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Abstract. Multivariate spline functions are smooth piecewise poly-
nomial functions over triangulations consisting of n-simplices in the
Euclidean space IR

n. A straightforward method for using these spline
functions to fit given scattered data and numerically solve elliptic par-
tial differential equations is presented . This method does not require
constructing macro-elements or locally supported basis functions nor
computing the dimension of the finite element spaces or spline spaces.

The method for splines in IR
2 and IR

3 has been implemented in MAT-
LAB. Several numerical examples are shown to demonstrate the effec-
tiveness and efficiency of the method.
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§0. Introduction

Multivariate spline functions are piecewise polynomial functions which
have certain smoothness over given polygonal domains. They are very
flexible for approximating known or unknown functions or any given data
sets. For example, finite elements are typical spline functions. They
are very popular for numerical solutions of partial differential equations
(PDE’s) and are very useful for surface designs. There are many finite
elements and macro-elements available in the literature. See [Zenisek’73],
[Ciarlet’78], [LeMehaute’84], [Chui’88], [Brezzi and Fortin’91], and [Bren-
ner and Scott’96]. For general spline functions, many kinds of locally sup-
ported spline functions have been recently constructed based on special tri-
angulations(cf. [Lai’96a], [Lai’96b], [Laghchim-Lahlou and Sablonniére’89,
93, 95], [Lai and Schumaker’97, 99, 01, 02, 03] and [Alfeld and Schu-
maker’02a, 02b]). However, the implementation of finite elements and
locally supported spline functions with high order smoothness is very dif-
ficult. For example, C2 finite elements or spline functions in the bivari-
ate and trivariate settings are seldom implemented for applications. See
[Rescorla’86] and [Farmer and Lai’98] for preliminary testing of C2 spline
functions. See, e.g., [Dierckx’95] and [Späth’95] for implementation of
bivariate C1 quadratic and C1 quintic splines for applications. For an-
other example, the construction of C1 trivariate splines using polynomials
of degree 3 is already very complicated (cf. [Worsey and Farin’87]) and
its implementation is even more complicated based on our experience (cf.
[Lai and Wenston’01]).

To make multivariate spline functions available for applications, we
propose a direct approach without constructing locally supported basis
functions and finite elements. This approach may be summarized as fol-
lows. First multivariate spline functions are represented by using the
B-form of splines. (cf. [Farin’86] and [de Boor’87].) Each spline func-
tion s can be identified by its B-coefficient vector c. Since s has certain
smoothness, the smoothness conditions can be expressed by a linear sys-
tem Hc = 0. Boundary conditions for elliptic PDE’s or interpolation
conditions for scattered data fitting provide additional constraints on the
B-coefficient vector c. These constraints can be given by a linear system
Bc = g. The constraints are enforced through Lagrange multipliers by
minimizing suitable functionals, the classical variational forms for PDE’s
or the popular thin plate energy functional for scattered data problems.
The resulting Euler-Lagrange equations are solved using a matrix itera-
tive method, a variant of the augmented Lagrangian algorithm, which we
introduce in §3. We shall prove that the matrix iterative method con-
verges. Similarly, we can fit the given data using the discrete least squares
method and the penalized least squares method. The most important
feature about this approach is to use multivariate splines for applications
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without constructing locally supported splines or finite elements and with-
out computing the dimension. Our approach is not completely new. In
[Fasshauer and Schumaker’96], a similar method of applying bivariate C1

cubic splines for scattered data fitting was implemented. What is new
about our approach is that we start with discontinuous piecewise polyno-
mials, that we use an iterative method to solve the linear systems arising
from the Lagrange multiplier method and that our implementation and
experiments with this approach are done for bivariate and trivariate spline
functions of arbitrary degrees d and arbitrary smoothness r with r < d
over any triangulations or tetrahedral partitions.

The advantages of this approach are
1) We are able to use multivariate spline functions in an Euclidean space

of arbitrary dimension.
2) We are able to use multivariate spline functions of variable degrees

and variable smoothness across any given domain. These flexibilities
make spline surfaces more user-friendly.

3) We are able to use piecewise quadratic or cubic polynomials to ap-
proximate the boundary of any given domain instead of piecewise
linear polynomials.

4) The linear systems arising from our approach are more easily assem-
bled than those from the finite (macro) elements or locally supported
spline basis functions. The linear systems are sparser than that from
any macro-FEM method. Also, the assembling can be done in paral-
lel.

5) A special iterative method with excellent convergence rate is intro-
duced to solve this linear system.
For bivariate and trivariate settings, we have already implemented

this approach in MATLAB successfully. That is, we are able to use bi-
variate and trivariate spline functions of any degree d and any smoothness
r with r < d over any polygonal domains. Many numerical experiments
for scattered data interpolation/fitting and numerical solutions of partial
differential equations will be reported in later sections. Our experience on
personal computers shows that we can use bivariate polynomials of degree
10 or less and trivariate polynomials of degree 7 or less for applications
for various smooth surfaces.

The disadvantage of this approach over the popular finite element
method (FEM) is the necessity of solving linear systems of larger size.
However, efficiency is gained in assembling linear systems and in using
spline functions of high degrees and/or of high orders of smoothness. On
the other hand, a matrix iterative algorithm which will be introduced
in Section 3 works particularly well for the systems that arise from our
approach. These systems are classical saddle point problems. The matrix
iterative method converges very fast in general. Our experience tells us
that two or three iterations will be enough for 4 significant digits.
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The rest of the paper is organized as follows. We first present in de-
tail the space of multivariate spline functions in §1. Then we present the
B-form representation of multivariate splines, smoothness conditions and
degree reduction conditions in §2. In §3, we outline our general minimiza-
tion algorithm and a matrix iterative algorithm. With these preparations,
we shall deal with scattered data interpolation and fitting in §4–6. Then
we shall discuss how to solve Poisson and biharmonic equations in §7 and
§8. Multivariate splines solutions of nonlinear PDE’s such as the Navier-
Stokes equations are reported elsewhere (cf. [Lai and Wenston’04b] and
[Awanou and Lai’05].)

§1. Definition of Various Multivariate Spline Spaces

Let △ be a collection of n-simplices in the Euclidean IRn. We say that △ is
a triangulation if it satisfies the following property: for any t, t′ ∈ △, t∩ t′

is either empty or a common k-simplex of t and t′ for some k, 0 ≤ k ≤ n−1.
Let Ω = ∪t∈△t be a polygonal domain in IRn. Given two integers d ≥ 0
and 0 ≤ r < d, let

Sr
d(△) := {s ∈ Cr(Ω) : s|t ∈ IPd, ∀t ∈ △}

be the multivariate spline space of degree d and smoothness r, where IPd

denotes the space of all polynomials of degree ≤ d. It is a standard spline
space. Typically, S0

d(△) is the continuous spline space of degree d which
is a very useful finite element space.

Next we introduce super spline subspaces. For simplicity, let us con-
sider bivariate spline spaces first. Let ρ = {ρv, v ∈ V} be a set of integers
ρv ≥ 0 associated with vertices V of △ and r = {re, e ∈ EI} be a set
of integers re ≥ 0 associated with interior edges EI of △. Suppose that
ρv ≥ r ≥ 0 for all v ∈ V and re ≥ r ≥ 0 for all e ∈ EI . Let

Sr,ρ
d (△) = {s ∈ Sr

d(△), s ∈ Cρv at v ∈ V and s ∈ Cre across e ∈ EI}

be the spline subspace of super smoothness ρ, smoothness r and degree
d. Similarly, we can define such spline subspaces in IRn. Let △ be an n-
simplicial partition in IRn. Let ρ be a set of integers ≥ 0 associated with
all k-simplices with 0 ≤ k < n − 1 and r be another set of integers ≥ 0
associated with all (n− 1)-simplices of △. Then Sr,ρ

d (△) is a super spline
space on IRn consisting of piecewise polynomials of total degree d which
satisfy smoothness of order ρ around all k-simplices for 0 ≤ k < n − 1
and smoothness of order r across all (n − 1)-simplices of △. This spline
space of variable smoothness is useful for designing surfaces with variable
smoothness across given domains. For numerical solutions of PDE’s, it
is reasonable to let a spline solution have more smoothness inside the
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domain and less smoothness near the boundary of the domain because
of the regularity theory of PDE’s (cf. [Evans’98, pp. 309–316]), that
is, the weak solutions usually possess higher smoothness inside Ω than
near the boundary ∂Ω. Although adding the extra smoothness conditions
increases the approximation errors, it may be bettter for the visualization
of the solution.

Finally, we introduce another degree of freedom, the degree of the
spline functions. Let us again consider bivariate spline spaces first. Let
d = {dt, t ∈ △} be a set of integers dt ≥ 0 associated with triangles of △.
Let r and ρ as above. Define

Sr,ρ
d

(△) = {s ∈ Sr,ρ
d (△), s|t ∈ IPdt

, t ∈ △}

be the spline space of variable smoothness ρ, r and variable degree d as-
sociated with the vertices, interior edges and triangles of △, where IPdt

stands for the space of polynomials of degree dt. This is a user-friendly
spline space allowing one to choose a spline function using polynomials of
less degree in certain areas and higher degree in other areas. It is especially
useful to trim off the oscillations of interpolatory surfaces.

§2. B-form Representation of Multivariate Splines

Let t = 〈v(0), . . . , v(n)〉 ∈ IRn be an n-simplex with n + 1 distinct points
v(k), k = 0, 1, . . . , n. Suppose that the n-simplex t has nonzero volume.
Then for any point x ∈ IRn, x− v(0) can be uniquely expressed by a linear
combination of v(i) − v(0), i = 1, . . . , n. That is,

x = v(0) +

n∑

i=1

λi(v
(i) − v(0)).

Let λ0 = 1 −
n∑

i=1

λi. Then the (n + 1)−tuple (λ0, λ1, . . . , λn) is called

the barycentric coordinate of x with respect to t. It is easy to see that
each λi is a linear function of x. Next let Zn+1 be the set of all multi-
integers in IRn+1. For a multi-integer α = (α0, . . . , αn) ∈ Zn+1 with
|α| = α0 + . . . + αn ≥ 0, let

Bt
α(x) :=

|α|!
α!

λα,

where α! = α0! . . . αn! and

λα =

n∏

i=0

λαi

i .
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Then it is clear that Bt
α(x) is a polynomial of degree |α| in x. It can

be shown that {Bt
α(x), α ∈ Zn+1, |α| = d} forms a basis for polynomials

of degree ≤ d (cf. [deBoor’87]). Thus, any polynomial p of total degree d
may be written in terms of Bt

α(x)’s as

p(x) =
∑

|α|=d

ct
αBt

α(x) (1)

for some coefficients ct
α’s depending on t. Thus, any spline function s is

given by

s(x) =
∑

|α|=d

ct
αBt

α(x), x ∈ t ∈ △ (2)

with B-coefficient vector {ct
α, |α| = d, t ∈ △} of length d̂T , where T de-

notes the number of n-simplices in △ and

d̂ =

(
d + n

n

)
.

This representation of the spline function s is called the B-form of s. (cf.
[Farin’86] and [de Boor’87].)

One simple property of the B-form of polynomials is:

Lemma 1. Let t = 〈v(0), . . . , v(n)〉 be an n-simplex in IRn and let p(x)
be a polynomial of degree d given in B-form (1) with respect to t. Then

p(v(k)) = ct
dek , ∀ 0 ≤ k ≤ n,

where ek = (0, . . . , 0, 1, 0, . . . , 0) with 1 appearing in the (k + 1)th place.

