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Abstract. We construct finite element subspaces of the space of symme-

tric tensors with square-integrable divergence on a three-dimensional domain.
These spaces can be used to approximate the stress field in the classical

Hellinger–Reissner mixed formulation of the elasticty equations, when stan-

dard discontinuous finite element spaces are used to approximate the displace-
ment field. These finite element spaces are defined with respect to an arbitrary

simplicial triangulation of the domain, and there is one for each positive value

of the polynomial degree used for the displacements. For each degree, these
provide a stable finite element discretization. The construction of the spaces

is closely tied to discretizations of the elasticity complex, and can be viewed

as the three-dimensional analogue of the triangular element family for plane
elasticity previously proposed by Arnold and Winther.

1. Introduction

The classical Lagrange finite element spaces provide natural simplicial finite el-
ement discretizations of the Sobolev space H1. Similarly, various finite element
spaces derived in the theory of mixed finite elements, such as the Raviart–Thomas
and Nedelec spaces, provide the natural finite element discretizations of the spaces
H(div) and H(curl). (These statements are made precise and treated in a uni-
form framework of the finite element exterior calculus in [9].) In this paper we
consider the finite element discretization of the space H(div,Ω; S) consisting of
square-integrable symmetric tensors (or, given a choice of coordinates, symmetric
matrix fields) with square-integrable divergence. In the classical Hellinger–Reissner
mixed formulation of the elasticity equations, the stress is sought in H(div,Ω; S)
and the displacement in L2(Ω; Rn). The natural discretization of the latter space
is evident—piecewise polynomial of some degree without interelement continuity
constraints—but the development of an appropriate finite element subspace of
H(div,Ω; S) to use with these is a long-standing and challenging problem. For
plane elasticity, the known stable mixed finite element methods have mostly in-
volved composite elements for the stress [6, 15, 16, 21]. To avoid these, other
authors have modified the standard mixed variational formulation of elasticity to a
formulation that uses general, rather than symmetric, tensors for the stress, with
the symmetry imposed weakly; see [2, 5, 7, 17, 18, 19, 20, 8]. Not until 2002 was
a stable non-composite finite method for the classical mixed formulation of plane
elasticity found [10]. This work can be seen as answering the question “what are
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the natural finite element discretizations of H(div,Ω; S)?” in the case of two di-
mensions. In this paper we address this question for three dimensions.

Up until recently, there were no mixed finite elements for the Hellinger–Reissner
formulation in three dimensions known to be stable. In [1], a partial analogue of
the lowest order element in [10] was proposed and shown to be stable. Here we will
derive the full analogue of the results of [10]. We construct a family of finite element
subspaces of H(div,Ω; S) which, when used to discretize the stress in elasticity along
with the obvious discontinuous piecewise polynomial discretization for the displace-
ment, provide stable mixed finite elements for the Hellinger–Reissner principle. As
in two dimensions, these spaces are related to a finite element subcomplex of the
elasticity complex, related to it by commuting diagrams.

We recall the standard mixed formulation for the elasticity equations. Let Ω be
a contractible polyhedral domain in R3, occupied by a linearly elastic body which is
clamped on the boundary ∂Ω, and let S and u denote the stress and displacement
fields engendered by a force f acting on the body. The matrix field S and the vector
field u can be characterized as the unique critical point of the Hellinger-Reissner
functional

J (T, v) =
∫

Ω

(
1
2
AT : T + div T · v − f · v) dx

over the space H(div,Ω; S) × L2(Ω; R3). Here, S is the six dimensional space of
symmetric matrices and S : T denotes the Frobenius product on S. The given
compliance tensor A = A(x) : S → S is symmetric, and bounded and positive
definite uniformly with respect to x ∈ Ω. The divergence operator, div, is applied
to a matrix field by taking the divergence of each row. Hence, this operator maps
the space H(div,Ω; S) into L2(Ω; R3).

A mixed finite element method determines an approximate stress field Sh and
an approximate displacement field uh as the unique critical point (Sh, uh) of the
Hellinger–Reissner functional in a finite element space Σh × Vh ⊂ H(div,Ω; S) ×
L2(Ω; R3), where h denotes the mesh size. Equivalently, (Sh, uh) ∈ Σh × Vh solves
the saddle point system

(1.1)
∫

Ω

(ASh : T + div T · uh + divSh · v) dx =
∫

Ω

fv dx, (T, v) ∈ Σh × Vh.

To ensure that the discrete system has a unique solution and that it provides a good
approximation of the true solution the finite dimensional spaces Σh and Vh must
satisfy the stability conditions from the theory of mixed finite element methods,
see [11, 12]. As is well known, see for example [10], the following two conditions
are sufficient:

• div Σh ⊂ Vh.
• There exists a linear operator Πh : H1(Ω; S) → Σh, bounded in L(H1;L2)

uniformly with respect to h, and such that div Πh S = ΠV
h divS for all

S ∈ H1(Ω; S), where ΠV
h : L2(Ω; R3)→ Vh denotes the L2-projection.

As mentioned above, the construction of finite element spaces which fulfill these
two conditions has proved to be surprisingly hard. In this paper, we will derive a
family of finite element spaces Σh and Vh based on tetrahedral meshes, and show
that they satisfy these two stability conditions. There is one member of the family
for each polynomial degree k ≥ 1. The space Vh for the displacements is simply the
space of all piecewise polynomial vector fields of degree at most k. In the lowest
order case, k = 1, the space Σh contains the full space of quadratic polynomials
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on each element, augmented by divergence-free polynomials of degree 3 and 4.
The local dimension of Σh is 162, or 27 per component of stress on average. The
analogous space in two dimensions, derived in [10], was of local dimension 24 (8 per
component).

The complexity of the elements may very well limit their practical significance.
However, we believe that the determination of the natural discretization of space
H(div,Ω; S) provides important insight, both into the obstacles to the derivation
of simpler methods, and for the design of alternative procedures, such as noncon-
forming methods.

This paper is organized as follows. After giving some preliminaries remarks
in Section 2 we present the lowest order element and establish its properties in
Section 3. A family of higher order elements is then presented in Section 4. Key
to the analysis of these elements is the description of the polynomial space of
symmetric matrix fields with vanishing divergence and vanishing normal traces on
the boundary of a simplex K. The dimension of this space is derived in Section 7
based on preliminary results derived in Sections 5 and 6. Furthermore, an explicit
basis for this space, necessary for the computational procedure, is also given in the
lowest order cases.

2. Notation and preliminaries

We begin with some basic notation. If K ⊂ R3 is a tetrahedron, then ∆2(K)
denotes the set of the four 2–dimensional faces of K, ∆1(K) the set of the six
1–dimensional edges, and ∆0(K) the set of the four vertices. Furthermore, ∆(K)
is the set of all subsimplexes of K (of dimension 0, 1, 2 or 3).

We let M be the space of 3 × 3 real matrices, and S and K the subspaces of
symmetric and skew symmetric matrices, respectively. The operators sym : M→ S
and skw : M → K denote the symmetric and skew symmetric parts, respectively.
Note that an element of the space K can be identified with its axial vector in R3

given by the map vec : K→ R3:

vec

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 =

v1

v2

v3

 ,

i.e., vec−1(v)w = v × w for any vectors v and w.
For any vector space X, we let L2(Ω;X) be the space of square-integrable vector

fields on Ω with values in X. For our purposes, X will usually either be R, R3,
or M, or some subspace of one of these. In the case X = R, we will simply write
L2(Ω). The corresponding Sobolev space of order k, i.e., the subspace of L2(Ω;X)
consisting of functions with all partial derivatives of order less than or equal to k
in L2(Ω;X), is denoted Hk(Ω;X), and its norm by ‖ · ‖k. The space H(div,Ω; S)
is defined by

H(div,Ω; S) = {T ∈ L2(Ω; S) | div T ∈ L2(Ω; R3)},

where the divergence of a matrix field is ithe vector field obtained by applying the
divergence operator row–wise. For a vector field v : Ω → R3, grad v is the matrix
field with rows the gradient of each component, and the symmetric gradient, ε(v),
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is given by ε(v) = sym grad v. Furthermore,

curl v = −2 vec skw grad v =

 ∂3v2 − ∂2v3

−∂3v1 + ∂1v3

∂2v1 − ∂1v2

 .

