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Abstract. We discuss the implementation of a C1 quintic super-
spline method for interpolating scattered data in IR3 based on a mod-
ification of Alfeld’s generalization of the Clough-Tocher scheme de-
scribed by Lai and LeMéhauté [4]. The method has been implemented
in MATLAB, and we test for the accuracy of reproduction on a basis
of quintic polynomials. We present numerical evidences that when the
partition is refined, the spline interpolant converges to the function to
be approximated.

§1. Introduction

There are a few trivariate spline spaces available for interpolation over a
tetrahedral partition 4 of a polygonal domain in IR3. We would like to
mention a direct polynomial interpolation by Zenisek in [9]. This scheme
requires piecewise polynomials of degree 9 and is globally C1 over Ω while
C4 around the vertices and C2 around the edges of 4. Another scheme is
the Alfeld scheme (cf. [1]) which uses polynomials of degree 5 to construct
spline functions over a 3D Clough-Tocher refinement of a tetrahedral par-
tition 4. The scheme produces spline interpolants which are globally C1

over Ω while C2 around the vertices and C1 around the edges of 4. A fur-
ther generalization of the Clough-Tocher refinement enables Worsey and
Farin in [7] to construct interpolation by C1 cubic splines. Worsey and
Piper constructed C1 quadratic spline functions based on special tetrahe-
dral partitions in [8].

The present paper is concerned with the implementation of the mod-
ification introduced in [4] of Alfeld’s Clough-Tocher scheme. It uses poly-
nomials of degree 5 over the Alfeld version of Clough-Tocher refinement
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of 4 to construct spline interpolants globally C1 over Ω and locally C2

around the vertices and C1 around the edges of 4. The main difference
is that the Alfeld scheme reproduces only polynomials of degree 3, while
the new scheme reproduces polynomials of degree 5. Let us mention that
the Alfeld scheme was implemented in [2]. Our program like others of the
kind involves a great computational complexity.

The paper is organized as follows: First we begin by a review of the
B-form of polynomials on tetrahedra. Then we review the construction of
[4] in §3. The details on how to compute C1 quintic spline interpolants
are given in §4. We then give the properties of the interpolant. In §6, we
present numerical evidence that the scheme reproduces all polynomials of
degree 5 and that the interpolation error reduces when the partition is
refined. Finally, we will point out our future research topics.

§2. B-form of Polynomials on Tetrahedra

We assume the reader is familiar with the Bernstein representation of
polynomials on tetrahedra. An introduction to this topic can be found in
[3]. Here, we give only a brief account.

We first recall how to represent trivariate polynomials

p(x, y, z) =
∑

0≤i+j+k≤d

αijkx
iyjzk, αijk ∈ IR,

of degree d in terms of the barycentric coordinates of the evaluation point
(x, y, z) with respect to a given tetrahedron T = 〈v1, v2, v3, v4〉. Recall
that any v ∈ IR3 can be written uniquely in the form

v = b1v1 + b2v2 + b3v3 + b4v4

with

b1 + b2 + b3 + b4 = 1,

where b1, b2, b3 and b4 are the barycentric coordinates of v with respect to
T . Let

Bd
ijkl(v) =

d!

i!j!k!l!
bi1b

j
2b

k
3b

l
4, i+ j + k + l = d

be the Bernstein polynomials of degree d. They form a basis of the space
of polynomials of degree less than or equal d. As a consequence, any such
polynomial can be written uniquely on T in the so-called B-form

p =
∑

i+j+k+l=d

cijklB
d
ijkl, cijkl ∈ IR.



Spline Interpolation 3

As usual, the cijkl are associated with the domain points

{
iv1 + jv2 + kv3 + lv4

d

}

i+j+k+l=d

.

A polynomial of total degree d is uniquely determined by its values on the
domain points, i.e. the cijkl , i+ j + k + l = d are completely determined
by interpolation on the domain points.