To evaluate p(x) in B-form (1), we use the so-called de Casteljau al-
gorithm. The derivative of p(x) in B-form can be given in B-form again.
The integration of a polynomial p in B-form is a sum of all coefficients
of p with multiplication by an appropriate constant. See, e.g., [Chui and
Lai’90b] for all these properties. Another important property is the fol-
lowing Markov inequality:

Lemma 2. Let 1 ≤ q ≤ ∞. There exists a constant N depending only
on d such that

‖{ct
α, |α| = d}‖q

N
≤ ‖p‖q,t ≤ ‖{ct

α, |α| = d}‖q.

for any polynomial p(x) =
∑

|α|=d

ct
αBt

α(x), where ‖p‖q,t denotes the stan-

dard Lq norm over the n-simplex t and ‖{ct
α, |α| = d}‖q denotes the ℓq

norm of the sequence {ct
α, |α| = d}.

We refer the interested reader to [Lai and Schumaker’98] for a proof in
the bivariate setting which can be generalized to the multivariate setting
easily.
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Next we look at the smoothness conditions. Let

t1 = 〈v(0), . . . , v(k), v(k+1), . . . , v(n)〉

and
t2 = 〈v(0), . . . , v(k), u(k+1), . . . , u(n)〉

be two n-simplices in IRn and t̃ = 〈v(0), . . . , v(k)〉 the k-simplex which is a
common facet of t1 and t2, with 0 ≤ k < n. Let F be a function defined
on t1 ∪ t2 by

F (x) =





pd(x) =
∑

|α|=n

aαBt1
α (x), if x ∈ t1

qd(x) =
∑

|α|=n

bαBt2
α (x), if x ∈ t2.

Let us assume that F is well defined on t̃. Writing u(j) =

n∑

i=0

cjiv
(i), j =

k + 1, . . . , n, we have the following:

Theorem 3. Suppose that t1 and t2 are two n-simplices such that t̃ =
t1 ∩ t2 is a (n − 1)-simplex in IRn. Let F be the function defined above.
Then F ∈ Cr(t1 ∪ t2) if and only if the following conditions hold

b(α0,...,αn−1,ℓ) =
∑

|γ|=ℓ

a(α0,...,αn−1,0)+γBt1
γ (u(n)). (3)

for 0 ≤ ℓ ≤ r.

This is the well-known smoothness conditions(cf. [Farin’86] and [de
Boor’87]). For the geometric meaning of the smoothness conditions in
the bivariate setting, see [Lai’97]. Next we look at the degree reduction
conditions. These conditions allow us to constrain the spline function to
be of variable degree over the simplices. Let

△ijcα = cα+ei
− cα+ej

be a difference operator, where ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zn+1 with 1
in the ith entry and similar for ej. Inductively, let

△k
ij = △ij(△k−1

ij )

for k ≥ 2. For any multi-integer β = (β1, . . . , βn), let

△β = △β1

10 . . .△βn

n0

be a difference operator of order |β|. Our degree reduction conditions are:
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Theorem 4. Let p =
∑

|α|=d

cαBt
α be a polynomial of degree d in B-form

with respect to t. Then p is a polynomial of degree dt < d if

△βcα = 0, dt < |β| ≤ d, |α| = d − |β|, (4)

where △βcα = △βc·|α, that is, the difference operators are applied first
before the evaluation at the index α.

The conditions can be verified easily and are left to the interested
reader. It is easy to see that both conditions (3) and (4) are linear relations
among the B-coefficients of polynomials.

Let us summarize the discussions above as follows: For each spline
function in

S := Sr,ρ
d

(△) (5)

the spline space of smoothness r, super smoothness ρ and degree d for
three fixed sequences ρ, r, and d associated with the k-simplices with 0 ≤
k < n − 1, interior n − 1 simplices, and n-simplices of △, we write

s =
∑

t∈△

∑

|α|=dt

ct
αBt

α, (6)

with c = (ct
α, |α| = dt, t ∈ △) ∈ IRN , N =

∑
t∈△ d̂t with d̂t =

(
dt+n

n

)
and

Bt
α(x) =

{
Bt

α(x), if x ∈ t
0, x ∈ △\{t}.

In addition, c satisfies the constraints Hc = 0 for the smoothness condi-
tions that S possesses and Dc = 0 for the degree reduction conditions.

§3. Multivariate Spline Method and a Matrix Iterative Method

Let S be the spline space defined in (5) and let

J(u) =
1

2
a(u, u) − b(u)

define a functional on S where a is a continuous bilinear form and b a
continuous linear functional. We are interested in subsets of S satisfy-
ing additional constraints L(u) = G such as boundary conditions and/or
interpolation conditions.

We consider the following abstract problem: Find sG ∈ S such that

J(sG) = min{J(s) : s ∈ S, L(s) = G}.
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In this section, we explain how to solve this minimization problem.
We first denote by A = (a(Bt

α,Bt′

β )) |α|=d,t∈△

|β|=d,t′∈△

the matrix associated

with the bilinear form a and F = (b(Bt
α))|α|=d,t∈△ the vector associated

with linear functional b. Similarly, we may also express the side conditions
L(u) = G in matrix form:

Lc = g,

where we have to approximate the constraints L(u) = G if B(u) is a
nonlinear functional.

Using the B-form (6) of spline functions, the above abstract problem
can be expressed in the following form:

min J(c) =
1

2
cT Ac − cT F

subject to Hc = 0, Dc = 0, Lc = g.
(7)

By the theory of Lagrange multipliers, letting

L(c, λ1, λ2, λ3) =
1

2
cT Ac − cT F + λT

1 Hc + λ2Dc + λT
3 (Lc − g),

there exist λ1, λ2, λ3 such that

Ac + HT λ1 + DT λ2 + LT λ3 = F

Hc = 0

Dc = 0

Lc = g.

(8)

In general, the linear system above is not invertible. In particular, A
may be singular. Thus, we can not solve it directly. However, we can
solve it using a least squares method. Indeed, assuming the existence and
uniqueness of the solution of c, any least squares solution will satisfy the
above linear system exactly and the part of solution corresponding to c

is the solution for (7). For linear systems of small size, the least squares
method works well according to our experiments. However, we do not
recommend it when the size of this system is very large.

Next we present an iterative algorithm to solve the linear systems of
large size. For simplicity, we write the Lagrange equations in the following
matrix form: [

BT A
0 B

] [
λ
c

]
=

[
F
G

]
(9)

with appropriate matrices B and G. This is a typical saddle point prob-
lem. There is a vast literature on the numerical solution to (9) (cf., e.g.,
[Bank, Welfert and Yserentant’90], [Rusten and Winther’92], [Elman and
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Golub’94], [Bramble, Pasciak and Vassilev’97], [Bramble, Pasciak and Vas-
silev’99]). All the methods discussed in the references above require A to
be nonsingular. However, in our situation, the matrix A is singular. Nev-
ertheless, we require A positive definite on the kernel of B. As mentionned
in the introduction, the matrix iterative method described below is a vari-
ant of the augmented Lagrangian algorithm, c.f. [Awanou and Lai’05b].
Unlike in [Brenner and Scott’94], we do not require BT to be injective,
that is we allow non uniqueness of the multiplier λ. Consider the following
sequence of problems:

[
BT A
−ǫI B

] [
λ(k+1)

c(k+1)

]
=

[
F

G − ǫλ(k)

]
(10)

for k = 0, 1, . . . , with an initial guess λ(0), e.g., λ(0) = 0, and I the identity
matrix of IRm, assuming the size of B is m × n. Note that (10) reads

Ac(k+1) + BT λ(k+1) = F

Bc(k+1) − ǫλ(k+1) = G − ǫλ(k).
(11)

Multiplying on the left of the second equation in (11) by BT , we get

BT Bc(k+1) − ǫBT λ(k+1) = BT G − ǫBT λ(k)

or BT λ(k+1) =
1

ǫ
BT Bc(k+1) − 1

ǫ
BT G + BT λ(k) and substitute it into the

first equation in (11) to get

(A +
1

ǫ
BT B)c(k+1) = F +

1

ǫ
BT G − BT λ(k). (12)

It follows that

(A +
1

ǫ
BT B)c(1) = F +

1

ǫ
BT G − BT λ(0).

Using the first equation in (11), i.e., Ac(k) = F − BT λ(k) to replace F in
(12), we have

(A +
1

ǫ
BT B)c(k+1) = Ac(k) +

1

ǫ
BT G

for all k ≥ 1. This suggests the following:

Algorithm 5. Let I be the identity matrix of IRm. Fix ǫ > 0. Given an
initial guess λ(0) ∈ Im(B), we first compute

c(1) = (A +
1

ǫ
BT B)−1(F +

1

ǫ
BT G − BT λ(0))
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and iteratively compute

c(k+1) = (A +
1

ǫ
BT B)−1(Ac(k) +

1

ǫ
BT G) (13)

for k = 1, 2, . . ., where Im(B) is the range of B.

We remark that this is not a brand new method. It was discussed in
[Gunzburger’89] briefly. But no proof of the convergence was given there,
but see [Awanou and Lai’05b] for a linear convergence rate proof. We now
present another proof which shows that c(k) converges to the c.

Theorem 6. Let us assume that the linear system (9) has a solution
(λ, c) with c unique. Assume also that A is symmetric positive definite
with respect to B, that is, xT Ax ≥ 0 and xT Ax = 0 with Bx = 0
imply that x = 0. Then there exists a constant C1(ǫ) depending on ǫ but
independent of k such that

‖c− c(k+1)‖ ≤ C1(ǫ)

(
C2ǫ

1 + C2ǫ

)k+1

for k ≥ 1, where C2 = ‖B+‖2‖A‖ and B+ stands for the pseudo inverse
of B.

Proof: We first show that E = A + 1
ǫ BT B is invertible. If Ex = 0, we

have

xT Ex = xT Ax +
1

ǫ
‖Bx‖2 = 0

which implies that xT Ax = 0 and Bx = 0 since A is nonnegative definite.
Since A is also positive definite with respect to B, we have x = 0. Thus,
E is invertible and hence the sequence

{
c(k)

}
is well-defined. Let C1 =

‖E−1‖ which is obviously dependent on ǫ. But our numerical experiments
show that C1 has an upper bound independent of ǫ.

Next we show the convergence. We divide the proof into several steps.
Step 1. From (12), we have

Ec(k+1) = F +
1

ǫ
BT G − BT λ(k).

Similarly, we use (9) to get

Ec = F +
1

ǫ
BT G − BT λ.

Therefore, we have

c(k+1) − c = E−1BT (λ − λ(k)). (14)
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Step 2. Using the second equation in (11) and (12), we have

−ǫ(λ(k+1) − λ) = −ǫ(λ(k) − λ) + G − Bc(k+1)

and

c(k+1) = E−1F +
1

ǫ
E−1BT G − E−1BT λ(k).

It follows that

ǫ(λ(k+1) − λ) = ǫ(λ(k) − λ) − G + BE−1F

+
1

ǫ
BE−1BT G − BE−1BT λ(k)

= ǫ(λ(k) − λ) − G + BE−1(F +
1

ǫ
BT G − BT λ(k)).

Because F = Ac + BT λ and G = Bc, we have

F +
1

ǫ
BT G = Ac + BT λ +

1

ǫ
BT Bc

= (A +
1

ǫ
BT B)c + BT λ

= Ec + BT λ.

Consequently, we obtain

ǫ(λ(k+1) − λ) = ǫ(λ(k) − λ) − G + BE−1(Ec + BT λ − BT λ(k))

= ǫ(λ(k) − λ) − D(λ(k) − λ)

where D = BE−1BT . That is, we have

λ(k+1) − λ = (I − 1

ǫ
D)(λ(k) − λ). (15)

Step 3. We also need the following

Lemma 7. Let Ker(B) be the kernel of B and Im(B) the range of B.
Then IRm = Ker(BT ) ⊕ Im(B). Similarly, IRn = Ker(B) ⊕ Im(BT ).