If we consider a linear coordinate transformation of the form x = Bx̂ + b, with
corresponding vector fields v and v̂ related by v(x) = (B′)−1v̂(x̂), then we have

skw gradx v = (B′)−1(skw gradx̂ v̂)B−1.

Here B′ denotes the transpose of B. In particular, if B is orthogonal, i.e., B′B = I,
then v = Bv̂ and

(2.1) skw gradx v = B(skw gradx̂ v̂)B′.

As for the divergence and the gradient operator, the operator curl acts on a
matrix field by applying the ordinary curl operator to each row of the matrix.
The operator curl∗ is the corresponding operator obtained by taking the curl of
each column. Alternatively, we have curl∗ T = (curlT ′)′ for any matrix field T.
The second order operator curl curl∗ maps symmetric matrix fields into symmetric
matrix fields. Let Ξ : M→ M be the algebraic operator ΞT = T ′ − tr(T )I, where
I is the identity matrix. Then Ξ is invertible with Ξ−1 T = T ′ − tr(T )I/2. The
following identities are useful:

vec skw curlT = −1
2

div ΞT, T ∈ C∞(Ω,M),(2.2)

curlT = Ξ grad vecT, T ∈ C∞(Ω,K),(2.3)

tr curlT = −2 div vec skw T, T ∈ C∞(Ω,M).(2.4)

These formulas can be verified directly, but they are also consequences of the dis-
cussions given in [8, 9], cf. Section 4 of [8] or Section 11 of [9].

For K ⊂ R3 we let Pk(K;X) be the space of polynomials of degree k, defined
on K and with values in X. We write Pk or Pk(K) for Pk(K; R). The de Rham
complex has a polynomial analogue of the form

(2.5) R ↪→ Pk+3
grad−−−→ Pk+2(K; R3) curl−−→ Pk+1(K; R3) div−−→ Pk → 0.

In fact, this complex is an exact sequence [9].
In recent years differential complexes have come to play a significant role in the

design of mixed finite element methods [3, 10, 8, 9]. For the equations of elasticity,
the relevant differential complex is the elasticity complex. In three space dimensions,
the elasticity complex takes the form

T ↪→ C∞(Ω; R3) ε−→ C∞(Ω; S) curl curl∗−−−−−−→ C∞(Ω; S) div−−→ C∞(Ω; R3)→ 0,

where T is the six-dimensional space of infinitesimal rigid motions, i.e., the space
of linear polynomial functions of the form x 7→ a + b × x for some a, b ∈ R3. It is
straightforward to verify that the elasticity complex is a complex, i.e., the compo-
sition of two successive operators is zero. In fact, if the domain Ω is contractible,
then the elasticity complex is an exact sequence; see [8, 9].

An analogous complex with less smoothness is

T ↪→ H1(Ω; R3) ε−→ H(curl curl∗,Ω; S) curl curl∗−−−−−−→ H(div,Ω; S) div−−→ L2(Ω; R3)→ 0,

where H(curl curl∗,Ω; S) = {S ∈ L2(Ω; S) | curl curl∗ S ∈ L2(Ω; S) }.
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There is also a polynomial analogue of the elasticity complex. Let K ⊂ R3 be a
tetrahedron and k ≥ 0. The polynomial elasticity complex is given by

(2.6) T ↪→ Pk+4(K; R3) ε−→ Pk+3(K; S) curl curl∗−−−−−−→ Pk+1(K; S) div−−→ Pk(K; R3)→ 0.

This complex is an exact sequence. To prove the exactness, we first show that if
S is a matrix field in Pk+3(Ω; S), with curl curl∗ S = 0, then S = ε(u) for u =
(u1, u2, u3)T ∈ Pk+4(Ω; R3). Clearly S = ε(u) for u ∈ C∞(K; R3). It is enough to
show that all second derivatives of uk, k = 1, 2, 3, are in Pk+2(Ω; R). This follows
from the identity ∂ijuk = ∂i ε(u)jk + ∂j ε(u)ik − ∂k ε(u)ij . Next, we show that
if S ∈ Pk+1(Ω; S), and divS = 0, then S = curl curl∗ T for some T ∈ Pk+3(Ω; S).
First we observe that since divS = 0 it follows from the fact that (2.5) is exact that
S = curlU for some U ∈ Pk+2(K; M). Furthermore, since S is symmetric it follows
from (2.2) that div ΞU = 0, and as a consequence, using (2.5) once more, we obtain
that ΞU = curlT for some T ∈ Pk+3(K; M), or S = curlU = curl Ξ−1 curlT .
However, by (2.3) we have curl Ξ−1 curl skw T = curl grad vec skw T = 0. Hence,
we can take T ∈ Pk+3(K; S). Finally, we observe that if T is symmetric, then
(2.4) implies that tr curlT = 0, and therefore S = curl Ξ−1 curlT = curl curl∗ T .
To establish the surjectivity of the last map, one can use the fact that dimPk =
(k + 1)(k + 2)(k + 3)/6 to verify that the alternating sum of the dimensions of the
spaces in the sequence is zero. The same arguments show that (2.6) is exact for
k = −1, −2, or −3, if Pj is interpreted as the zero space for j < 0.

Let {Th} denote a family of triangulations of Ω by tetrahedra with diameter
bounded by h. We assume that the intersection of any two tetrahedra in Th is
either empty or a common subsimplex of each. The family {Th} is also assumed
to be shape regular in the sense that the ratio of the radii of the circumscribed
and inscribed spheres of all the tetrahedra can be bounded by a fixed constant.
Furthermore, we will use the notation ∆j(Th), for j = 0, 1, 2, to denote the set of
vertices, edges, and faces, respectively, associated with the mesh Th. In Section 4 we
will define a family of finite element spaces Σh ⊂ H(div,Ω; S) and Vh ⊂ L2(Ω; R) for
the elasticity problem consisting of piecewise polynomial spaces with repect to Th of
arbitrarily high polynomial order. However, we will first consider the lowest order
case of this family in Section 3 below. All our spaces will have the property that
div Σh ⊂ Vh. Furthermore, we will identify a corresponding projection operator
Πh : H1(Ω; S)→ Σh satisfying the commutativity relation

(2.7) div ΠhT = ΠV
h div T, T ∈ H1(Ω; S),

and the bound

(2.8) ‖ΠhT‖0 ≤ C‖T‖1, T ∈ H1(Ω; S),

with constant C independent of h. Here ΠV
h : L2(Ω; R3) → Vh is the L2 projec-

tion. It is a consequence of the general error bounds derived in [14], cf. also [10],
that the properties above imply that (Σh, Vh) is a stable pair of elements for the
discretization (1.1), and that the error bounds

‖S − Sh‖0 ≤ ‖(I −Πh)S‖0(2.9)

‖u− uh‖0 ≤ ‖(I −ΠV
h )u‖0 + c‖(I −Πh)S‖0(2.10)

holds, with a constant c independent of h. Here (S, u) is the unique critical point
of the Hellinger-Reissner functional over H(div,Ω; S) × L2(Ω; R2) and (Sh, uh) ∈
Σh × Vh the corresponding finite element solution. In addition, divSh = ΠV

h divS.
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3. The lowest order element

We first describe the restriction of the lowest order spaces Σh and Vh to a single
tetrahedron K ∈ Th. Define

ΣK = {T ∈ P4(K; S) | div T ∈ P1(K; R3) }, VK = P1(K; R3).

The space VK has dimension 12 and a complete set of degrees of freedom is given by
the zero and first order moments with respect to K. The space ΣK has dimension at
least 162 since the dimension of P4(K; S) is 210 and the condition div T ∈ P1(K; R3)
represents 48 linear constraints. We will show that dim ΣK = 162 by exhibiting
162 degrees of freedom which determine the elements uniquely. Define

M(K) = {T ∈ P4(K; S) | div T = 0, Tn = 0 on ∂K }.

