by Br(x) the open ball
of center x and radius r. The following regularity condition for Lipschitz domains
is the one used in the proof.

There exists δ > 0 and µ ∈ (0, 1) such that for every δ ∈ (0, δ) and y ∈
∂Ω, there exists a ball Bµδ(z) strictly contained in Bδ(y) \ Ω. The constant µ is
independent of y ∈ ∂Ω.

We have the following analogue of [10, Corollary 4.5]

Lemma 17 Given η > 0, there exist δ = δ(η,G, δ), k0 = k0(η, µ,G), h0 =
h0(η, δ, µ, k0) such that

|uh(x)−G(y)| ≤ η

2
,

for all y ∈ ∂Ω, x ∈ Bδ/4k0 (y) ∩Ωh and h ≤ h0.
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Proof As in [10], we prove only the one sided inequality uh(x) ≤ G(y) + η/2, the
other being similar. Also, we consider only the case d 6= 2. The case d = 2 is
treated with similar arguments as indicated on [10, p. 16].

Part I: In this part we collect parts of the proof in [10] which do not deal with
dynamic programming. Fix δ ∈ (0, δ). Let uh solve (29). For y ∈ ∂Ω define

mh(y) = sup
B5δ(y)∩Γh

G and Mh = sup
Γh

G.

Define

θ =
1− 1

2

(
µ

2−µ
)ξ − 1

2

(
µ
2

)ξ
1−

(
µ
2

)ξ ∈ (0, 1) with ξ = d− 2,

and for k ≥ 0
Mh
k (y) = mh(y) + θk(Mh −mh(y)).

Define δk = δ/4k−1. By the regularity assumption on Ω, one can find balls
Bµδk+1

(zk) ⊂ Bδk+1
(y) \Ω for all k. In particular ||y − zk|| < δk+1.

For notational convenience, denote m = mh(y),M = Mh and Mk = Mh
k (y).

We consider the problem

∆Uk = 0 in Bδk(zk) \Bµδk+1
(zk)

Uk = m on ∂Bµδk+1
(zk)

Uk = Mk on ∂Bδk(zk).

Define

a =
1−

(
µ
2

)ξ
1−

(
µ
4

)ξ and b = 1− a.

and (see [10, Figure 1])

Γh1 = Bδk/2+h(zk) ∩ Γh and Γh2 = (Bδk/2+h(zk) \Bδk/2(zk)) ∩Ω.

It is proven in [10, page 17] that

Uk ≥ aMk + bm in Γh2 , (38)

and that for x ∈ B(2−µ)δk+1
(zk)

Uk(x) ≤ b′m+ a′Mk, (39)

where

a′ =
1−

(
µ

2−µ
)ξ

1−
(
µ
4

)ξ and b′ =

(
µ

2−µ
)ξ − (µ4 )ξ

1−
(
µ
4

)ξ .

Part II: We assume in this part that uh ≤ Mk on Bδk(y) ∩ Ωh for all h < hk
for a fixed hk and that Mk − m ≥ η/4. We prove that there exists hk+1 =
hk+1(η, µ, δ, d,G) ∈ (0, hk) such that for all h < hk+1, we have

uh ≤Mh
k+1(y) in Bδk+1

(y) ∩Ω.

For h ≤ µδk+1/2 the barrier Uk is extended to the ring

Rk,h = Bδk+2h(zk) \Bµδk+1−2h(zk).
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Let Uhk be a mesh function which solves

∆hU
h
k = 0 in Rk

Uhk = Uk in Rk,h \Rk,

where Rk = Bδk(zk)\Bµδk+1
(zk). Note that Rk,h\Rk is the outer h-neighborhood

of Rk. Since Rk is smooth, by Theorem 1, Uhk converges uniformly to Uk in Rk,h
as h→ 0 (recall that Uhk = Uk outside Rk). Therefore, given

γ = γ(µ, d, η) =
1

4

(
µ
µ−2

)ξ − (µ2 )ξ
1−

(
µ
4

)ξ η

4
> 0,

there exists hk+1 = hk+1(γ), 0 < hk+1 ≤ min{µδk+1/2, hk } such that

|Uhk − Uk| ≤ γ, (40)

for all h ≤ hk+1 and x ∈ Rk,h.
On Γh1 , we have uh = G ≤ m and so, using (40) and Γh1 ⊂ Rk,h (which follows

from ||y − zk|| < δk+1), we get

auh + bm ≤ m = inf
Rk
Uk ≤ Uhk + γ.