Proof: We write IRm = Im(B) ⊕ Im(B)⊥. For any v ∈ Im(B)⊥, we have

0 = 〈Bu, v〉 = 〈u, BT v〉

for any u ∈ IRn. Thus, BT v = 0 or v ∈ Ker(BT ). Equivalently, if
v ∈ Ker(BT ), then v ∈ Im(B)⊥. Therefore IRm = Ker(BT ) ⊕ Im(B).
Similar for the decomposition of IRn.
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Using Lemma 7, we may assume that λ ∈ Im(B) since the component
of λ in Ker(BT ) will not make any contribution in (9). It follows from the
second equation in (11) that

B(c(k+1) − c) = ǫ(λ(k) − λ(k+1)).

That is, λ(k) − λ(k+1) is in the Im(B). Since

λ(k) − λ =
k∑

j=1

(λ(j) − λ(j−1)) + (λ(0) − λ),

we have λ(k) − λ ∈ Im(B) for each k. From (15), we need to estimate

the norm of I − 1

ǫ
D restricted to Im(B) in order to estimate the norm of

λ(k+1) − λ. We write ‖I − 1
ǫ D‖ for ‖

(
I − 1

ǫ D
) ∣∣∣∣

Im(B)

‖ and we have:

‖λ(k+1) − λ‖ ≤ ‖
(

I − 1

ǫ
D

)
‖‖λ(k) − λ‖.

Step 4. We claim that

‖I − 1

ǫ
D‖ ≤ C2ǫ

1 + C2ǫ
, (16)

for some constant C2 > 0. Indeed, by the Rayleigh-Ritz quotient, we have

‖I − 1

ǫ
D‖ = max

06=v∈Im(B)

(
1 − 1

ǫ

vT Dv

vT v

)
. (17)

We now use a technique from [Segal’79] to prove that

R(v) =
vT Dv

ǫvT v
>

1

1 + C2ǫ
, ∀ v ∈ Im(B), v 6= 0.

We have

R(v) =
vT BE−1BT v

ǫvT v
=

vT BE−1EE−1BT v

ǫvT v

=
(vT BE−1)E(E−1BT v)

ǫvT v
=

‖E−1BT v‖2
E

ǫvT v
,

where we have used a norm ‖ · ‖E associated with the positive definite
matrix E; That is,

‖u‖E = b(u, u) with b(u, v) = vT Eu.
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Next we have

‖E−1BT v‖E = sup
u6=0

b(E−1BT v, u)

‖u‖E

≥ uT EE−1BT v

‖u‖E
=

uT BT v

‖u‖E
=

vT Bu

‖u‖E
, ∀ u 6= 0.

It follows from Lemma 7 that since v ∈ Im(B), there is uv in Im(BT ) such
that v = Buv. Then

R(v) ≥ 1

ǫ‖Buv‖2

(
(Buv)

T (Buv)

‖uv‖E

)2

=
1

ǫ

‖Buv‖2

‖uv‖2
E

=
‖Buv‖2

ǫuT
v Auv + uT

v BT Buv
≥ ‖Buv‖2

ǫ‖uv‖2‖A‖ + ‖Buv‖2
≥ 1

ǫ ‖uv‖2‖A‖
‖Buv‖2 + 1

.

Since B maps Im(BT ) into Im(B), B+ is defined from Im(B) into Im(BT )
and

‖uv‖
‖Buv‖

≤ sup
Bu6=0

‖u‖
‖Bu‖ = sup

06=v∈Im(B)

‖B+v‖
‖v‖ = ‖B+‖.

So

R(v) ≥ 1

ǫ‖B+‖2‖A‖ + 1
≥ 1

C2ǫ + 1
,

if we let C2 = ‖B+‖2‖A‖. It follows from (17) that

‖I − 1

ǫ
D‖ ≤ 1 − min

06=v∈Im(B)
R(v) ≤ C2ǫ

1 + C2ǫ

which is (16).
Finally we get

‖λ(k+1) − λ‖ ≤
(

C2ǫ

C2ǫ + 1

)
‖λ(k) − λ‖

from (15) and (16) and

‖c(k+1) − c‖ ≤ ‖E−1‖‖B‖
(

C2ǫ

C2ǫ + 1

)k+1

‖λ(0) − λ‖

from (14), which is the desired result.

In the following applications, we only need to verify that the matrix A
is symmetric and positive definite with respect to the side condition matrix
block B. It turns out that existence and uniqueness will guarantee it.
Hence, the matrix iterative method will be well-defined in each subsequent
application.
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§4. Minimal Energy Method for Scattered Data Interpolation

Let {(x(i), fi), i = 1, . . . , V } be a given set of scattered data in IRn. Assume
that the x(i)’s are distinct. A general problem is to find a smooth surface
sf which interpolates the given data:

sf(x(i)) = fi, i = 1, . . . , V. (18)

For many applications, s has to be a smooth surface such as a Cr surface
for a fixed integer r ≥ 1. Depending on particular applications, s some-
times has to be smoother in certain regions of the same domain. This
requires spline functions of variable smoothness.

We shall discuss a popular method called the minimal energy method
to find such an interpolating surface. Let △ be a triangulation of the given
data locations {xi, i = 1, . . . , V }. For example, we can use the well-known
Delaunay method to find such a triangulation. Let

S := Sr,ρ
d

(△)

be a spline space of smoothness r, super smoothness ρ and degree d for
three fixed sequences ρ, r, and d associated with k-simplices, 0 ≤ k < n−1,
interior n − 1 simplices, and n-simplices of △. Let Λ(f) be the set of
interpolating splines in S, i.e.,

Λ(f) := {s ∈ S, s(x(i)) = fi, i = 1, . . . , V }. (19)

Assume that the global smoothness min{r, ρ} of the spline space is at
least 1. Our minimal energy method is to find sf ∈ S satisfying the
interpolation condition (18), i.e. sf ∈ Λ(f) and minimizing the energy
functional

E(s) :=
∑

t∈△

∫

t



∑

|β|=2

(
Dβs

)2

 dx. (20)

Some extensions of the minimal energy method will be given later in the
section. The convergence of the minimal energy method for bivariate
spline interpolation was given in [Golitschek, Lai, and Schumaker’01]. Our
first result is about the existence and uniqueness of such a sf . We prefer
to give an elementary proof of the following:

Theorem 8. Suppose that Λ(f) is not empty. Then there exists a unique
sf ∈ Λ(f) minimizing (20).

Proof: We first prove this theorem in the bivariate setting. Any spline
function s ∈ S can be written

s(x, y)|t =
∑

i+j+k=d

ct
ijkBt

ijk(x, y), (x, y) ∈ t ∈ △.
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Let c = (ct
ijk, i+ j+k = d, t ∈ △) be the coefficient vector associated with

s. The length of the vector c is d̂T with T being the number of triangles
in △ and d̂ = (d+1)(d+2)/2. Since s ∈ S, s satisfies the smoothness and
super smoothness conditions which can be expressed by a linear system
Hc = 0 using the smoothness conditions (3). Also, s satisfies the degree
reduction conditions which can also be given by another linear system
Dc = 0 by using (4). The energy functional E(s) can be written in terms
of c as

E(s) = cT Kc,

where K = diag (Kt, t ∈ △) is a block diagonal matrix with

Kt =

[∫

t

(
D2

xBt
ijkD2

xBt
p,q,r + 2DxDyBt

ijkDxDyBt
p,q,r

+ D2
yB

t
ijkD2

yB
t
p,q,r

)
dxdy

]
i+j+k=d
p+q+r=d

.

Since Λ(f) is not empty, choose an s0 ∈ Λ(f). Then let

A = {c ∈ IRd̂T : E(s) = cT Kc ≤ E(s0)}.

We first show that A is a bounded and closed set. Clearly, we have

∫

t

|D2
xs(x, y)|2dxdy ≤ E(s0),

for any triangle t ∈ △. Since D2
xs(x, y)|t is in the space of polynomials of

degree ≤ d − 2, it follows that

max
(x,y)∈t

|D2
xs(x, y)| ≤ CE(s0)

for some C depending on the triangle t. Similar for DxDys and D2
ys.

Thus, we have |s|2,∞,t ≤ CE(s0) for another constant C > 0 depending
on t, where

|s|2,∞,t := max
(x,y)∈t

max{|D2
xs(x, y)|, |DxDys(x, y)|, |D2

ys(x, y)|}.

Next we need to show that max{|s(x, y)|, (x, y) ∈ t} is bounded. To
this end, we write vi = (xi, yi) and f(vi) = fi for i = 1, . . . , V . For
convenience, we consider t = 〈v1, v2, v3〉 and v = (x, y) ∈ t. Using the
Taylor expansion, we have

f(vi) = s(vi) = s(v) + ∇s(v) · (vi − v) + O(|s|2,∞,t|t|2) (21)
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for i = 1, 2, 3, where |t| denote the diameter of t. It follows that

f(v2) − f(v1) =∇s(v) · (v2 − v1) + O(|s|2,∞,t|t|2)
f(v3) − f(v1) =∇s(v) · (v3 − v1) + O(|s|2,∞,t|t|2).

Solving this linear system for ∇s(v) = (Dxs(v), Dys(v)) gives

Dxs(v) = O(|t|3|s|2,∞,t/At) + |f(v2) − f(v1)||t|/At

Dys(v) = O(|t|3|s|2,∞,t/At) + |f(v3) − f(v1)||t|/At,

where At stands for the area of the triangle t. Inserting these estimates
for ∇s(v) in (21), we immediately get

|s(v)| ≤ C
(
(1 + |t|2/At)‖f‖∞ + |t|4|s|2,∞,t/At

)
.

where ‖f‖∞ = max{|fℓ|, ℓ = 1, . . . , V }. Hence,

|s(x, y)| ≤ Ct (‖f‖∞ + E(s0))

for another constant Ct > 0 depending on t. It follows that

max
i+j+k=d

|ct
ijk| ≤ N max

(x,y)∈t
|s(x, y)| ≤ NCt (‖f‖∞ + E(s0)))

by Lemma 2 and hence,

‖c‖∞ := max
i+j+k=d

t∈△

|ct
ijk| ≤ max

t∈△
NCt (‖f‖∞ + E(s0)) .

Thus, A is a bounded set. It is clear that A is a closed set since E(s) =
cT Kc is a continuous function of c. It follows that E(s) achieves its
minimum in A. Let cf be a minimizer.

We now show that the minimizer is unique. It is clear that K is
nonnegative definite and E(s) = cT Kc = 0 if and only if s is a linear
function. By the interpolation conditions, the values fi, i = 1, . . . , V have
to be obtained from a linear function. In this case, s is the unique solution.
If the fi’s are not the values of a linear function, then E(s) = cT Kc > 0
for any c ∈ Λ(f). Hence, E(s) is a strictly convex function. Thus, the
minimizer is unique. Hence, we have completed the proof.

We note that the above arguments can be generalized to the multiva-
riate setting and the existence and uniqueness of the interpolatory spline
of minimal energy follow similarly.

To solve the minimal energy interpolation problem, we first note that
it is equivalent to the following constrained minimization problem:

min cT Kc

subject to

Hc = 0, Ic = f , Dc = 0

(22)
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where f = (f1, . . . , fV ) is the data value vector and Ic = f is a linear
system associated with the interpolation condition (18) since the spline
value at a vertex of an n-simplex in △ is the same as the corresponding
B-coefficient value (cf. Lemma 1). Also, Dc = 0 denotes the degree
reduction conditions.

This is a typical example of our model problem discussed in §3. We
shall use the Lagrange multiplier method. Let

L(c, α, β, γ) := cT Kc + αT Hc + βT Dc + γT (Ic − f)

be a Lagrangian function. We need to find a minimizer of L(c, α, β, γ).
That is,

∂

∂c
L(c, α, β, γ) = 0,

∂

∂α
L(c, α, β, γ) = 0,

∂

∂β
L(c, α, β, γ) = 0,

∂

∂γ
L(c, α, β, γ) = 0.