It will follow from Theorem 7.2 below that the dimension of M(K) is 6. Further-
more, in Section 7 we will also give an explicit basis for this space. Using this basis,
we can state the 162 degrees of freedom for the space ΣK .

Lemma 3.1. A matrix field T ∈ ΣK is uniquely determined by the following degrees
of freedom

(1) the values of T at the vertices of K, 4× 6 = 24 degrees of freedom,
(2) for each edge e ∈ ∆1(K) with unit tangent vector s and linearly independent

normal vectors n− and n+, the constant, linear and quadratic moments over
e of n′−Tn−, n′+Tn+, n′−Tn+, 6× 3× 3 = 54 degrees of freedom,

(3) for each face f ∈ ∆2(K), with normal n, and each edge e ⊂ ∂f with tangent
s, the constant, linear and quadratic moments over e of s′Tn, 4×3×3 = 36
degrees of freedom,

(4) for each face f ∈ ∆2(K), with normal n, the constant and linear moments
over f of Tn, 4× 3× 3 = 36 degrees of freedom,

(5) the average of T over K, 6 degrees of freedom,
(6) the value of the moments

∫
K
T : U dx, U ∈M(K), 6 degrees of freedom.

Proof. We assume that all degrees of freedom vanish and show that T = 0. Since
T = 0 at the vertices, the second and third set of degrees of freedom imply that
Tn = 0 on each edge for both faces meeting the edge. By the fourth set of degrees
of freedom we obtain that Tn = 0 on each face of K. For v = div T ∈ P1(K; R3)
we have∫

K

v2 dx = −
∫
K

T : ε(v) dx+
∫
∂K

Tn · v dxf = −
∫
K

T : ε(v) dx = 0

by the fifth set of degrees of freedom. Here and below, dxf denotes the surface
measure on ∂K. We conclude that div T = 0, and, by the last set of degrees of
freedom, that T = 0. �

We now describe the finite element spaces on the triangulation Th. We denote
by Vh the space of vector fields which belong to VK for each K ∈ Th and by Σh
the space of matrix fields which belong piecewise to ΣK , and with the continuity
conditions induced by the degrees of freedom. In particular, for T ∈ Σh, the
normal components Tn are continuous across all faces f ∈ ∆2(Th) and, hence,
Σh ⊂ H(div,Ω; S). In addition, if T ∈ Σh, e ∈ ∆1(Th), and n+, n− are two vectors
normal to e, then n′+Tn− is continuous on e and of course, T is continuous at the
vertices.
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It remains to define an interpolation operator Πh : H1(Ω; S)→ Σh which satisfies
(2.7) and (2.8). The technique used here is standard and can be found for example
in [12, § VI-4]. Because of the vertex and edge degrees of freedom, the canonical
interpolation operator for Σh, ΠΣ

h , defined directly from the degrees of freedom,
is not bounded on H1(Ω; S). In order to overcome this difficulty we introduce the
operator Π0

h : H1(Ω; S)→ Σh defined from the degrees of freedom above, but where
the vertex and edge degrees of freedom are set equal to zero, i.e., we have

Π0
hT (x) = 0, x ∈ ∆0(Th),(3.1) ∫

e

n′−Π0
hTn+v ds = 0, e ∈ ∆1(Th), v ∈ P2(e), wheren−, n+ ∈ e⊥,(3.2) ∫

e

s′Π0
hTnv ds = 0, v ∈ f ∈ ∆2(Th), e ∈ ∆1(f), n ⊥ f, s ‖ e, v ∈ P2(e),(3.3) ∫
f

(T −Π0
hT )n · v dxf = 0, f ∈ ∆2(Th), v ∈ P1(f ; R3),(3.4) ∫

K

(T −Π0
hT ) dx = 0, K ∈ Th,(3.5) ∫

K

(T −Π0
hT ) : U dx = 0, K ∈ Th, U ∈M(K).(3.6)

The commutativity property (2.7) for Π0
h follows from (3.4) and (3.5) since∫

K

(div Π0
hT −div T ) ·v dx = −

∫
K

(Π0
hT −T ) : ε(v) dx+

∫
∂K

(Π0
hT −T )n ·v dxf = 0.

The uniform boundedness (2.8) can be seen from a standard scaling argument
using the matrix Piola transform. Let K̂ be a fixed reference tetrahedron and
F = FK : K̂ → K be an affine isomorphism of the form Fx̂ = Bx̂ + b. Given
a matrix field T̂ : K̂ → S, define T : K → S by the matrix Piola transform
T (x) = BT̂ (x̂)BT , with x = Fx̂. Using div T (x) = B div T̂ (x̂), it is easy to verify
that T ∈ ΣK if and only if T̂ ∈ ΣK̂ . Furthermore, as in [4, 10] a scaling argument
can be used to verify the uniform boundedness condition (2.8) for the operator
Π0
h. We can therefore conclude that the operator Π0

h satisfies the two conditions
(2.7) and (2.8). However, the operator Π0

h lacks good approximation properties.
Therefore, in order to obtain error estimates from the general bounds (2.9) and
(2.10) a more accurate interpolation operator is needed.

Consider the modified interpolation operator Πh : H1(Ω; S)→ Σh of the form

(3.7) Πh = Π0
h(I −Rh) +Rh,

where Rh : L2(Ω; S) → Σh is the Clément operator onto the continuous piecewise
quadratic subspace of Σh [13]. This operator satifies the bounds

‖RhT − T‖j ≤ chm−j‖T‖m, 0 ≤ j ≤ 1, j ≤ m ≤ 3.

As a consequence of this bound, and the boundedness (2.8) of Π0
h, we obtain the

estimate

(3.8) ‖ΠhT − T‖0 ≤ chm‖T‖m, 1 ≤ m ≤ 3

for the interpolation error. Furthermore, since Π0
h satisfies (2.7) and ΠV

h divRh =
divRh, we conclude that Πh satisfies (2.7).
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We also recall that the projection operator ΠV
h : L2(Ω; R3) → Vh satisfies the

error estimate

(3.9) ‖ΠV
h v − v‖0 ≤ chm‖v‖m, 0 ≤ m ≤ 2.

The estimates (3.8) and (3.9), combined with the basic error bounds (2.9) and
(2.10), and the fact that divSh = ΠV

h divS, imply the following error estimates for
the finite element method generated by Σh × Vh.

Theorem 3.2. Let (S, u) denote the unique critical point of the Hellinger-Reissner
functional over H(div,Ω; S)×L2(Ω; R2) and let (Sh, uh) be the unique critical point
over Σh × Vh. Then

‖S − Sh‖0 ≤ chm‖S‖m, 1 ≤ m ≤ 3,
‖ divS − divSh‖0 ≤ chm‖ divS‖m, 0 ≤ m ≤ 2,

‖u− uh‖0 ≤ chm‖u‖m+1, 1 ≤ m ≤ 2.

Remark. It is not possible to lower the polynomial degree of the stress space
Σh introduced above. That is, if ΣK = {T ∈ Pk(K; S) | div T ∈ Ps(K; R3) }, then
we must require that k ≥ 4 and s ≤ k − 3. The argument generalizes a similar
argument given in [10]. Any element T ∈ ΣK must be uniquely determined by an
arbitrary specification of degrees of freedom which are associated with the vertices,
edges, faces, and interior of K. Since we require the assempled finite element space
to be contained in H(div,Ω; S), the degrees of freedom associated with a face, its
edges, and its vertices must determine Tn on that face. Now, consider two faces
of K meeting an an edge e with normals n+ and n−. The quantity n′−Tn+ is
determined on e by the degrees of freedom associated to the first face and its edges
and vertices, and, since this quantity is identical to n′+Tn−, it is also determined
by the degrees of freedom associated to the second face and its edges and vertices.
But, by definition, the degrees of freedom are independent, so this is only possible
if n′−Tn+ is determined on e by the degrees of freedom associated to e or associated
to one of its two vertices. But the edge e is shared by other simplices which will
have different values for the normals n+ and n−, from which it follows that the
degrees of freedom associated to e and those associated to its two vertices must
determine the quantities m′Tn for every pair of vectors m, n ∈ e⊥ (assuming there
is no restriction put on the triangulations). Next, consider a vertex x belonging
to an edge e and a face with normal n. Then we have just seen that n′T (x)n is
determined by the degrees of freedom associated to e and its vertices. But it is
similarly determined by the corresponding quantities for the other edge in the face
containing x. By independence of the degrees of freedom, we conclude that n′T (x)n
is determined by the degrees of freedom associated to x. This is true for each face
containing x, so for arbitrary values of n. It follows that T itself is determined at
a vertices by the degrees of freedom associated to the vertex (a symmetric matrix
is determined by the associated quadratic form).