Let u= y−x be a vector with x and y having barycentric coordinates
(α1, α2, α3, α4) and (β1, β2, β3, β4), respectively. One refers to a = (β1 −
α1, β2 − α2, β3 − α3, β4 − α4) = (a1, a2, a3, a4) as the T -coordinates of u.
In terms of a and the cijkl, i + j + k + l = d, the derivative of p in the
direction u can be written in B-form on T as

Dup = d
∑

i+j+k+l=d−1

∆a(cijkl)B
d−1
ijkl

with

∆a(cijkl) = a1ci+1,j,k,l + a2ci,j+1,k,l + a3ci,j,k+1,l + a4ci,j,k,l+1.

Given a spline, i.e.,, a piecewise polynomial defined on a collection of
tetrahedra, we work with the B-form of each polynomial piece. So it
makes sense to look for conditions on the coefficients that will ensure
that the spline has global smoothness properties. We explicitly derive the
smoothness conditions for a model case.

Let v5 = (v1 + v2 + v3 + v4)/4, and let

p4 =
∑

i+j+k+l=d

c4ijklB
d
ijkl on T4 = 〈v1, v2, v3, v5〉

and
p1 =

∑

i+j+k+l=d

c1ijklB
d
ijkl on T1 = 〈v2, v3, v4, v5〉.

For p1 and p4 to be joined continuously across the common face 〈v2, v3, v5〉
they must agree on that face. Since p4 and p1 are uniquely determined by
their coefficients on that face, the condition of C0 continuity reads

c40jkl = c1jk0l.

To ensure continuity of the first order derivatives, we need only to check
continuity of the directional derivatives Dv3−v2

, Dv5−v2
and Dv1−v2

. We
already have

Dv3−v2
p4 = Dv3−v2

p1; Dv5−v2
p4 = Dv5−v2

p1 on 〈v2, v3, v5〉
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since those derivatives depend only on the values of the polynomials on
the common face.

Notice that v1 − v2 has T -coordinates (1,−1, 0, 0) with respect to T4

and (−2,−1,−1, 4) with respect to T1. So to ensure C1 continuity, we
need

∆(1,−1,0,0)(c0jkl) = ∆(−2,−1,−1,4)(cjk0l), i+ j + k + l = d− 1

or equivalently

c41jkl − c40,j+1,k,l = −2c1j+1,k,0,l − c1j,k+1,0,l − c1jk1l + 4c1j,k,0,l+1.

Using the C0 continuity conditions, this gives

c41jkl = −c1j+1,k,0,l − c1j,k+1,0,l − c1jk1l + 4c1j,k,0,l+1.

Finally we give the following subdivision formulas that give the B-form of
p on 〈v1, v2, v3, w〉 for any point w in R3. The B-form of p on 〈v1, v2, v3, w〉
is

p =
∑

i+j+k+l=d

dijklB
d
ijkl

with
dijkl =

∑

µ+ν+κ+δ=l

ci+µ,j+ν,k+κ,δB
l
µ,ν,κ,δ(w).

For example with w = v5,

dijkl =
∑

µ+ν+κ+δ=l

ci+µ,j+ν,k+κ,δ
l!

µ!ν!κ!δ!

(1

4

)l

.

§3. Description of the Scheme

We describe the new scheme for 3D scattered data interpolation we have
implemented.

Let us introduce more notation. For each edge e, let me be the
midpoint of e and let e1 and e2 be two directions which are perpendicular
to e and are linearly independent. For each face f = 〈v1, v2, v3〉, let
f1, f2, f3 be the three domain points {(iv1 + jv2 + kv3)/5, (i, j, k) =
(2, 2, 1), (1, 2, 2), (2, 1, 2)} on f . Let nf be a unit normal vector to f . For
each tetrahedron t, let ut be the center point of t.