It follows that
2cT K + αT H + βT D + γT I = 0,

Hc = 0, Dc = 0, Ic = f .

In other words, we have




HT DT IT 2K
0 0 0 H
0 0 0 D
0 0 0 I







α
β
γ
c


 =




0
0
0
f


 . (23)

We shall apply the matrix iterative method for solving the above linear
system. To establish the matrix iterative method, we need to show that 2K
is symmetric and positive definite with respect to [H ; D; I]. Clearly, 2K
is symmetric. For any c such that cT Kc = 0 and Hc = 0, Dc = 0, Ic = 0,
it follows from Theorem 8 above that c = 0 is the unique solution in S
satisfying the interpolation condition.

Let us make a remark on the nonemptiness of Λ(f). It is possible to
use the smoothness, degree reduction, and interpolation matrices to check
if Λ(f) = ∅ or not. That is, letting c be a least squares solution of




H
D
I


 c =




0
0
f


 ,

if c solves the above linear system exactly, then Λ(f) 6= ∅. Furthermore,
when we solve the minimal energy interpolation problem, we use the ma-
ximum norm ∣∣∣∣∣∣

∣∣∣∣∣∣




Hc

Dc

Ic − f




∣∣∣∣∣∣

∣∣∣∣∣∣
∞

(24)
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to measure if the least squares solution does satisfy the interpolation con-
dition, smoothness conditions, and degree reduction conditions. For con-
venience, we will call such a measurement the exactness of the solution.

We have implemented the above algorithms for 2D and 3D scattered
data interpolation using bivariate and trivariate splines of any degrees and
variable smoothness over triangulations. Let us present some numerical
experiments.

Example 9. Consider a set of scattered data locations used in [Franke’82]
and triangulate it using Delaunay triangulation method. See Figure 1 for
the triangulation △. We use the following function

f(x, y) = sin(π(x2 + 2y2))

evaluated at the data locations to have a set of scattered data. We use
spline spaces of S1

3(△), S1
4(△), S1

5(△), etc. to find interpolation surfaces
and then compute the maximum errors of the interpolation against this
function. Our maximum errors are computed based on 101× 101 equally-
spaced points over [−0.05, 1.045]× [−0.031, 1.051]. We tabulate the maxi-
mum errors and cpu times for computing the interpolation surfaces. The
cpu times are based on a PC with 450Mhz. The exactness (24) has been
checked and is less than 10−8 for all the cases listed in the Table 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fig. 1 A triangulation
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Table 1. The Numerical Approximation using Minimal Energy Method

Maximum Errors CPU Times
S1

3(△) 0.22423758660928 16.6s
S1

4(△) 0.20516709129396 33.2s
S1

5(△) 0.19199158596566 63.5s
S2

5(△) 0.18141014563253 125.6s
S2

6(△) 0.19675675300293 212.4s

The minimal energy method for computing interpolation surface has
many extensions and generalizations. We give three possible extensions
here.

Example 10. Instead of the energy functional, we may minimize other
positive functionals, e.g., triharmonic functional. Consider

E3(s) =
∑

t∈△

∫

t



∑

|β|=3

(Dβs)2


 dxdy.

Then we formulate the following interpolation problem: find sf ∈ S with
global smoothness ≥ 2 such that sf satisfies the interpolation condition
(18) and

E3(sf ) = min{E3(s) : s ∈ S, s(x(i)) = fi, i = 1, . . . , V }.

By using similar arguments, we can obtain results similar to Theorem 8.
We leave the details to the interested reader. We have implemented this
method for a scattered data interpolation problem.

Example 11. Instead of interpolating function values, we may consider
the gradient values at the vertices of △. For simplicity, let us consider a
problem in the bivariate setting, i.e., in IR2. That is, we need to find a
smooth surface s such that

Dxs(xi, yi) = fx,i, Dys(xi, yi) = fy,i, i = 1, . . . , V. (25)

By fixing

s(x1, y1) = 0, (26)

we formulate the following problem: Find sf ∈ S such that sf (x1, y1) = 0,
sf satisfies the above interpolation condition (25), and

E(sf ) = min{E(s) : s ∈ S, s satisfies (25) and (26)}.
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Similar to the arguments of Theorem 8, we can show the existence and
uniqueness of a solution sf to this problem. We leave the details to the
interested reader.

Example 12. Instead of interpolating given data values, we may consider
the problem of filling polygonal holes. Assume that a given smooth surface
S has a hole which can be projected onto a plane P and the projection is
a polygonal domain Ω. We write g to be the function value of the given
surface S on ∂Ω and h to be the normal derivative value of S on ∂Ω. Then
we can formulate the following problem: find sf ∈ S such that

E(sf ) = min{E(s) : s|∂Ω = g and
∂

∂n
s|∂Ω = h}.

Similar to the arguments of Theorem 8, we can show the existence and
uniqueness of a spline function which fills the polygonal hole. We again
leave the details to the interested reader. Cf. [Chui and Lai’00] for some
numerical examples using bivariate C1 cubic splines.

§5. The Discrete Least Squares Method for Data Fitting

Let {(x(i), fi), i = 1, . . . , N} be a given set of scattered data in IRn, where
N is a relatively large integer. For example, in the bivariate setting,
N ≥ 1000 with x(i) ∈ [0, 1] × [0, 1]. Also, the x(i)’s may not be distinct.
A general problem is to find a smooth surface which resembles the given
data. In this section, we discuss the discrete least squares method for
finding such a surface.

To this end, let Ω be the convex hull of the given data locations and
△ a triangulation of Ω. Consider a spline space S = Sr,ρ

d
(△) for fixed

sequences ρ, r, and d associated with k-simplices, 0 ≤ k < n − 1, interior
(n−1)-simplices, and n-simplices of △. The discrete least squares method
is to find sf ∈ S such that

N∑

i=1

|sf (x(i)) − fi|2 = min{
N∑

i=1

|s(x(i)) − fi|2, s ∈ S}. (27)

We first discuss the existence and uniqueness of the solution. Let us
introduce the following

Definition 13. For a given spline space Sr,ρ
d

(△), let d = max{dt, t ∈
△}. We say that the given data locations x(i), i = 1, . . . , N are evenly
distributed over △ with respect to d if for each triangle t ∈ △, the matrix

[Bt
α(x(ℓ)), α ∈ Zn+1, |α| = d, x(ℓ) ∈ t]
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is of full rank.

Theorem 14. Suppose that the data locations x(i), i = 1, . . . , N are
evenly distributed over △ with respect to d. Then there exists a unique
discrete least squares solution sf satisfying (27).

Proof: For convenience, we consider the existence and uniqueness in the
bivariate setting. Recall that any s ∈ S can be given by

s(x, y) =
∑

i+j+k=d

ct
ijkBt

ijk(x, y), if (x, y) ∈ t ∈ △.

Let c = (ct
ijk, i + j + k = d, t ∈ △) be the coefficient vector of s. For any

s ∈ S, we have Hc = 0 and Dc = 0 for the smoothness conditions and
degree reduction conditions. Let

L(c) =
N∑

i=1

|s(x(i)) − fi|2

=
∑

t∈△

∑

(xℓ,yℓ)∈t




∑

i+j+k=d

ct
ijkBt

ijk(xℓ, yℓ) − fℓ




2

.

Note that L(0) = ‖f‖2
2, with f = (fℓ, ℓ = 1, . . . , N) being a data value

vector and ‖f‖2 :=

(
N∑

i=1

|fi|2
)1/2

denoting the standard Euclidean norm

of the vector f . Consider

A = {c, L(c) ≤ ‖f‖2
2}.

We now show that A is a bounded and closed set. Fix any triangle t ∈ △.
For any c ∈ A, we have

∣∣∣∣
∑

i+j+k=d

ct
ijkBt

ijk(xℓ, yℓ) − fℓ

∣∣∣∣ ≤ ‖f‖2, ∀(xℓ, yℓ) ∈ t.

It follows that
∣∣∣∣
∑

i+j+k=d

ct
ijkBt

ijk(xℓ, yℓ)

∣∣∣∣ ≤ 2‖f‖2, ∀(xℓ, yℓ) ∈ t.

Since the data locations are evenly distributed, the matrix

[Bt
ijk(xℓ, yℓ)] i+j+k=d

(xℓ,yℓ)∈t
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is of full rank and hence, there exists an index set It ⊂ {1, 2, . . . , N} such
that the square matrix

Bt := [Bt
ijk(xℓ, yℓ)] i+j+k=d

ℓ∈It

is invertible. It follows that

‖(ct
ijk, i + j + k = d)‖2 ≤ Ct,

where Ct is a positive constant depending only on ‖f‖2 and the ℓ2 norm
of the inverse matrix of Bt. Hence, ‖c‖2 is bounded above. Thus, A is
bounded. It is easy to see that A is closed. Also, it is easy to see that
As := {c, Hc = 0, Dc = 0} is a closed set and hence the set A ∩ As is
compact.

It is clear that L(c) is a continuous function of c. Therefore, there
exists a cf ∈ A ∩ As such that L(c) achieves its minimum at cf .

Next we show that cf is the unique solution. We first note that L(c)
is a convex function. Suppose that there exist two minimizers cf and ĉf .
Then any convex combination of cf and ĉf is a minimizer. That is,

L(cf + z(ĉf − cf )) = L(cf )

for any z ∈ [0, 1]. Thus,

1

2

d

dz
L(cf + z(ĉf − cf ))

=
∑

t∈△

∑

(xℓ,yℓ)∈t



∑

i+j+k

ct
ijk + z(ĉt

ijk − ct
ijk)Bt

ijk(xℓ, yℓ) − fℓ


×

(ĉt
ijk − ct

ijk)Bt
ijk(xℓ, yℓ)

=z
∑

t∈△

∑

(xℓ,yℓ)∈t

∑

i+j+k

(ĉt
ijk − ct

ijk)2Bt
ijk(xℓ, yℓ)

2

+
∑

t∈△

∑

(xℓ,yℓ)∈t

∑

i+j+k

ct
ijk(ĉt

ijk − ct
ijk)Bt

ijk(xℓ, yℓ)
2

−
∑

t∈△

∑

(xℓ,yℓ)∈t

∑

i+j+k

fℓ(ĉ
t
ijk − ct

ijk)Bt
ijk(xℓ, yℓ)

=0

for any z ∈ (0, 1). It follows that

∑

t∈△

∑

(xℓ,yℓ)∈t

∑

i+j+k

(ĉt
ijk − ct

ijk)2Bt
ijk(xℓ, yℓ)

2 = 0.
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That is, cf = ĉf because the data locations are evenly distributed over
each triangle of △. Hence, the minimizer is unique.

Clearly, the whole arguments above can be generalized to the multi-
variate setting IRn with n > 2 easily. We have thus completed the proof.

To find the minimizer, we note that L(c) is a convex function. Thus,
any local minimizer is the global minimizer. Hence, we only need to find
a local minimizer. By the Lagrange multiplier method, we let

F(c, α, β) := L(c) + αT Hc + βT Dc

and set

∂

∂c
F(c, α, β) = 0,

∂

∂α
F(c, α, β) = 0,

∂

∂β
F(c, α, β) = 0.

It follows that we need to solve the following linear system



HT DT 2B
0 0 H
0 0 D






α
β
c


 =




2b
0
0




where B = diag (Bt, t ∈ △) with

Bt =




∑

x(ℓ)∈t

Bt
α(x(ℓ))Bt

α′(x(ℓ))




α∈Zn+1,|α|=d

α′∈Zn+1,|α′|=d

being a matrix of size d̂×d̂ with d̂ =

(
d + n

n

)
and b = (bt

α, α ∈ Zn+1, |α| =

d, t ∈ △) with

bt
α =

∑

x(ℓ)∈t

fℓB
t
α(xℓ, yℓ).