Moreover, for the commutativity relation (2.7) to hold, we need to have as degrees
of freedom on a face the moment of Tn times the divergence of the stress elements.
Since we already have enough degrees of freedom at the vertices and on edges
to determine two components of Tn there, we can give at most the moments of
degree k − 3 of these components. Thus our polynomial space must incorporate
the restriction s ≤ k − 3. It follows that k < 3 is impossible. For k = 3, the
above argument leads to 24 degrees of freedom at the vertices and 36 degrees of
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freedom on the edges. Next, for each face, and each edge, we take as degrees of
freedom the constant and linear moments of s′Tn, 24 degrees of freedom, as well
as the constant moments of Tn on faces, which are another 12 degrees of freedom
for H(div) continuity. In total 96 degrees of freedom, but the space of cubics with
constant divergence has dimension 93, from the exactness of (2.6). It follows that
k ≥ 4.

However, as in [10], a minor simplification is possible. On each tetrahedron
K ∈ Th we take the restricted displacement space VK to be the rigid motions
T ⊂ P1(K; R3) and the corresponding stress space to be

Σ̃K = {T ∈ P4(K; S) | div T ∈ T }.

Clearly dim Σ̃K ≥ 210−(60−6) = 156. In fact, dim Σ̃K = 156 and a complete set of
degrees of freedom is obtained by removing the six average values of T represented
by (4) in Lemma 3.1. The proof of the fact that these degrees of freedom are
unisolvent for Σ̃K follows by a simple modification of the proof of Lemma 3.1 above.
Just observe that if v = div T ∈ T then ε(v) = 0. However, the simplified element
is less accurate, since the stress space lacks some quadratics, and the displacement
space some linears. Instead of the error estimates given in Theorem 3.2 we obtain
at most O(h2) convergence for ||S − Sh||0, and at most first order convergence for
|| div(S − Sh)||0 and ||u− uh||0.

4. A Family of Higher Order Elements

In this section we describe a family of stable element pairs, one for each degree
k ≥ 1. The lowest order case k = 1 is the one treated above. We first describe the
elements on a single tetrahedron. Define

ΣK = {T ∈ Pk+3(K; S) | div T ∈ Pk(K; R3) }, VK = Pk(K; R3).

Then

dimVK = 3
(
k + 3

3

)
=

(k + 3)(k + 2)(k + 1)
2

,

dim ΣK ≥ dk : = dimPk+3(K; S)− [dimPk+2(K; R3)− dimPk(K; R3)]

= 6
(
k + 6

3

)
− 3
(
k + 5

3

)
+ 3
(
k + 3

3

)
= k3 + 12k2 + 56k + 93.

Notice that the space ε[Pk(K; R3)] has dimension (k + 3)(k + 2)(k + 1)/2 − 6.
Analoguous to the lowest order case, we define the space

Mk(K) = {T ∈ Pk(K; S) | div T = 0, Tn = 0 on ∂K }.

We will prove in Section 7, Theorem 7.2, that dimMk(K) is (k+2)(k−2)(k−3)/2
for k ≥ 4.

The degrees of freedom for VK are the moments of degree less than or equal to
k with respect to K. A unisolvent set of degrees of freedom for ΣK are given by

(1) the values of T at the vertices of K, 4× 6 = 24 degrees of freedom,
(2) for each edge e ∈ ∆1(K) with unit tangent vector s and linearly indepen-

dent normal vectors n− and n+, the moments of degree at most k+ 1 over
e of n′−Tn−, n′+Tn+, n′−Tn+, 6×(k+2)×3 = 18k+36 degrees of freedom,
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(3) for each face f ∈ ∆2(K), with normal n, and each edge e ⊂ ∂f with tangent
s, the moments of degree at most k+1 over e of s′Tn, 4×3×(k+2) = 12k+24
degrees of freedom,

(4) for each f ∈ ∆2(K) with normal vector n, the moments of degree at most k
over f for Tn, 3×4× (k+ 2)(k+ 1)/2 = 6k2 + 18k+ 12 degrees of freedom,

(5)
∫
K
T : U dx, U ∈ ε(VK), (k + 3)(k + 2)(k + 1)/2− 6 degrees of freedom,

(6)
∫
K
T : U dx, U ∈Mk+3(K), (k + 5)(k + 1)k/2 degrees of freedom.

The proof that this set of functionals is unisolvent for the space ΣK is almost
identical to the lowest order case, and it is easily checked that their numbers sum
up to dk. Hence, we have shown that dim Σk = dk. Furthermore, in Section 7 we
will give an explicit basis for the space Mk(K) when k = 4 and k = 5.

The finite element space Vh ⊂ L2(Ω; R3) consists of all vector fields which belong
to Pk(K; R3) for each K ∈ Th, while the corresponding stress space Σh is the space
of matrix fields which belong piecewise to ΣK , and with the continuity conditions
induced by the degrees of freedom. In particular, this implies that the normal
components Tn, for T ∈ Σh, are continuous over all faces in ∆2(Th). Hence, as in
the lowest order case we have that Σh ⊂ H(div,Ω; S).

The L2 projection ΠV
h onto Vh satisfies the estimate

(4.1) ‖ΠV
h v − v‖0 ≤ chm‖v‖m, 0 ≤ m ≤ k + 1.

We also introduce the Clément interpolant Rh : L2(Ω; S) → Σh defined as the S–
valued version of the standard scalar Clément interpolant into continuous piecewise
polynomials of order k + 1. Hence, the operator Rh satisfies

‖RhT − T‖j ≤ chm−j‖T‖m, 0 ≤ j ≤ 1, j ≤ m ≤ k + 2.

Furthermore, we define the modified canonical interpolation operator Πh by (3.7),
where the operator Π0

h is defined in complete analogy with the lowest order case,
by setting the degrees freedom associated with ∆0(Th) and ∆1(Th) equal to zero.
Then the operator Πh satisfies (2.7) and (2.8), and the error bound

(4.2) ‖ΠhT − T‖0 ≤ chm‖T‖m, 1 ≤ m ≤ k + 2.

As above, the interpolation estimates (4.1) and (4.2), and the error bounds (2.9)
and (2.10), leads to the following error estimates.

Theorem 4.1. Let (S, u) denote the unique critical point of the Hellinger-Reissner
funtional over H(div,Ω; S)×L2(Ω; R2) and let (Sh, uh) be the unique critical point
over Σh × Vh. Then

‖S − Sh‖0 ≤ chm‖S‖m, 1 ≤ m ≤ k + 2,

‖ divS − divSh‖0 ≤ chm‖ divS‖m, 0 ≤ m ≤ k + 1,

‖u− uh‖0 ≤ chm‖u‖m+1, 1 ≤ m ≤ k + 1.

5. Some properties of vector fields and matrix fields

It remains to prove the claimed dimension formula for Mk(K), given in Theo-
rem 7.2 below. To do so we introduce a related space, Nk(K), in the next section
and determine its dimension. For the analysis we need some basic notations and
properties of differential operators on vector fields and matrix fields, which are the
subject of the present section.
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5.1. Identities for vector fields. Let n denote a fixed unit vector in R3, Pn =
nn′ the orthogonal projection onto Rn, f = n⊥ the plane orthogonal to n, and
Qn = I − Pn is the orthogonal projection onto f . Furthermore, set

Cn =

 0 n3 −n2

−n3 0 n1

n2 −n1 0

 = − vec−1 n,

so that Cnv = v × n. The following identities are easily checked:

C ′n = −Cn, C2
n = −Qn, CnPn = 0, CnQn = QnCn = Cn.