For a tetrahedral partition 4, for each tetrahedron t, we split t into
four subtetrahedra at the center ut by connecting ut to any two of four
vertices of t. This generates a 3D Clough-Tocher refinement of 4. For
simplicity, we call it the Alfeld refinement and denote it by A(4).
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The C1 quintic spline interpolant on A(4) can then be described
as follows. Given a function g ∈ C2(Ω), the interpolant Sg satisfies the
following conditions:
1) For each vertex v ∈ ∆

Dα1

x Dα2

y Dα3

z Sg(v) = Dα1

x Dα2

y Dα3

z g(v), ∀ |α| ≤ 2 .

2) For each edge e of ∆,

DeiSg(me) = Deig(me), i = 1, 2,

where Dei denotes the derivative along the direction ei and me the
midpoint of e;

3) For each face f of ∆,

Dnf
Sg(fj) = Dnf

g(nf ), j = 1, 2, 3,

where Dnf
denotes the derivative along the direction nf ;

4) For each tetrahedron t,

Dα1

x Dα2

y Dα3

z Sg(ut) = Dα1

x Dα2

y Dα3

z g(ut), ∀ |α| ≤ 1.

This is the scheme which was introduced in [4].

§4. Details of Computation

This is best presented by looking at the case of a single tetrahedron T =
〈v1, v2, v3, v4〉. The faces, edges and vertices of T will be referred to as
boundary faces, edges and vertices, respectively, in this case. Let ut =
v5 = (v1 + v2 + v3 + v4)/4 be the center of T . It subdivides T into 4
subtetrahedra:

T1 = 〈v2, v3, v4, v5〉, T2 = 〈v1, v3, v4, v5〉,

T3 = 〈v1, v2, v4, v5〉, T4 = 〈v1, v2, v3, v5〉.

The problem then is to determine the approximating polynomial p on each
subtetrahedron. Given a polynomial p of degree 5, for each s = 1, . . . , 4,
let

p(v) =
∑

i+j+k+l=5

csijklB
5
ijkl(v)

be the B-form of p on Ts. For simplicity we show how to compute the
c4ijkl’s. The other coefficients csijkl , s = 1, 2, 3, can be computed in a similar
fashion.
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Clearly c45000 = p(v1), and similar relations hold at the other vertices
of T . Next we compute coefficients in the first ring around v1. Because

Dv2−v1
p(v1) = 5(c44100 − c45000),

we have

c44100 =
1

5
Dv2−v1

p(v1) + c45000,

where Dv2−v1
p(v1) is computed using the first order derivatives at v1.

Using other directional derivatives, we get

c44010 =
1

5
Dv3−v1

p(v1) + c45000,

c44001 =
1

5
Dv4−v1

p(v1) + c45000.

Proceeding with the coefficients in the ring of radius 2, we need to use
second order directional derivatives:

c43200 =
1

20
D2

v2−v1
p(v1) + 2c44100 − c45000,

c43020 =
1

20
D2

v3−v1
p(v1) + 2c44010 − c45000,

c43002 =
1

20
D2

v5−v1
p(v1) + 2c44001 − c45000,

c43110 =
1

20
Dv3−v1

Dv2−v1
p(v1) + c44010 + c44100 − c45000,

c43101 =
1

20
Dv5−v1

Dv2−v1
p(v1) + c44001 + c44100 − c45000,

c43011 =
1

20
Dv5−v1

Dv3−v1
p(v1) + c44001 + c44010 − c45000.

It is then clear how to obtain similar formulas in the ring of radius 2
around the other vertices v3 and v4.

It is convenient to view the B-net of p over T1,T2,T3 and T4 as com-
posed of layers. Thus the coefficients on the boundary faces form the
first layer. The face 〈v1, v2, v3〉 of T4 is also a boundary face of T . On
that face only 3 coefficients are to be determined: c42120, c

4
1220 and c42210.

To compute those coefficients, we use the given data at the midpoints
of boundary edges to find directional derivatives along the edges at the
midpoint of those edges. The coefficients to be found are then simply ex-
pressed in terms of the later derivatives. We show how to compute c41220
for example.