We again use the matrix iterative method to solve the above linear system.
Note that when the data set is evenly distributed, the above Theorem

14 implies that B is positive definite with respect to [H ; D]. Therefore,
our matrix iterative method can be applied. If the data set is not evenly
distributed, we may use any least squares method instead of the inverses
in (11) to compute a fitting spline. See Example 16. When we solve the
discrete least squares problem, we use the maximum norm

∣∣∣∣
∣∣∣∣
[

Hc

Dc

]∣∣∣∣
∣∣∣∣
∞

(28)

to measure if the iterative solution does satisfy the smoothness conditions
and degree reduction conditions. For convenience, we will call such a
measurement the exactness of the solution.
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Example 15. Consider 1000 random points (xi, yi)’s over [0, 1] × [0, 1]
as shown in Fig. 2. Let {(xi, yi, f(xi, yi)), i = 1, . . . , 1000} be a scattered
data set, where

f(x, y) = sin(π(x2 + 2y2)).

We use the bivariate spline spaces Sr
d(△) to find the discrete least squares

fitting splines and then compare the maximum errors against the exact
function, where △ is the triangulation given in Fig. 2. The maximum
errors are measured using 101×101 equally-spaced points over [0, 1]×[0, 1].
We have checked the exactness (28) of the solutions for all the cases listed
in Table 2. The exactness is always less than 10−8.
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2 A set of 1000 scattered data points

Table 2. The approximation errors using discrete least squares splines

Errors CPU Errors CPU
S0

3(△) 0.273500 5s S1
3(△) 0.462761 5s

S0
4(△) 0.076285 10s S1

4(△) 0.197462 10.7s
S0

5(△) 0.014693 20s S1
5(△) 0.052269 21.5s

Example 16. We use the same data locations as in the previous example
while refining the triangulation uniformly. See Fig. 3 below for the refined
triangulation. Note that on the upper left corner, there are fewer points in



Multivariate Splines for Data Fitting and PDE’s 49

two of the triangles. Thus, the data set is not evenly distributed over all
triangles. We use f(x, y) = sin(π(x2 +2y2)) to get the data values at these
scattered data locations. Our method produces a C1 cubic fitting spline
as shown in Fig. 4. (The exactness (28) is less than 10−8 and thus, it is a
C1 surface). The spline surface closely resembles the surface z = f(x, y)
except near the upper left corner because there is not enough given data
there.
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Fig. 3 Refined triangulation

Example 17. Consider 10,000 random points (xi, yi)’s over [0, 1]× [0, 1].
Let {(xi, yi, f(xi, yi)), i = 1, . . . , 10000} be a scattered data set, where

f(x, y) = sin(π(x2 + 2y2)).

We use the bivariate spline spaces Sr
d(△) to find the discrete least squares

fitting splines and then compare the maximum errors against the exact
function, where △ is the triangulation given as in Example 15. The ma-
ximum errors are measured using 101 × 101 equally-spaced points over
[0, 1] × [0, 1]. The exactness (28) is within 10−8 for all the cases listed in
the Table 3.
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Fig. 4 Discrete Least Squares Fitting of f(x, y) = sin(π(x2 + 2y2))

Table 3. The approximation errors from discrete least squares splines

Errors CPU Errors CPU
S1

3(△) 0.092324 60s S1
6(△) 0.000105 335s

S1
4(△) 0.007112 112s S2

5(△) 0.002193 205s
S1

5(△) 0.001352 193s S2
6(△) 0.000292 345s

§6. The Penalized Least Squares Method for Data Fitting

Let {(x(i), fi), i = 1, . . . , N} be a given set of scattered data in IRn, where
N is a relatively large integer. Also, the x(i)’s may not be distinct. With-
out the assumption of even distribution of the data locations, we need to
find a smooth surface which resembles the given data. In this situation,
we use the penalized least squares method for finding such a surface.

To this end, let Ω be the convex hull of the given data locations and
△ be a triangulation of Ω. Consider a spline space S = Sr,ρ

d
(△) with fixed

smoothness r and local smoothness sequence ρ associated with k-simplices,
0 ≤ k < n − 1, and degree sequence d associated with n-simplices of △.
Assume that the global smoothness min{r, ρ} of the spline space S is at
least 1. The penalized least squares method is to find sf ∈ S such that

Pλ(sf ) = min{Pλ(s) : s ∈ S} (29)
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where λ > 0 is a positive weight,

Pλ(s) :=

N∑

i=1

|s(x(i)) − fi|2 + λE(s), (30)

and E(s) denotes the usual energy functional defined in (20). It is clear to
see that when λ >> 1, sf is close to a linear plane fit of the given data and
when λ << 1, sf is close to the discrete least squares fitting. A common
method to choose an appropriate weight λ is the cross validation method
(cf. [Wahba’90]).

We first discuss the existence and uniqueness of the solution sf ∈ S
satisfying (29) and a numerical method to compute sf .

Theorem 18. Fix a λ > 0. Suppose that all vertices of △ are part of the
data locations. Then there exists a unique sf ∈ S satisfying (29).

Proof: For convenience, we first prove the existence and uniqueness in
the bivariate setting. We shall use x(i) = (xi, yi). Let us write any spline
function s ∈ S as

s(x, y)|t =
∑

i+j+k=d

ct
ijkBt

ijk(x, y), (x, y) ∈ t ∈ △,

where d = max{di, i = 1, . . . , T}. Let c = (ct
ijk , i + j + k = d, t ∈ △) be

the coefficient vector associated with s. The length of vector c is d̂T with
T being the number of triangles in △ and d̂ = (d+1)(d+2)/2. Certainly,
s satisfies the smoothness and super smoothness conditions which can be
expressed by Hc = 0. Also, s satisfies the degree reduction condition
Dc = 0. The energy functional E(s) can be expressed in terms of c as

E(s) = cT Kc

with K = diag (Kt, t ∈ △) and

Kt =
[ ∫

t

(
D2

xBt
ijkD2

xBt
p,q,r + 2DxDyBt

ijkDxDyBt
p,q,r

+ D2
yB

t
ijkD2

yBt
p,q,r

)
dxdy

]
i+j+k=d
p+q+r=d

.

We have

N∑

i=1

|s(xi, yi) − fi|2

=
∑

t∈△

∑

(xℓ,yℓ)∈t




∑

i+j+k=d

ct
ijkBt

ijk(xℓ, yℓ) − fℓ




2

=cT Bc − 2bT c + ‖f‖2,
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where f = (fℓ, ℓ = 1, . . . , N) is a data value vector, B and b are as in the
previous section. Thus, we have

Pλ(s) = λcT Kc + cT Bc − 2bT c + ‖f‖2
2. (31)

It is easy to see that Pλ(0) = ‖f‖2
2. Consider

A = {c, Pλ(s) ≤ ‖f‖2
2}.

We now show that A is a bounded and closed set. Clearly, for c ∈ A, we
have ∫

t

|D2
xs(x, y)|2dxdy ≤ 1

λ
‖f‖2

2

for any triangle t ∈ △. Since D2
xs(x, y)|t is in the space of polynomials of

degree ≤ d − 2, it follows that

max
(x,y)∈t

|D2
xs(x, y)| ≤ C

1√
λ
‖f‖2

for some C depending on the triangle t. Similar for DxDys and D2
ys. Thus,

we have |s|2,∞,t ≤ C‖f‖2/
√

λ for another constant C > 0 depending on t,
where

|s|2,∞,t := max
(x,y)∈t

max{|D2
xs(x, y)|, |DxDys(x, y)|, |D2

ys(x, y)|}.

Next we claim that max{|s(x, y)|, (x, y) ∈ t} is bounded. Since all the
vertices of △ are part of the data locations, writing t = 〈vi, vj , vk〉, we
have vi, vj , vk ∈ {(xℓ, yℓ), ℓ = 1, . . . , N}. For simplicity, let fi be the data
value associated with vi. It follows that, for c ∈ A,

|s(vi)| ≤|s(vi) − fi| + |fi| ≤




∑

(xℓ,yℓ)∈t

(s(xℓ, yℓ) − fℓ)
2




1/2

+ ‖f‖2

≤ (Pλ(s))
1/2

+ ‖f‖2

≤
(

1√
λ

+ 1

)
‖f‖2.

Similarly, we have the same estimate for |s(vj)| and |s(vk)|. For any point
v = (x, y) ∈ t, we use the Taylor expansion to get

s(vi) = s(v) + ∇s(v) · (vi − v) + O(|s|2,∞,t|t|2), (32)
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where |t| denotes the diameter of t. Similar for s(vj) and s(vk). It follows
that

s(vj) − s(vi) =∇s(v) · (vj − vi) + O(|s|2,∞,t|t|2)
s(vk) − s(vi) =∇s(v) · (vk − vi) + O(|s|2,∞,t|t|2).

Solving this linear system for ∇s(v) = (Dxs(v), Dys(v)) gives

Dxs(v) = O(|t|3|s|2,∞,t/At) + |s(vj)| + |s(vi)||t|/At

Dys(v) = O(|t|3|s|2,∞,t/At) + |s(vk)| + |s(vi)||t|/At,

where At stands for the area of the triangle t. Inserting these estimates
for ∇s(v) in (32), we immediately get

|s(v)| ≤ C
(
(1 + |t|2/At)‖f‖∞ + |t|4|s|2,∞,t/At

)
.

Hence, we have

|s(x, y)| ≤ Ct

(
1√
λ

+ 1

)
‖f‖2

for another constant Ct > 0 depending on t. It follows from Lemma 2 that

max
i+j+k=d

|ct
ijk| ≤ N max

(x,y)∈t
|s(x, y)| ≤ NCt

(
1√
λ

+ 1

)
‖f‖2.

Therefore c is bounded and thus, A is a bounded set. Clearly, A is a closed
set and hence, A is compact.

By (31), it is clear that Pλ is a continuous function of the variable c.
Hence, Pλ achieves its minimum over the compact set A. That is, there
exists a spline sf solving the minimization problem (29).

Next we show the uniqueness of the minimizer sf . Suppose that
we have two solutions sf and ŝf . Let cf and ĉf be the two coefficients
associated with sf and ŝf , respectively. Since Pλ is a convex functional,
we have, for any z ∈ [0, 1],

Pλ(zsf + (1 − z)ŝf ) ≤ zPλ(sf ) + (1 − z)Pλ(ŝf ) = Pλ(sf ).

That is, Pλ(ŝf + z(sf − ŝf )) is a constant function of z ∈ [0, 1]. It follows

that
∂

∂z
Pλ(ŝf + z(sf − ŝf )) = 0 for all z ∈ (0, 1). That is,

0 =
∂

∂z
Pλ(ŝf + z(sf − ŝf ))

=2λz(cf − ĉf )T K(cf − ĉf ) + 2z(cf − ĉf )T B(cf − ĉf )

− 2bT (cf − ĉf )
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for all z ∈ (0, 1). Thus, we have

(cf − ĉf )T K(cf − ĉf ) = 0 and (cf − ĉf )T B(cf − ĉf ) = 0.

because both K and B are nonnegative definite. The first equation is
equivalent to E(sf − ŝf ) = 0 which implies that sf − ŝf is a linear poly-
nomial. The second equation implies that sf − ŝf is equal to zero at all
vertices of △. Thus, sf − ŝf ≡ 0. Hence, the minimizer is unique. We
have thus completed the proof for the bivariate setting.

We note that the above arguments can be easily generalized to the
multivariate setting, and we leave the generalization to the interested
reader.

Next we look at how to compute the minimizer. Since Pλ(s) is a
convex functional, any local minimizer is the global minimizer. To find a
local minimizer, we use the Lagrange multiplier method by letting

F(c, α, β) = Pλ(s) + αT Hc + βT Dc

and compute

∂

∂c
F(c, α, β) = 0,

∂

∂α
F(c, α, β) = 0,

∂

∂β
F(c, α, β) = 0.