For any vector field v = (v1, v2, v3)′ in R3, we obviously have v = Pnv +Qnv and

curl v = curlPnv+curlQnv = Pn curlPnv+Pn curlQnv+Qn curlPnv+Qn curlQnv.

It is elementary to verify that

Pn curlPnv = 0, Qn curlQnv = Cn
∂v

∂n
,

if n = e3 = (0, 0, 1)′. In view of the transformation formula (2.1), these identities
hold for an arbitrary unit vector n. Furthermore, we define

rotf v = Pn curl v = Pn curlQnv = −(divCnv)n, curlf v = Qn curlPnv.

With this notation we obtain the decomposition

(5.1) curl v = rotf v + curlf v + Cn
∂v

∂n
.

We also define the tangential gradient gradf φ = Qn gradφ, for a scalar field φ. For
a vector field v, gradf v = (grad v)Qn is the matrix field with rows equal to the
tangential gradients of the components of v, and we let

εf (v) =
1
2
{gradf (Qnv) + [gradf (Qnv)]′} = Qn ε(v)Qn

be the tangential part of the symmetric gradient. Note that the definitions of
gradf v, εf (v), curlf v, and rotf v do not depend on the choice of the unit normal
n to f . The identity

(5.2) curlf v = −Cn grad(n′v) = −Cn gradf (n′v)

can be easily verified in the special case n = e3, and holds in general.

5.2. Identities for matrix fields. We extend the operators curl, curlf and rotf
to act on and yield 3× 3 matrix fields by applying the vector operations row-wise.
More precisely, rotf S = (curlS)Pn = (curlSQn)Pn and curlf S = (curlSPn)Qn.
We notice that, for any constant matrix A, curlAS = A curlS. We also recall
that curl∗ S = (curlS′)′ is the corresponding operator obtained by applying the
curl operation to each column. The corresponding column operators rot∗f and
curl∗f are defined similarly, i.e., rot∗f S = Pn curl∗ S = Pn curl∗QnS and curl∗f S =
Qn curl∗ PnS. For a given row vector v, grad∗f v = (gradf v′)′ = Qn(grad v′)′, which
is the matrix whose columns are the tangential gradients of the components of v.

We now extend the decomposition (5.1) to curl and curl∗ . It is easy to see that
CnS results in Cn applied to the columns of S, while −SCn is Cn applied row-wise.
It follows that

curlS = curlf S + rotf S −
∂S

∂n
Cn,
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and

(5.3) curl∗ S = curl∗f S + rot∗f S + Cn
∂S

∂n
,

where ∂S/∂n is obtained by taking the directional derivative of each component.
Furthermore, the identities

(5.4) curlf S = (gradf Sn)Cn, curl∗f S = −Cn grad∗f n
′S

are just matrix analogues of (5.2). Note also that from the definitions of the
operators rotf and rot∗f we have

(5.5)
Pn(curl curl∗ S)Pn = Pn(rotf curl∗ S) = rotf (Pn curl∗ S)

= rotf rot∗f S = rotf rot∗f (QnSQn).

We will also need exact sequences relating spaces of functions defined on a two
dimensional space. Let f = n⊥. In analogy with (2.6) the following two dimensional
complexes are exact:

(5.6) Tf ↪→ Pk+3(f ;QnR3)
εf−→ Pk+2(f ;QnSQn)

rotf rot∗f−−−−−→ Pk(f ; RPn)→ 0,

(5.7)

P1(f ; R) ↪→ Pk+3(f ; R)
gradf grad∗f−−−−−−−→ Pk+1(f ;QnSQn)

rotf−−−→ Pk(f ;QnSPn)→ 0.

Here, Tf is the 3-dimensional space of vector fields on f of the form v(x) = Qnw(x)
for some w ∈ T.

To close this section, we introduce a useful operator Λf . Let f be a plane with
unit normal n. For any symmetric matrix field S defined on a neighborhood on f ,
we define Λf (S) : f → QnSQn by

Λf (S) = 2 εf (Sn)−Qn∂nSQn,

where ∂nS := ∂S/∂n. Hence, Λf (S) is a tangential symmetric matrix field defined
on f . Note that Λf (S) depends on the choice of normal: if we reverse the sign of n,
we reverse the sign of Λf (S) as well. For future reference, we note that if T = ε(v),
where v is a vector field then we have

2 εf (Tn) = gradf grad∗f (n′v) +Qn∂n ε(v)Qn.

Hence, we obtain that

(5.8) Λf
(
ε(v)

)
= gradf grad∗f (n′v).

The tangential–normal components of the matrix field curl curl∗ S on f can be
expressed in terms of Λf (S). Indeed, by the definition of the operator rotf and
(5.3) we have

Cn(curl curl∗ S)Pn = Cn rotf curl∗ S = rotf Cn(curl∗f S + rot∗f S + Cn∂nS).

However, Cn rot∗f S = 0 and, by (5.3), Cn curl∗f S = Qn grad∗f n
′S. Hence,

(5.9) Cn(curl curl∗ S)Pn = rotf Qn(grad∗f n
′S − ∂nS)Qn = rotf Λf (S).
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6. Polynomial matrix fields on a single tetrahedron

In this section we will compute the dimension of the polynomial space

(6.1) Nk = Nk(K) = {S ∈ Pk(K; S) |QnSQn = Λf (S) = 0, f ∈ ∆2(K)}.

where K ⊂ R3 is a fixed tetrahedron and k ≥ 3. The final result is obtained in
Theorem 6.6, and applied in the next section to obtain the dimension of the space
Mk(K). We start by introducing some additional notation.

If f ∈ ∆2(K), we denote by hf the perpendicular distance from the opposite
vertex to f and by n = nf the outward normal vector to f . If e is an edge, we
let s = se denote one of the unit vectors parallel to e. When the edge e belongs
to the face f , we write m = me,f for the unit vector in f , normal to e, pointing
from e into f . See Figure 1. When the notations f+ and f− are used to denote two
faces, the corresponding normals will be denoted n+ and n−, and the perpendicular
distances h+ and h−, respectively. The notations m+ and m− will also be used to
denote me,f+ and me,f− where e is the edge common to f+ and f−.

me,f

nfe

f

se

Figure 1. The (nf , se,me,f ) coordinate system for a face f and
edge e of the tetrahedron K.

The barycentric coordinates on K will be labelled by the faces. That is, they
are λf ∈ P1(K; R) determined by λf ≡ 0 on f and

∑
f λf ≡ 1 on K. We recall

that grad λf = −nf/hf . Let g ∈ ∆(K) be a face of dimension m with vertices
xi0 , xi1 , . . . , xim . For m = 0, g is a vertex, for m = 1, g is an edge, and so on. We
define the bubble functions bg = λfi0

λfi1
· · ·λfim

, where fik is the face opposite
vertex xik . For d > 0, Pgd (K) = span{λj0fi0

λj1fi1
· · ·λjmfim

| j0 + · · ·+ jm = d }, so that
dimPgd (K) = dimPd(g). Note that if x is a vertex opposite face f , then bx = λf
and Pxd (K) = Rλdf , while bK =

∏
f λf and PKd = Pd. For a given face f0 ∈ ∆2(K),

bf0 = bK/λf0 =
∏
f 6=f0 λf , and for a given edge e ∈ ∆1(K), be = bK/(λf−λf+),

where f− and f+ are the faces containing e.
The monomials of degree k in the barycentric coordinates form a basis for Pk(K),

and by grouping together terms according to which coordinates enter the monomial,
we can uniquely represent any p ∈ Pk as

(6.2) p =
∑

g∈∆(K)

bgpg, pg ∈ Pgk−1−dim g(K).

The standard Lagrangian degrees of freedom for p ∈ Pk(K) are the values of p at
the vertices, the moments of p of degree at most k−2 on each of the edges of K, the
moments of degree at most k − 3 on each of the faces, and the moments of degree
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at most k−4 on K. From the vertex values of p we may determine the polynomials
pg in (6.2) for g ∈ ∆0(K). From these and the edge moments we may determine as
well the pg for g ∈ ∆1(K), etc.