Since h < δk+1/2 and ||y − zk|| < δk+1 we have Bδk/2+h(zk) ⊂ Bδk(y). If

uh ≤Mk on Bδk(y) ∩Ωh, using (38) and (40) we get on Γh2

auh + bm ≤ aMk + bm ≤ Uk ≤ Uhk + γ.

In summary, we have

auh + bm ≤ Uhk + γ on Γh1 ∪ Γh2 .

Since the h-boundary of Bδk/2(y) ∩ Ωh is contained in Γh1 ∪ Γh2 (see [10, Figure
1]), by the discrete comparison principle (37), we obtain

auh + bm ≤ Uhk + γ on Bδk/2(y) ∩Ωh.

Using again (40) we have under the assumption uh ≤Mk on Bδk(y) ∩Ωh

auh + bm ≤ Uk + 2γ on Bδk/2(y) ∩Ωh. (41)

Next, since Bδk+1
(y) ⊂ Bδk/2(zk) we get by (41)

auh + bm ≤ Uk + 2γ on Bδk+1
(y) ∩Ωh. (42)

As Bδk+1
(y) ⊂ B(2−µ)δk+1

(zk), we have by (39) auh + bm ≤ b′m+ a′Mk + 2γ
on Bδk+1

(y) ∩Ωh. Since by assumption Mk −m ≥ η/4, we have

γ ≤ 1

4

(
µ
µ−2

)ξ − (µ2 )ξ
1−

(
µ
4

)ξ (Mk −m).
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Using in addition b′ − b+ a′ = a, we obtain for h < hk+1 in Bδk+1
(y) ∩Ωh

uh ≤
b′ − b
a

m+
a′

a
Mk +

2γ

a
≤ m+

a′

a
(Mk −m) +

b′(Mk −m)

2a

= m+ θ(Mk −m) = m+ θk+1(M −m). (43)

Part III: As G is uniformly continuous on the compact set Γ1, there exists
0 < δ < δ such that for all y ∈ ∂Ω,

mh(y)−G(y) <
η

4
. (44)

By the stability result (36)

uh ≤ max
x∈∂Ωh

G ≤ sup
Γh

G = Mh,

for all h. Thus we can take h0 = 1.
If Mh

0 (y)−mh(y) = Mh −mh(y) < η/4, then by (44), we obtain uh ≤Mh <
mh(y) + η/4 < G(y) + η/2. Otherwise, there exists 0 < h1 < h0 such that for all
h < h1, uh ≤Mh

1 (y) in Bδ1(y)∩Ω. If Mh
1 −mh(y) < η/4 we proceed as before to

obtain the desired inequality.
As 0 < θ < 1, for some integer s, we have θs(Mh −mh(y)) < η/4 which with

(44) gives the desired inequality if uh ≤ Mh
s on Bδs(y) ∩Ω. If for some k < s we

have Mh
k −mh(y) < η/4, we take k0 = k. Otherwise k0 = s. ut

We can now state

Theorem 17 Assume that Ω is a Lipschitz domain. The solution uh of (29)
converges uniformly on compact subsets of Ω to the viscosity solution of (28).

Proof The proof is as on [10, p. 18]. It follows from Lemma 17 that the half
relaxed limits satisfy the boundary condition in the classical sense. One can then
use Theorem 15 and the framework in [6]. ut
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