Using the expression (31), we have




HT DT 2(B + λK)
0 0 H
0 0 D






α
β
c


 =




2b
0
0


 . (33)

We shall use the matrix iterative method introduced in §3 to solve
the above linear system. Since the uniqueness of the solution implies that
B+λK is positive definite with respect to [H ; D], Theorem 6 is applicable.
This establishes our numerical method for penalized least squares spline
method for scattered data fitting. Furthermore, we use the maximum
norm ∣∣∣∣

∣∣∣∣
[

Hc

Dc

]∣∣∣∣
∣∣∣∣
∞

(34)

to measure if the iterative solution does satisfy the smoothness conditions
and degree reduction conditions. We say that the solution is exact if it’s
zero in the above norm.

Example 19. Consider 1000 random points (xi, yi) over [0, 1] × [0, 1] as
shown in Fig. 2. Let {(xi, yi, f(xi, yi)), i = 1, . . . , 1000} be a scattered
data set, where

f(x, y) = sin(π(x2 + 2y2)).
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Let △ be the two triangles obtained from [0, 1] × [0, 1] by adding one
diagonal. We uniformly refine △ one, two, and three times to obtain new
triangulations △1,△2, and △3. We use bivariate spline spaces S1

5(△i), i =
1, 2, 3 to find the penalized least squares fitting splines with different λ
and then compare the maximum errors against the exact function. The
maximum errors are measured using 100× 100 equally-spaced points over
[0, 1] × [0, 1] and given in Table 4. The CPU time of the computations is
measured in seconds. The exactness (34) of the solution is checked and is
less than 10−8 for all the cases.

Table 4. Maximum Errors from Penalized Least Squares Method

Splines \ λ 10−1 10−2 10−3 10−4 10−5 CPU
S1

5(△1) 1.2345 0.6621 0.2826 0.6587 6s
S1

5(△2) 1.2222 0.7908 0.2951 0.1217 0.0595 22s
S1

5(△3) 1.2344 0.8033 0.3054 0.1484 0.1046 99s

Next we use 10,000 scattered data locations in [0, 1] × [0, 1] and per-
form the same experiments as above. The maximum errors are listed in
Table 5.

Table 5. Maximum Errors from Penalized Least Squares Method (cont.)

Splines \ λ 10−1 10−2 10−3 10−4 10−5 10−6 CPU
S1

5(△1) 0.9273 0.1979 0.7181 20s
S1

5(△2) 1.0050 0.3685 0.1121 0.0256 0.0108 0.01233 55s
S1

5(△3) 1.0127 0.3840 0.1085 0.0278 0.0090 0.00224 206s

Example 20. We also perform a similar numerical experiment using
trivariate splines. That is, we use 10,000 scattered data located in [0, 1]×
[0, 1] × [0, 1]. We partition the domain into 12 tetrahedra by connecting
the midpoint (0.5, 0.5, 0.5) to the six square faces and dividing each of the
six resulting pyramids into two tetrahedra. These 12 tetrahedra form a
tetrahedral partition △ of the given domain [0, 1]× [0, 1]× [0, 1]. The test
function is f(x, y, z) = exp(x + y + z). We use the trivariate spline space
S1

5(△) to find the penalized least squares fitting splines with different λ
and then compare the maximum errors against the exact function. The
maximum errors are measured using 20 × 20 × 20 equally-spaced points
over [0, 1] × [0, 1] × [0, 1] and given in Table 6. The exactness (34) of the
solution is checked and is less than 10−8 for all the cases.
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Table 6. Maximum Errors from Penalized Least Squares Method (cont.)

Splines \ λ 10−1 10−2 10−3 10−4 10−5 CPU
S1

5(△) 0.6904 0.1793 0.0320 0.0070 0.0041 84s

§7. Numerical Solution of Poisson Equations and

Other Second Order Elliptic Equations

In this section, we will show how to solve the Poisson equation and
other second order elliptic equations by using multivariate splines of vari-
able degree and variable smoothness. These spline functions will provide
a versatile tool for numerical solution of PDE’s because of the flexibility
in choosing the degrees and smoothness when constructing numerical so-
lutions. For example, it is known that the weak solution of the Poisson
equation over a polygonal domain Ω is at least H2(V ) for any open set
V ⊂ Ω (cf. [Evans’98]). We should choose spline functions which are C1

inside Ω and C0 near the boundary of Ω to find an approximate weak
solution.

Let us begin with the Poisson equation:

{
−∆u = f inΩ

u = g, on ∂Ω

where Ω is a polygonal domain in IRn, f ∈ L2(Ω), and g is continuous over
the boundary ∂Ω of Ω. The weak formulation of the Poisson equation is
to find u ∈ H1(Ω) which satisfy u = g on ∂Ω and

a(u, v) = 〈f, v〉, ∀v ∈ H1
0 (Ω),

where a(u, v) is the bilinear form defined by

a(u, v) =

∫

Ω

∇u · ∇vdxdy

and 〈f, v〉 =
∫
Ω

fvdxdy stands for the standard L2 inner product of f and
v. Here H1(Ω) and H1

0 (Ω) are standard Sobolev spaces. By the standard
calculus of variations, the Poisson equation is the Euler-Lagrange equation
of the energy functional

E(w) =

∫

Ω

(
1

2
∇w · ∇w − wf

)
dx.

It is known that the weak solution of the Poisson equation is the minimizer
of the energy functional E(w) among the class of admissible functions

A = {w ∈ H1(Ω), w = g on ∂Ω}.
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(Cf. [Evans’98, §8.2.3].) That is, the weak solution u satisfies

E(u) = min
w∈A

E(w). (35)

Also any minimizer satisfying (35) is the weak solution.
Next we discuss how to compute approximate weak solutions which

are multivariate spline functions. For convenience, let us consider the
Poisson equation in the bivariate setting first. Let △ be a triangulation
of the domain Ω ∈ IR2 and let

S := Sr,ρ
d

(△)

be a spline space with fixed (global) smoothness r, local smoothness vector
ρ and degree vector d associated with vertices, interior edges, and trian-
gles of △. Let d be the largest integer in d. Instead of piecewise linear
boundary of Ω′ = ∪t∈△t, we may use piecewise quadratic polynomials
to approximate the boundary of Ω. That is, for each boundary triangle
t ∈ △, if the boundary edge et of t is not a part of boundary ∂Ω of Ω, we
use a circular arc ẽt which passes through two vertices of et and another
point on ∂Ω between the two vertices to replace et. Let t̃ be the convex
hull of the vertices of t and the circular arc. All the interior triangles and
new boundary triangles (with curved side) form a new domain Ω̃ which is
a better approximation of Ω than Ω′. Since each spline function s ∈ S can
be extended naturally to Ω̃, we may consider that S are defined on Ω̃.

We remark that when solving the Poisson equation with Dirichlet
boundary condition, we require spline functions to have less smoothness
near the boundary while having more smoothness inside the domain ac-
cording to the regularity theory of the weak solution of the Poisson and
general elliptic PDE’s (cf. [Evans98, pp. 309–316]). In general, there is
no spline function in S satisfying the boundary condition exactly. Let Ã
be the subset of S satisfying the boundary condition approximately in the
sense that su ∈ S interpolates g at 2d + 1 distinct points at each curve
edge and d+1 disctinct points over each straight boundary edge. Here, we
have assumed that the degrees of the spline functions in S are d over each
boundary triangle. Otherwise, we modify the interpolation conditions ap-
propriately. We compute the approximation su ∈ S satisfying

E(su) = min
w∈Ã

E(w).

Following the same arguments in [Evans’98, §8.2.3], the minimizer su is
the approximate weak solution in S.

We next give an algorithm to compute such an su with the assumption
that su exists and is unique. The proof of the existence and uniqueness is
well-known and will be mentioned briefly later.
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Let us write any spline function s ∈ S as in (2), where d = max{dt, t ∈
△}. That is, s ∈ S may be expressed by

s(x, y)|t =
∑

i+j+k=d

ct
ijkBt

ijk(x, y), (x, y) ∈ t ∈ △.

Let c = (ct
ijk, i+ j+k = d, t ∈ △) be the coefficient vector associated with

s. The length of the vector c is d̂T with T being the number of triangles
in △ and d̂ = (d + 1)(d + 2)/2. The smoothness and super smoothness
conditions that s satisfies can be expressed by Hc = 0. Also, s satisfies
the degree reduction conditions, i.e., Dc = 0.

Then the bilinear form a(s, ŝ) can be expressed in terms of c and ĉ

by
a(s, ŝ) = cT K ĉ

where K = diag (Kt, t ∈ △) with

Kt =

[∫

t

∇Bt
ijk · ∇Bt

p,q,rdxdy

]

i+j+k=d

p+q+r=d

.

Note that the inner product 〈f, ŝ〉 can be approximated by 〈sf , ŝ〉 where
sf ∈ S−1

d (△), the space of piecewise polynomials of degree d on each
triangle, interpolates f over the domain points of each triangle t. Thus,

〈f, ŝ〉 ≈ ĉT Mcf ,

where M = diag (M t, t ∈ △) is a block diagonal matrix with square
blocks

M t =

[∫

t

Bt
ijk(x, y)Bt

p,q,r(x, y)dxdy

]

i+j+k=d

p+q+r=d

and cf encodes the coefficients of sf . We need to solve the following
minimization problem:

min
1

2
cT Kc− cT Mcf

subject to

Hc = 0, Dc = 0, Bc = g,

where Bc = g denotes a linear system associated with the boundary con-
ditions. Indeed, based on the de Casteljau algorithm, the evaluation of
su at any point on a curved edge is a linear equation in terms of the
unknown coefficients of su. As we can show that there exists a unique ap-
proximate weak solution su ∈ S, we know that the minimization problem
has a unique solution. Since the energy functional is convex, any local
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minimum is the global minimum. Let us compute a local minimum by
using the Lagrange multiplier method. Letting

L(c, θ, η, ν) =
1

2
cT Kc − cT Mcf + θT Hc + ηT Dc + νT (Bc − g),

we compute
∂

∂c
L(c, θ, η, ν) = 0,

∂

∂θ
L(c, θ, η, ν) = 0,

∂

∂η
L(c, θ, η, ν) = 0,

∂

∂ν
L(c, θ, η, ν) = 0.

It follows that
Kc + HT θ + DT η + BT ν = Mcf

Hc = 0, Dc = 0, Bc = g.

In other words, we have




BT DT HT K
0 0 0 H
0 0 0 D
0 0 0 B







θ
η
ν
c


 =




Mcf

0
0
g


 . (36)

We shall apply the matrix iterative method for solving the above linear
system when it is of large size. The uniqueness of the weak solution
implies that K is positive definite with respect to [B; H ; D]. Therefore, the
matrix iterative method is well-defined. We remark that assembling the
matrices M and K is particularly easy and can be done without knowing
the relations among the triangles in any given triangulation partition. This
is also true in the multivariate setting.

This leads to a numerical method to compute approximate weak so-
lutions for Poisson equations in IR2. It is clear that the above arguments
can be generalized to the multivariate setting.

We have implemented this method using bi- and tri-variate spline
spaces of any degree and any smoothness over any triangulation of any
polygonal domain to solve 2D and 3D Poisson equation. We will provide
several numerical experiments near the end of this section.

Next let us briefly discuss the existence and uniqueness of the approx-
imate weak solution su. The discussion is parallel to the one using finite
elements. Mainly we use the well-known Lax-Milgram Theorem. Since S
is a finite dimensional space, we may find a basis {φi, i = 1, . . . , dim(S)}
which may not be locally supported. For any spline function s ∈ S, we
write s =

∑
i siφi for some coefficients si’s. Thus, for s ∈ S ∩ H1

0 (Ω), the
bilinear form can be given by

a(s, ŝ) = sK ′ŝ
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with a new stiffness matrix K ′. Because a(·, ·) is coercive, it can be easily
shown that K ′ is positive definite over S ∩H1

0 (Ω). Thus the existence and
uniqueness of the approximation weak solution su follows.