Of course analogous considerations apply to Pk(K;X) for X a vector space.
In particular, we have the representation p =

∑
g∈∆(K) bgpg for p ∈ Pk(K;X)

where now pg ∈ Pgk−1−dim g(K;X), the space of X-valued polynomials on K whose
components with respect to a basis of X belong to Pgk−1−dim g(K).

If e = f− ∩ f+ ∈ ∆1(K), with f−, f+ ∈ ∆2(K), we let Ge ∈ S be the matrix

Ge = n−n
′
+ + n+n

′
−.

We note that Ges = 0 and m′−Gem− = m′+Gem+ = 0.

Lemma 6.1. For k ≥ 0, the dimension of the space

N 0
k = N 0

k (K) := {S ∈ Pk(K; S) |QnSQn = 0, f ∈ ∆2(K) }

is (k + 1)k(k − 1).

Proof. For a subsimplex g ∈ ∆(K), let us first define

Ng = {S ∈ S |QnSQn = 0 for all faces containing g }.

Clearly, if g = K then dim Ng = 6, if g ∈ ∆2(K) then dim Ng = 3, and if
g ∈ ∆0(K) then dim Ng = 0. Finally, if g ∈ ∆1(K), i.e., g = e is an edge, then
dim Ng = 1. In fact, the space Ne is then spanned by the matrix Ge introduced
above.

If S ∈ N 0
k then from (6.2) we obtain the representation

(6.3) S =
∑

g∈∆(K)

bgSg, Sg ∈ Pgk−1−dim g(K;Ng).

As a consequence

dimN 0
k =

∑
g∈∆(K)

dimPgk−1−dim g(K;Ng)

= 6(k − 1) + 6(k − 1)(k − 2) + (k − 1)(k − 2)(k − 3) = (k + 1)k(k − 1).�

Before we are able to compute dimNk, we need to establish several lemmas.

Lemma 6.2. If S ∈ Nk, S is zero on each edge.

Proof. As above let e = f− ∩ f+ ∈ ∆1(K), with f−, f+ ∈ ∆2(K). Then

m′−n+ = m′+n− < 0.

In fact, the transformation

(6.4)
(
m−
n−

)
7→
(
n+

m+

)
is a rotation in the plane orthogonal to e.

Let S ∈ Nk. Since Nk ⊂ N 0
k we know that S|e = ρGe, where ρ ∈ Pk(e).

Therefore, if we can show that

(6.5) m′+Sn+ +m′−Sn− = 0

on e, then ρ(m′+n− +m′−n+) = 2ρm′+n− = 0, and, as a consequence, S is zero on
e. It therefore suffices to show (6.5).
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On e, we must have s′Λf (S)m = 0, i.e.,

∂s(m′Sn) + ∂m(s′Sn)− ∂n(s′Sm) = 0,

where f is either f− or f+. By adding this property for the two faces we obtain

− ∂s(m′+Sn+ +m′−Sn−)

= [∂m−(s′Sn−)− ∂n−(s′Sm−)]− [∂n+(s′Sm+)− ∂m+(s′Sn+)].

However, the right hand side here is zero as a consequence of the fact that the
transformation (6.4) is a rotation. In fact, this property implies that

∂m−(v′n−)− ∂n−(v′m−) = ∂n+(v′m+)− ∂m+(v′n+)

for any smooth vector field v on K. Hence, we can conclude that m′+Sn+ +m′−Sn−
is a constant along e, and since it is zero at the vertices, (6.5) holds. �

Lemma 6.3. Let

Nk,∂K := {U ∈ N 0
k |U =

∑
f∈∆2(K)

bfUf , Uf ∈ Pfk−3(K; S) and

Λf (U)|e = 0 for each face f and each edge e of f }.

Then dimNk,∂K = 6(k2 − 6k + 10).

Proof. If U =
∑
f bfUf , then U ∈ N 0

k if and only if each coefficient Uf ∈ Pfk−3(K; S)
satisfies

QnUfQn = 0 on f.

Hence, this property is assumed to hold. We have Λf (U) = 0 on an edge e ⊂ f if
and only if the three terms s′Λf (U)s, s′Λf (U)m and m′Λf (U)m vanish there. For
any fixed unit vector t and e ∈ ∆1(K), we have

(6.6) ∂tU =
∑
f

(∂tbf )Uf = −be(
t′n+

h+
Uf− +

t′n−
h−

Uf+) on e,

where f− and f+ are the two faces meeting the edge e and we have used that
grad bf− = −n+be/h+ on e.

Recall that s′Λf (U)s = 2∂s(s′Un)− ∂n(s′Us). Since U = 0 on e,

s′Λf (U)s = −∂n(s′Us) on e.

However, since QnUfQn = 0 on the face f , we have s′Uf−s = s′Uf+s = 0 on e. By
(6.6), with t = n, we conclude that s′Λf (U)s = 0 on e.

Next, similar considerations for s′Λf (U)m = ∂s(m′Un) + ∂m(s′Un)− ∂n(s′Um)
give

s′Λf+(U)m+ = ∂m+(s′Un+)− ∂n+(s′Um+) on e.

Furthermore, from (6.6) we have

∂m+(s′Un+) = −m′+n−be
s′Uf+n+

h−

on e, and, using s′Uf−m− = s′Uf+m+ = 0, we obtain

∂n+(s′Um+) = −be
s′Uf−m+

h+
= −m′+n−be

s′Uf−n−

h+
.
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It follows that

s′Λf+(U)m+ = m′+n−be(
s′Uf−n−

h+
−
s′Uf+n+

h−
) on e.

We have therefore shown that s′Λf (U)m = 0 on all edges if and only if,

(6.7)
s′Uf−n−

h+
=
s′Uf+n+

h−

on all edges of K.
Finally, we consider m′Λf (U)m = 2∂m(m′Un)−∂n(m′Um). Using the fact that

both m′−Uf−m− and m′+Uf+m+ vanish on e, we obtain from (6.6) that, on e,

∂n+m
′
+Um+ = −be

m′+Uf−m+

h+

= − be
h+

[(m′+n−)2n′−Uf−n− + 2m′+m−m
′
+n−m

′
−Uf−n−],

so

m′+Λf+(U)m+ = m′+n−be[m
′
+n−

n′−Uf−n−

h+
− 2(

m′+Uf+n+

h−
−m′+m−

m′−Uf−n−

h+
)].

Hence, m′+Λf+(U)m+ vanishes on e if and only if,

n′−Uf−n− =
2h+

m′+n−
(
m′+Uf+n+

h−
−m′+m−

m′−Uf−n−

h+
) on e.

Note that this condition is not symmetric in f− and f+. We thus obtain two
conditions for each edge e.

Since Uf ∈ Pfk−3(K; S), with QnUfQn = 0 on f , it follows that Uf is uniquely
determined by the vector field vf := Ufn ∈ Pk−3(f ; R3). The analysis above shows
that U =

∑
f bfUf ∈ Nk,∂K if and only if these vector fields satisfy

(A)
s′vf−
h+

=
s′vf+
h−

on e, and

(B) n′−vf− =
2h+

m′+n−
(
m′+vf+
h−

−m′+m−
m′−vf−
h+

) on e,

whenever an edge e is shared by faces f− and f+. Therefore, there is an isomorphism
between Nk,∂K and

(6.8) { (vf ) ∈
∏

f∈∆2(K)

Pk−3(f ; R3) | the vf satisfy (A) and (B) }.

To compute the dimension of the space (6.8) we consider the relations (A) and (B)
at a fixed vertex x of K. If (vf ) is an element of the space (6.8) define z ∈ R3 by

(6.9) s′z = hfs
′vf (x)

for s chosen as tangents to each edge e meeting x, and where f is a face meeting
e. Note that the vector z is well–defined as a consequence of condition (A), and
that for each face f containing x we have hf t′vf (x) = t′z for all vectors t which are
tangential to the face f . Using the expansion n− = [m+ − (m′+m) −m−]/m′+n−
we can then rewrite condition (B) at the vertex x as

(6.10) hfn
′
fvf (x) = 2n′fz.
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From this discussion we can conclude that the dimension of the space (6.8), and
hence dimNk,∂K , is at least 6(k2 − 6k + 10). To see this observe that

dim
∏
f

Pk−3(f,R3) = 6(k − 2)(k − 1).