We remark that the Poisson equation with Neumann boundary con-
dition 




−∆u = f, in Ω
∂u
∂n

= h, on ∂Ω∫
Ω

udx = 0
(37)

can be numerically solved in the same fashion. We leave the details to the
interested reader. We have implemented the algorithm for solving (37)
numerically in the bivariate and trivariate setting.

We now turn our attention to general second order elliptic equations.
Consider






−
n∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj
u

)
= f, x ∈ Ω

u(x) = g(x), x ∈ ∂Ω,

(38)

where aij(x) = aji(x) ∈ L∞(Ω) for i, j = 1, . . . , n and satisfy

n∑

i,j=1

aijλiλj ≥ m

n∑

i=1

λ2
i , ∀λi, i = 1, . . . , n

for a positive constant m > 0. Using the results in [Evans’98, §8.2.3], we
can show that the weak solution of (38) is the minimizer of

E(w) =

∫

Ω


1

2

n∑

i,j=1

aij
∂

∂xi
w

∂

∂xj
w − wf


 dx

over the set A of admissible functions. Thus, to find an approximate weak
solution in S, we need to solve the following minimization problem:

min
1

2
cTKc − cT M f

subject to

Hc = 0, Dc = 0, Bc = g,

where K = diag (K̃t, t ∈ △) is a block diagonal matrix with

K̃t =



∫

t

n∑

i,j=1

aij
∂

∂xi
Bt

α

∂

∂xj
Bt

α̂dx




α∈zn+1,|α|=d

α̂∈zn+1,|α̂|=d

.
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The Lagrange multiplier method implies that we need to solve the follow-
ing linear system:




BT DT HT K
0 0 0 H
0 0 0 D
0 0 0 B







θ
η
ν
c


 =




Mcf

0
0
g


 . (39)

Again the uniqueness of the weak solution implies that the matrix iterative
method is well defined. Furthermore, we use the maximum norm

∣∣∣∣∣∣

∣∣∣∣∣∣




Hc

Dc

Bc − g





∣∣∣∣∣∣

∣∣∣∣∣∣
(40)

to check if the iterative solution does satisfy the smoothness conditions,
degree reduction conditions, and boundary conditions. The solution will
be said exact if it is zero in such a norm.

Let us report on some numerical experiments for the 2D and 3D
Poisson equations.

Example 21. Consider the Poisson equation with exact solution

u(x, y) = 10 exp(−(x2 + y2))

over a square domain:
{
−∆u = 40 exp(−(x2 + y2))(1 − x2 − y2) (x, y) ∈ [−2, 2]× [−2, 2]
u(x, y) = 10 exp(−(x2 + y2), (x, y) ∈ ∂[−2, 2]× [−2, 2]

The solution is relatively large inside the domain as compared to its values
on the boundary. Our spline solutions can approximate it very well. We
use a triangulation similar to Fig. 2 with 25 vertices and 32 triangles.
We test many spline spaces and list the maximum errors of approximate
weak spline solutions against the exact solution in Table 7. The maximum
errors are computed based on 101×101 equally-spaced points over [−2, 2]×
[−2, 2]. The exactness (34) is checked for all the spline spaces list Table 7
and is less than 10−8.w

Table 7. Approximation Errors from Bivariate Spline Spaces

Maximum Errors CPU Times
S1

3(△) 0.732222 0.40s
S1

4(△) 0.063235 0.48s
S1

5(△) 0.010793 0.78s
S1

6(△) 0.001382 1.06s
S1

7(△) 0.000502 1.65s
S1

8(△) 0.000173 2.56s
S1

9(△) 0.000013 4.03s
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Example 22. Consider the 3D Poisson equation with exact solution

u(x, y, z) = 10 exp(−(x2 + y2 + z2))

over an octahedron Ω := 〈(1, 0, 0), (0, 1, 0), (−1, 0, 0), (0,−1, 0), (0, 0, 1),
(0, 0,−1)〉. We split Ω into 8 tetrahedra by three coordinate planes. Let
△ denote the collection of all 8 tetrahedra. We find approximate weak
solutions in the 3D spline spaces S1

d(△) for d = 3, . . . , 7. The maximum
errors are computed based on 20 × 20 × 20 equally-spaced points over Ω
and listed in Table 8. The exactness (40) is checked and is less than 10−8.

Fig. 5 A simple tetrahedron partition

Table 8. Approximation Errors from Trivariate Spline Spaces

matrix size Maximum Errors CPU Times
S1

3(△) 160 × 160 0.17127 0.07s
S1

4(△) 280 × 280 0.02737 0.17s
S1

5(△) 448 × 448 0.00749 0.625s
S1

6(△) 672 × 672 0.000842 1.67s
S1

7(△) 960 × 960 0.0004601 5.18s

Next we compare the errors by using refinements of underlying trian-
gulations and by increasing the degrees of spline functions.
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Example 23. We solve the Poisson equation with Dirichlet boundary
condition over a star domain as shown in Fig. 6 with exact solution u =
exp(x + y) using C1 cubic splines over succesively refined triangulations.
We can only refine 3 times within the capacity of our PC and the results
are listed in Table 9. In Table 10, the degrees of the spline spaces are
varied.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

Fig. 6 An Initial Triangulation of a Star-shape Domain

Table 9. Approximation from Uniform Refinements (Dirichlet Problem)

Refinement Levels Matrix Size Maximum Errors
1 80 × 80 0.254346956
2 320 × 320 0.029554301
3 1280× 1280 0.004515225
4 5120× 5120 0.000535312

Table 10. Approximation from Degree Increase (Dirichlet Problem)

Polynomial Degrees Matrix Size Maximum Errors
3 80 × 80 0.25434695641
4 120 × 120 0.04251752024
5 168 × 168 0.00608204535
6 224 × 224 0.00080855135
7 288 × 288 0.00009770118
8 360 × 360 0.00001031184
9 440 × 440 0.00000096358
10 528 × 528 0.00000008441
11 624 × 624 0.00000000697
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Example 24. Next we solve the Poisson equation with Neumann bound-
ary condition over a star domain as shown in Figure 6 with exact solution

u = 10 exp(−(x2 + y2))

using C1 quartic splines over succesively refined triangulation. The nu-
merical results are given in Tables 11 and 12 with refinements and degree
increases.

Table 11. Approximation from Uniform Refinements (Neumann Problem)

Refinement Levels Matrix Size Maximum Errors
1 120 × 120 2.38 × 10−2

2 480 × 480 6.81 × 10−4

3 1920× 1920 3.15 × 10−5

4 7680× 7680 1.29 × 10−6

Table 12. Approximation from Degree Increase (Neumann Problem)

Polynomial Degrees Matrix Size Maximum Errors
4 120 × 120 2.38 × 10−2

5 168 × 168 5.53 × 10−3

6 224 × 224 1.67 × 10−4

7 288 × 288 1.24 × 10−5

8 360 × 360 7.87 × 10−6

9 440 × 440 2.52 × 10−6

10 528 × 528 3.00 × 10−7

11 624 × 634 4.08 × 10−8

Example 25. In this example, we show the spline approximation of a
highly oscilatory solution of the Poisson equation:

{
−∆u = f(x, y) (x, y) ∈ [0, 1] × [0, 1]
u(x, y) = 10 sin(x2 + y2) + sin(25(x2 + y2)), (x, y) ∈ ∂[0, 1] × [0, 1]

where f(x, y) = 40(cos(x2 + y2)− (x2 + y2) sin(x2 + y2)) + 50 cos(25(x2 +
y2))−2500 sin(25(x2+y2))). The exact solution contains a high frequency
part which is very hard to approximate with linear finite elements. Our
spline approximation yields a good approximation of such solution. In
Table 13, we give the maximum errors of the spline approximation using
degrees 5, 6 and 7 over uniformly refined triangulations.
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Table 13. Spline Approximation of Oscilatory Solution

Levels No. of Triangles Degree 5 Degree 6 Degree 7
1 32 6.738 10.08 4.194
2 128 1.616 0.845 0.212
3 512 0.0391 0.0086 0.0011

§8. Numerical Solution of Biharmonic Equations

In this section, we show how to solve biharmonic equations using multiva-
riate splines of variable degree and variable smoothness. The biharmonic
equation is given as follows:






∆2u = f, in Ω

u = g, on ∂Ω

∂

∂n
u = h, on ∂Ω,

(41)

where Ω is a polygonal domain in IRn, f ∈ L2(Ω), g and h are in C(∂Ω),
and n stands for the normal direction of the boundary ∂Ω. A typical
biharmonic equation is the 2D Stokes equations in the stream function
formulation (cf., e.g., [Lai and Wenston’00]). The weak formulation for
biharmonic equation is to find u ∈ H2(Ω) such that u satisfies the bound-
ary conditions in (41) and

a(u, v) = 〈f, v〉, ∀v ∈ H2
0 (Ω),

where a(u, v) is a bilinear form defined by

a(u, v) =

∫

Ω

∆u∆vdx

and 〈f, v〉 =
∫
Ω fvdx stands for the standard L2 inner product of f and v.

Here H2(Ω) and H2
0 (Ω) are standard Sobolev spaces. With the assumption

that the boundary conditions are compatible, that is, there exists a ub ∈
H2(Ω) satisfying both boundary conditions in (41), we can show that
the weak solution exists and is unique by the well-known Lax-Milgram
Theorem (cf. [Lai and Wenston’00]). Let

E2(w) =

∫

Ω

(
1

2
(∆w)2 − wf

)
dx

be an energy functional and

A2 = {w ∈ H2(Ω), w = g,
∂

∂n
w = h, on ∂Ω}
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be the class of admissible functions. By the compatibility of the boundary
conditions, we know that A2 is not empty. As before, we shall consider
the following minimization problem: Find u ∈ A2 such that

E2(u) = min{E2(w) : w ∈ A2}.

Based on the standard calculus of variations, it is easy to prove that any
minimizer u is a weak solution. Since the weak solution is unique, so is
the minimizer.

To find an approximation of the weak solution u, we use multivariate
splines of variable degree and variable smoothness. Let △ be a triangula-
tion of the domain Ω ⊂ IRn and let

S := Sr,ρ
d

(△)

be the spline space of fixed smoothness ρ, r and degree d associated with
k-simplices, 0 ≤ k < n − 1, (n − 1)-simplices, and n-simplices of △. We
assume that the global smoothness min{r, ρ} of S is bigger or equal to
1 so that S ⊂ H2(Ω). Let d be the large integer in d. As the same

as in the previous section, we will extend S to be defined over Ω̃. We
should point out that in general, the weak solution u is smoother inside
the domain Ω (cf. [Grisvard’85]). Thus, we should choose S such that
each spline function in S is more smooth than near the boundary. Let Ã2

be the class of spline functions s ∈ S satisfying the boundary conditions
approximately, i.e., s ∈ S interpolates g at 2d + 1 distinct points over
each curved edge and d + 1 disctinct points over each straight edge and
∂

∂n
s interpolates h at 2d − 1 distinct points over each curved edge and d

distinct points over each straight edge. Our algorithm is to find su ∈ Ã2

such that
E2(su) = min{E2(s) : s ∈ Ã2}.

More precisely, let us write any spline function s ∈ S as

s(x)|t =
∑

α∈zn+1

|α|=d

ct
αBt

α(x), x ∈ t ∈ △,

where d = max{dt, t ∈ △}. Let c = (ct
α, α ∈ Zn+1, |α| = d, t ∈ △)

be the coefficient vector associated with s. The smoothness and super
smoothness conditions that s satisfies can be expressed by Hc = 0. Also,
s satisfies the degree reduction conditions Dc = 0.