Furthermore, the conditions (A) and (B) represent a total of 6 ·3 ·(k−4) = 18(k−4)
constraints in the interior of the edges and 4 · 6 = 24 constraints at the vertices.
Since 6(k − 2)(k − 1)− 18(k − 4)− 24 = 6(k2 − 6k + 10), this is a lower bound for
dimNk,∂K .

We complete the proof by showing that elements of the space (6.8) are determined
by 6(k2 − 6k+ 10) degrees of freedom, in fact by degrees of freedom corresponding
to the space ∏

x∈∆0(K)

R3 ×
∏

e∈∆1(K)

Pk−5(e; R3)×
∏

f∈∆2(K)

Pk−6(f ; R3).

To see this, for each vertex x pick a vector z = z(x) ∈ R3 and choose vf (x) such
that the relations (6.9) and (6.10) hold for all faces meeting x. This determines the
vectors vf (x) for all vertices x ∈ ∂f . We then define hfs′vf on each edge by the
standard interior degrees of freedom, and m′vf with respect to both faces meeting
e are determined similarly. These degrees of freedom on the edges correspond
to the space

∏
e Pk−5(e; R3). The normal components n′fvf are determined on

each edge by condition (B). Finally, we must apply the interior degrees of freedom
to vf on f . We conclude that elements of the space Nk,∂K are determined by
12 + 18 dimPk−5(e) + 12 dimPk−6(f) = 6(k2 − 6k + 10) degrees of freedom. �

For U ∈ Nk,∂K and f ∈ ∆2(K), Λf (U) is a polynomial vanishing on ∂f , and so
the quotient Λf (U)/bf is a polynomial. We define Tf : Nk,∂K → Pk−4(f,QnSQn)
by

Tf (U) = −hfΛf (U)/bf .

Lemma 6.4. If f−, f+ ∈ ∆2(K), e = f− ∩ f+, and s is a unit vector parallel to e,
then

s′Tf+(U)s = s′Tf−(U)s on e, U ∈ Nk,∂K .

Proof. First we show that

(6.11) ∂m+s
′Λf+(U)s = ∂m−s

′Λf−(U)s on e.

Recall that ∂m+bf+ = −m′+n−be/h−, ∂m−bf− = −m′−n+be/h+ on e and m′+n− =
m′−n+. We have on an edge e, ∂ms′Λf (U)s = 2∂s∂ms′Un−∂m∂ns′Us. Using (6.6)
we obtain

∂m+s
′Un+ = −be

m′+n−

h−
s′Uf+n+,

which is symmetric in f− and f+ as a consequence of (6.7) and m′+n− = m′−n+.
The identity (6.11) will follow if we show that ∂m+∂n+s

′Us = ∂m−∂n−s
′Us.

Consider first the term

V = bf−Uf− + bf+Uf+ .
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Since QnUfQn = 0 for f = f−, f+ and grad bf− = − be

h+
n+ on f+ we derive that at

the edge e

∂m+∂n+s
′V s = −be[

1
h+

s′∂m+Uf−s+
m′+n−

h−
s′∂n+Uf+s]

= −(m′+n−)be[
1
h+

s′∂n−Uf−s+
1
h−

s′∂n+Uf+s],

and this expression is symmetric in f− and f+. Finally, consider terms of the form
W = bfUf , where f is neither f− nor f+. In this case bf = λf−λf+λ, where λ is
the barycentic coordinate associated the fourth face (6= f, f−, f+) of K, and on e
we have

∂m+∂n+s
′Ws =

m′+n−

h−h+
λs′Ufs.

This is again symmetric in f− and f+. We have therefore established (6.11).
Now, by definition, h+Λf+(U) = −bf+Tf+(U). Therefore

(m′+n−)−1h+h−∂m+s
′Λf+(U)s = bes

′Tf+(U)s on e.

By (6.11), the left-hand side is unchanged if we interchange the subscripts + and
−, so the same must be true of the right-hand side. �

Lemma 6.5. Let (Tf ) ∈
∏
f∈∆2(K) Pk(f ;QnSQn) be such that s′Tf−s = s′Tf+s on

e, whenever e = f− ∩ f+, f−, f+ ∈ ∆2(K). Then there exist an S ∈ Pk(K; S) such
that QnSQn = Tf for all f ∈ ∆2(K).

Proof. We will define S ∈ Pk(K; S) by first specifying its vertex values, then speci-
fying its moments of degree at most k− 2 on the edges, then its moments of degree
at most k − 3 on faces, and then the moments of degree at most k − 4 over the
interior of K.

Let x be a vertex. We define the matrix S(x) ∈ S by specifying the values
s′iS(x)sj where the si are the tangents to the edges ei meeting at x (and so the si
form a basis for R3). Namely we take s′iS(x)sj = s′iTfsj with f the face containing
ei and ej . If i = j there are two possible choices of the face f , but they give the
same result by assumption.

For the interior degrees of freedom on an edge e we use the basis s, m−, m+ of
R3, and let Te ∈ Pk(e; S) be given by

s′Tes = s′Tf−s = s′Tf+s, s′Tem− = s′Tf−m−, s′Tem+ = s′Tf+m+,

m′−Tem− = m′−Tf−m−, m′+Tem+ = m′+Tf+m+, m′−Tem+ = 0.

Then we define S|e by∫
e

(S − Te)V ds = 0, V ∈ Pk−2(e; S).

Similarly, for the interior degrees of freedom on each face we let QnSQn inherit the
moments from Tf , while the data for SPn is taken to be zero. The interior degrees
of freedom on K are all taken to be zero. �

As a consequence of the two previous lemmas, there is a map

(6.12) Nk,∂K → Pk−4(K; S), U 7→ S(U),

such that QnS(U)Qn = Tf (U) for all faces f ∈ ∆2(K).
We are finally ready to compute the dimension of the space Nk defined in (6.1).
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Theorem 6.6. For k ≥ 3, the dimension of the space Nk is k(k2 − 6k + 11).

Proof. Let S ∈ Nk. By Lemma 6.2, S must be zero on each edge and so can be
written S =

∑
f bfSf + bKSK , where Sf ∈ Pfk−3(K; S) and SK ∈ Pk−4(K; S). Now

εf (bKSKnf ) vanishes on f since bK does, while

∂n(bKQnSKQn) = (∂nbK)QnSKQn = − bf
hf
QnSKQn on f.

Thus

(6.13) Λf (bKSK) =
bf
hf
QnSKQn.

In particular, Λf (bKSK) vanishes on ∂f . It follows that if S ∈ Nk and we define
U =

∑
f bfSf then U ∈ Nk,∂K . Therefore, the map (U, SK) 7→ U + bKSK defines

an isomorphism from

{ (U, SK) ∈ Nk,∂K × Pk−4(K; S) |QnSKQn = Tf (U) on each face f }

onto Nk.
Finally, note that a matrix field of the form bKV , V ∈ Pk−4(K; S), belongs to

Nk if and only if V ∈ N 0
k−4. Therefore, using the map (6.12), the mapping

Nk,∂K ×N 0
k−4 → Nk, (U, V ) 7→ (U, S(U) + V ),

is an isomorphism. It follows that dim Nk = dim Nk,∂K + dim N 0
k−4 and using

Lemma 6.3 and Lemma 6.1 we get dimNk = 6(k2−6k+10)+(k−3)(k−4)(k−5) =
k(k2 − 6k + 11). �

7. The space of divergence-free matrix fields with vanishing normal
traces

Recall that the space

Mk =Mk(K) = {S ∈ Pk(K; S) | divS = 0 on K, PnS = 0, f ∈ ∆2(K) }

appears in the degrees of freedom for the finite element space Σh ⊂ H(div,Ω; S)
introduced in Sections 3 and 4. Therefore, a derivation of the dimension of this space
is fundamental for our theory, while a construction of a (dual) basis for the space
Mk is necessary for the implementation of the method. The dimension formula
will be a simple consequence of the following lemma, in which P0

k+3(K; R3) := {v ∈
Pk+3(K; R3) | v ≡ 0 on ∂K } = bKPk−1(K; R3).

Lemma 7.1. (1) The operator curl curl∗ maps Nk+2(K) onto Mk(K).
(2) {T ∈ Nk+2 | curl curl∗ T = 0 } = ε[P0

k+3(K; R3)].
(3) The following sequence is exact:

(7.1) 0→ P0
k+3(K; R3) ε−→ Nk+2(K) curl curl∗−−−−−−→Mk(K)→ 0.

Proof. It follows directly from (5.5) and (5.9) that curl curl∗Nk+2 ⊂ Mk. Hence,
to prove the first statement we need only show that Mk ⊂ curl curl∗Nk+2. Let
S ∈ Mk. Since divS = 0, it follows from the exactness of the complex (2.6) that
there is a T ∈ Pk+2(K; S) such that S = curl curl∗ T . The proof will be completed
by constructing a vector field u ∈ Pk+3(K; R3) such that

(7.2) Qn
(
T − ε(u)

)
Qn = 0, Λf

(
T − ε(u)

)
= 0, on each face f.
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Note that since S ∈Mk it follows from (5.5) that

rotf rot∗f QnTQn = Pn(curl curl∗ T )Pn = PnSPn = 0 on each face f.

Hence, from the exact sequence (5.6) we conclude that for each face f ∈ ∆2(K)
there is a vector field vf ∈ Pk+3(f ; R3), with Pnvf = 0, such that QnTQn =
εf (vf ). The vector fields vf are uniquely determined up to a 2D rigid motion
and hence we may normalize them so that

∫
e
s′vf ds = 0 on each edge e ⊂ f .

Since ∂s(s′vvf−
) = s′Ts = ∂s(s′vf+) on each edge, we obtain that Psvf− = Psvf+

on each edge e = f+ ∩ f−. As a consequence, there is v ∈ Pk+3(K; R3) such
that QnvQn = vf on each face f . Then Qn ε(v)Qn = εf (vf ) = QnTQn, i.e.,
QnUQn = 0 on each face f , where U = T − ε(v). This implies, in particular, that
Us and grad(s′Us) vanish on each edge e ∈ ∆1(K). Therefore,

(7.3) s′Λf (U)s = 2∂s(n′Us)− ∂n(s′Us) = 0 on ∂f

for each face f .
Next, observe that, by (5.9), rotf Λf (U) = CnSPn = 0. Hence, (5.7) implies

that there is a scalar field qf ∈ Pk+4(f ; R), uniquely determined up to a linear
function on f , such that Λf (U) = gradf grad∗f qf . On each edge e ∈ ∂f , we have by
(7.3) that 0 = s′Λf (U)s = ∂2

sqf . It follows that we can assume that qf ≡ 0 on ∂f .
Hence, there exists another vector field w in Pk+3(K; R3) such that Qnw = 0 and
n′w = qf on each face. Recall by (5.8) that Λf

(
ε(w)

)
= gradf grad∗f qf = Λf (U).

Hence, if we let u = v + w, then the relation (7.2) holds. This proves the first
statement.

We now prove the second statement. If T = ε(v) for some v ∈ P0
k+3(K; R3),

then curl curl∗ T = 0, and, by (5.8),

(7.4) QnTQn = εf (Qnv), Λf (T ) = gradf grad∗f (n′v) on f,

for each face f . Since v vanishes on f , the right hand sides of these equations vanish,
and so T belongs to Nk+2(K). Conversely, if T ∈ Nk+2(K), then, by the exactness
of the sequence (2.6), T = ε(v) for some v ∈ Pk+3(K; R3), which is determined
uniquely if we require that

(7.5)
∫
e

s′v ds = 0, e ∈ ∆1(K).

(The functionals v 7→
∫
e
s′v ds, e ∈ ∆1(K), form a set of degrees of freedom for T,

the null space of ε.) From the first equation in (7.4) and (7.5), we find that Qnv
vanishes on each face f . Therefore the entire vector v vanishes on each edge e.
Using the second equation in (7.4), we see that n′v vanishes on each face as well,
so v ∈ P0

k+3(K; R3). This completes the proof of the second statement.
The third statement is an immediate consequence of the first two and the fact

that T ∩ P0
k+3(K; R3) = 0. �

Theorem 7.2. For k ≥ 4 the space Mk(K) has dimension (k+ 2)(k−2)(k−3)/2.

Proof. Using first the short exact sequence in the lemma and then the dimension
formula in Theorem 6.6, we get

dimMk = dimNk+2 − dim ε[P0
k+3(K; R3)]

= (k + 2)(k2 − 2k + 3)− dimPk−1(K; R3) = (k + 2)(k − 2)(k − 3)/2.�
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To conclude, we construct a basis for the space Mk(K) for k = 4 and k = 5.
(Alternatively a basis could be constructed for any k using computational algebra
software.) For this we use the following lemma, similar to Lemma 7.1.

Lemma 7.3. (1) The operator curl curl∗ maps bKN 0
k−2(K) onto Mk(K).

(2) {T ∈ bKN 0
k−2 | curl curl∗ T = 0 } = ε[b2KPk−5(K; R3)].

(3) The following sequence is exact:

(7.6) 0→ b2KPk−5(K; R3) ε−→ bKN 0
k−2(K) curl curl∗−−−−−−→Mk(K)→ 0.

Proof. Note that bKN 0
k−2 ⊂ Nk+2 by (6.13), and so curl curl∗ bKN 0

k−2 ⊂Mk(K).
First we prove 2. Let w ∈ Pk−5(K; R3). By the Leibniz rule

ε(b2Kw) = b2K ε(w) + bK [(grad bK)w′ + w(grad bK)′].

Clearly bK ε(w) ∈ N 0
k−2, and, recalling that grad bK = −bfnf/hf , we see that

(grad bK)w′+w(grad bK)′ ∈ N 0
k−2. Thus ε(b2Kw) ∈ bKN 0

k−2, giving the inclusion ⊃.
Conversely, if T ∈ bkN 0

k−2 with curl curl∗ T = 0, then, by Lemma 7.1, T = ε(bKv)
for some v ∈ Pk−1(K; R3) and we need to show that v = 0 on ∂K. Using the
Leibniz rule and the fact that T vanishes on ∂K, we get that nv′+ vn′ vanishes on
each face. We conclude that v vanishes on the face, using the elementary identity
v = (I +Qn)(nv′ + vn′)n/2.

It follows that

dim[curl curl∗(bKN 0
k−2)] = dimN 0

k−2 − dimPk−5(K; R3) = dimMk,

where we have used Lemma 6.1 and Theorem 7.2. The exactness of (7.6), and so
also the first statement of the lemma, follows. �

Thus for k = 4, curl curl∗ is injective on bKN 0
2 , and so a basis for M4 =

curl curl∗(bKN 0
2 ) is computable directly from a basis for N 0

2 , which may be ob-
tained directly from (6.3).

Now let k = 5. The map curl curl∗ is not injective on bKN 0
3 , but has a kernel

of dimension 3. In this case, the representation (6.3) presents an arbitrary element
S ∈ N 0

3 as

S =
∑

e∈∆1(K)

beSe +
∑

f∈∆2(K)

bfSf , Se ∈ Pe1(K;Ne), Sf ∈ Nf .

Fix a particular face f0 ∈ ∆2(K) and define N 00
3 as the subspace of S ∈ N 0

3 for
which Sf0 = 0 in this representation, clearly a subspace of codimension 3. We
claim that curl curl∗ is injective on the space bKN 00

3 , and hence a basis for M5

can be computed from a corresponding basis of N 00
3 . The injectivity follows since

if w ∈ R3, with ε(b2Kw) ∈ bKN 00
3 , then we get w = 0 arguing as in the proof of

Lemma 7.3.
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