Then the bilinear form a(s, ŝ) can be expressed in terms of c and ĉ

by
a(s, ŝ) = cT K ĉ
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where K = diag (Kt, t ∈ △) with

Kt =

[∫

t

∆Bt
α(x)∆Bt

γ(x)dx

]

α∈zn+1,|α|=d

γ∈zn+1,|γ|=d

.

Note that the inner product 〈f, ŝ〉 can be approximated by 〈sf , ŝ〉 for a
spline sf which interpolates f over the domain points of each n-simplex t.
Thus

〈f, ŝ〉 ≈ ĉT Mcf

where M = diag (M t, t ∈ △) is a block diagonal matrix with square
blocks

M t =

[∫

t

Bt
α(x)Bt

γ(x)dx

]

|α|=d

|γ|=d

and cf is the coefficient vector for sf . We need to solve the following
minimization problem:

min
1

2
cT Kc − cT Mcf

subject to

Hc = 0, Dc = 0, Bc = g,

where Bc = g denotes the linear system associated with the approximate
boundary conditions. Note that the minimization problem has a unique
solution. Since the energy functional is convex, any local minimum is the
global minimum. Let us compute a local minimum by using the Lagrange
multiplier method. Letting

L(c, θ, η, ν) =
1

2
cT Kc− cT M f + θT Hc + ηT Dc + νT (Bc − g),

we compute
∂

∂c
L(c, θ, η, ν) = 0,

∂

∂α
L(c, θ, η, ν) = 0,

∂

∂η
L(c, θ, η, ν) = 0,

∂

∂γ
L(c, θ, η, ν) = 0.

It follows that
Kc + HT θ + DT η + BT ν = Mcf

Hc = 0, Dc = 0, Bc = g.

In other words, we need to solve the following linear system




HT DT BT K
0 0 0 H
0 0 0 D
0 0 0 B







θ
η
ν
c


 =




Mcf

0
0
g


 . (42)
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As discussed in the previous sections, the uniqueness of the weak solution
implies that the matrix K is positive definite with respect to [H ; D; B].
Thus, the matrix iterative method is well-defined.

To make sure that the iterative solution is the weak solution of the
biharmonic equation, we use the maximum norm∣∣∣∣∣∣

∣∣∣∣∣∣




Hc

Dc

Bc − g




∣∣∣∣∣∣

∣∣∣∣∣∣
∞

(43)

to check if it does satisfy the boundary conditions, smoothness conditions,
and degree reduction conditions. The solution will be said exact if it’s
zero in the above norm.

We remark that the above algorithm also gives a numerical method
to determine if the boundary conditions are compatible or not. That is,
if the least squares solution in the norm (43) is not close to zero as the
underlying triangulations are refined or degrees of the spline functions
increase, then the boundary conditions are not compatible since S1

d(△)
becomes dense in H2(Ω) if d increases to ∞ and/or |△| decreases to 0.

We have implemented this method for 2D and 3D biharmonic equa-
tions using bivariate and trivariate spline spaces of any degree and any
smoothness. That is, we are able to numerically solve biharmonic equa-
tions over any polygonal domain in the bivariate or trivariate setting. Let
us present several numerical examples below.

Example 26. Consider a 2D biharmonic equation with exact solution
u(x, y) = exp(x + y) over a unit square domain:






∆2u = 4 exp(x + y) (x, y) ∈ [0, 1] × [0, 1]
u(x, y) = exp(x + y), (x, y) ∈ ∂[0, 1] × [0, 1]
∂
∂xu(x, y) = exp(x + y), (x, y) ∈ ∂[0, 1] × [0, 1]
∂
∂y u(x, y) = exp(x + y), (x, y) ∈ ∂[0, 1] × [0, 1].

We used the triangulation as in Fig. 2 with 25 vertices and 32 triangles
and tested many spline spaces. The maximum errors of approximate weak
spline solutions against the exact solution are given below. The maximum
errors are computed based on 101×101 equally-spaced points over [0, 1]×
[0, 1]. The exactness (43) is checked and is less than 10−8 for all the spline
spaces listed in Table 14.

Example 27. Consider a 2D biharmonic equation with exact solution
u(x, y) = 10 exp(−(x2 + y2)) over a unit circular domain:




∆2u = 160 exp(−(x2 + y2))×
×(x4 + y4 + 2x2y2 + 2 − 4x2 − 4y2) (x, y) ∈ {(x, y), x2 + y2 < 1}
u(x, y) = 10 exp(−(x2 + y2)), (x, y) ∈ {(x, y), x2 + y2 = 1}
∂
∂xu(x, y) = −20x exp(−(x2 + y2)), (x, y) ∈ {(x, y), x2 + y2 = 1}
∂
∂y u(x, y) = −20y exp(−(x2 + y2)), (x, y) ∈ {(x, y), x2 + y2 = 1}.
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Table 14. Numerical Approximation of Biharmonic Equation
over a Standard Square Domain

Maximum Errors CPU Times
S1

5(△) 5.7959× 10−7 2.8s
S1

6(△) 1.1001× 10−8 4.5s
S1

7(△) 1.3208× 10−10 6.2s
S1

8(△) 1.1465× 10−11 9.8s
S2

5(△) 1.1187× 10−5 3.5s
S2

6(△) 3.2605× 10−8 5.2s
S2

7(△) 2.7998× 10−10 7.9s
S2

8(△) 1.1982× 10−11 13.2s

We use the following triangulation and test many spline spaces. The
maximum errors of approximate weak spline solutions against the exact
solution are given in Table 15. The maximum errors are computed based
on 101×101 equally-spaced points over [−1, 1]× [−1, 1] within the circular
domain.
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Fig. 7 A triangulation of the unit circular domain

Example 28. Consider a 3D biharmonic equation with exact solution

u(x, y, z) = 10 exp(−(x2 + y2 + z2))

over an octahedron Ω as in Example 22. We use the same tetrahedral
partition as above. We find approximate weak solutions from 3D spline
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Table 15. Numerical Approximation of Biharmonic Equation
over a Circular Domain

Spline Spaces Matrix Sizes Maximum Errors
S1

3(△) 1990 × 1990 6.6819× 10−2

S1
4(△) 2985 × 2985 2.0199× 10−4

S1
5(△) 4179 × 4179 1.3653× 10−6

S1
6(△) 5572 × 5572 7.6779× 10−8

S1
7(△) 7164 × 7164 1.7841× 10−9

S1
8(△) 8955 × 8955 4.4959× 10−10

spaces S1
d(△) for d = 3, . . . , 7 and Table 16 is a list of maximum errors

against the exact solution evaluated at 20 × 20 × 20 points over Ω.

Table 16. Approximation Errors from Trivariate Spline Spaces

Spline Spaces Matrix Size Maximum Errors
S1

3(△) 160 × 160 0.248542
S1

4(△) 280 × 280 0.048342
S1

5(△) 448 × 448 0.014806
S1

6(△) 672 × 672 0.001903
S1

7(△) 960 × 960 0.000756

§9. Remarks

We have the following remarks in order:

Remark 29. In the theory of bivariate splines, we know that the spline
spaces Sr

d(△) will achieve the full approximation order as long as d ≥ 3r+2
over any triangulation △. For some triangulations △, the approximation
order will not be full when d < 3r + 2. (Cf. [de Boor and Höllig’88], [Lai
and Schumaker’98] and [de Boor and Jia’93]). Also, the approximation
order of Sr

3r+2(△) may be realized by super spline subspaces (cf. [Chui
and Lai’90a]). In general, we do not know what the approximation order
of Sr,ρ

d
(△) is. Nevetheless many bivariate spline spaces over several spe-

cial triangulations such as Clough-Tocher, Powell-Sabin, and Fraejis de
Veubek and Sander triangulation do possess the full approximation order
for some d < 3r+2. (Cf. [Lai’94], [Lai’96], [Lai and Schumaker’97, 99, 01,
01a, 01b]. If possible, one should use the spline spaces over these special
triangulations to ensure the full approximation power of spline spaces. We
know much less about the approximation power of trivariate spline spaces.

Remark 30. We have also generalized the method for numerical solution
of nonlinear partial differential equations, e.g., 2D and 3D Navier-Stokes
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equations. We also extended the method for scattered data interpolation
and fitting using nonlinear functionals, e.g., L1 spline method. We report
these numerical methods and results elsewhere. See [Awanou’02], [Awanou
and Lai’05], [Lai and Wenston’04a], and [Lai and Wenston’04b].

Remark 31. In addition, we used spherical splines to treat spherical
scattered data fitting problems based on the ideas in this paper. Numerical
methods and results are reported in [Baramidze, Lai, Shum’05].

Remark 32. The convergence analysis of the minimal energy method,
discrete least squares method, and penalized least squares method using
multivariate splines were given in [von Golitschek, Lai, Schumaker’02],
[von Golitschek and Schumaker’02a], [von Golitschek and Schumaker’90],
and [von Golitschek and Schumaker’02b].

Remark 33. Even using the matrix iterative algorithm, the linear sys-
tems from our algorithms are still too large for problems in the trivariate
setting using spline functions of higher degrees. Currently we are work-
ing on domain decomposition methods to further reduce the size of the
systems.
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35. Laghchim-Lahlou, M. and P. Sablonnière, Quadrilateral finite ele-
ments of FVS type and class Cr, Numer. Math., 70 (1995), 229–243.

36. Lai, M. J., 1994, Approximation order from bivariate C1 cubics on a
four–directional mesh is full, Computer Aided Geometric Design, 11

(1994), 215–223.

37. Lai, M. J., 1996a, Scattered data interpolation and approximation by
C1 piecewise cubic polynomials, Computer Aided Geometric Design,
13 (1996), 81–88.

38. Lai, M. J., 1996b, On C2 quintic spline functions over triangulations
of Powell-Sabin’s type, J. Computational and Applied Mathematics,
73 (1996), 135–155.

39. Lai, M. J. 1997, Geometric interpretation of smoothness conditions
of triangular polynomial patches, Computer Aided Geometric Design,
14 (1997), 191-199.

40. Lai, M. J., 2000, Convex preserving scattered data interpolation using
bivariate C1 cubic splines, J. Comput. Applied Math., 119 (2000),
249–258.



74 Awanou, Lai, and Wenston

41. Lai, M. J. and L. L. Schumaker, Scattered data interpolation using
piecewise polynomials of degree six, SIAM Numer. Anal., 34 (1997),
905–921.

42. Lai, M. J. and L. L. Schumaker, Approximation power of bivariate
splines, Advances in Comput. Math., 9 (1998), 251–279.

43. Lai, M. J. and L. L. Schumaker, On the approximation power of
splines on triangulated quadrangulations, SIAM Numerical Analysis,
36 (1999), 143–159.

44. Lai, M. J. and L. L. Schumaker, Macro-Elements and stable local
bases for splines on Clough-Tocher triangulations, Numer. Math., 88

(2001), 105-119.

45. Lai, M. J. and L. L. Schumaker, Quadrilateral Macro-Elements, SIAM
J. Math. Anal. 33 (2002), 1107–1116.

46. Lai, M. J. and L. L. Schumaker, Macro-elements and stable local bases
for splines on Powell-Sabin triangulations, Math. Comp. 72 (2003),
335–354

47. Lai, M. J. and P. Wenston, Bivariate spline method for numerical
solution of Navier-Stokes equations over polygons in stream function
formulation, Numerical Methods for P.D.E, 16 (2000), 147–183.

48. Lai, M. J. and P. Wenston, Trivariate C1 cubic splines for numerical
solution of biharmonic equation, in: Trends in Approximation Theory,
K. Kopotun, T. Lyche, and M. Neamtu (eds.), Vanderbilt University
Press, Nashville, 2001, 224–234.

49. Lai, M. J. and P. Wenston, L1 spline methods for scattered data
interpolation and approximation, Adv. Comp. Math, 21 (2004), 293–
315.

50. Lai, M. J. and P. Wenston, Bivariate splines for fluid flows, Computer
& Fluids 33 (2004), 1047–1073.
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