We consider the edge 〈v2, v3〉, with midpoint v23 := m〈v2,v3〉. At this
point a directional derivative along this edge can be computed as

Dv3−v2
p(v23) = 5

4∑

j=0

(c40,j,5−j,0 − c40,j+1,4−j,0)B
4
0,j,4−j,0(v23).
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In the equation

Dv2−v1
p(v23) = 5

4∑

j=0

(c40,j+1,4−j,0 − c41,j,4−j,0)B
4
0,j,4−j,0(v23),

there are two unknowns, Dv2−v1
p(v23) and c41220. We have

Dv2−v1
p(v23) =αDv3−v2

p(v23) + βDe1
p(v23) + γDe2

p(v23)

or equivalently

Dv2−v1
p(v23) = αDv3−v2

p(v23) + βDe1
g(v23) + γDe2

g(v23)

for some constants α, β, and γ. e1 and e2 are two directions perpendicular
to the edge e= 〈v2, v3〉. Now c41220 can be computed. Proceeding the
same way with the edges 〈v1, v2〉 and 〈v1, v3〉, we get c42120 and c42210. We
compute the coefficients on the second layer and get three of them by
smoothness conditions

c40221 =
1

4
(c12210 + c41220 + c40320 + c40230),

c42021 =
1

4
(c22210 + c42120 + c43020 + c42030),

c42201 =
1

4
(c32210 + c42210 + c43200 + c42300).

To get the other coefficients in T4 on the second layer, namely c41121, c
4
2111

and c41211, we use values of the normal derivative to 〈v1, v2, v3〉 at 3 points
on that face: f1, f2 and f3. More precisely, since all coefficients on f =
〈v1, v2, v3〉 are determined, we can compute the values of Dv1−v2

p and
Dv3−v2

p at the points f1, f2 and f3. Since the Dηf
p(fi) := Dηf

g(fi),
i = 1, . . . , 3 are given by interpolation conditions, by expressing v5 − v2
in terms of ηf , v1 − v2 and v3 − v2, we can compute the Dv5−v2

p(fi),
i = 1, 2, 3. Notice that

Dv5−v2
p(f1) =5

∑

i+j+k=4

(c4ijk1 − c4i,j+1,k,0)
4!

54i!j!k!
2i+j ,

Dv5−v2
p(f2) =5

∑

i+j+k=4

(c4ijk1 − c4i,j+1,k,0)
4!

54i!j!k!
2j+k,

Dv5−v2
p(f3) =5

∑

i+j+k=4

(c4ijk1 − c4i,j+1,k,0)
4!

54i!j!k!
2i+k.

These form a system of equations with unknowns c41121, c
4
2111 and c41211

which can be solved easily. This finishes the computations of all coefficients
on the second layer.
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On the third layer there are six coefficients in T4 which are simply
computed by using smoothness conditions across interior faces. Those
coefficients are c42102, c

4
1202, c

4
0212, c

4
0122, c

4
2012, c

4
1022.

At this stage, the only coefficients on this layer which remain to be
computed are cs1112, s = 1, . . . , 4. This layer is viewed as the B-net of
a polynomial of degree 3. There are 4 data to be computed and we get
them by using the 4 data at the center v5 of the tetrahedron. More
precisely, using the given information at the center, one can compute p(v5),
Dv2−v1

p(v5), Dv3−v1
p(v5) and Dv5−v1

p(v5). It is not difficult to see that
they can be expressed in terms of the cs1112, s = 1, . . . , 4. We therefore
have a system of 4 equations in 4 unknowns which had to be solved.

The coefficients in the remaining two layers are obtained by using the
subdivision method. In this way, the interpolant will be C3 at v5.

§5. Properties of the Interpolant

We prove in this section that the scheme reproduces all quintic polynomials
and that the interpolant thus constructed is C2 around the vertices, C1

around the edges, C3 at the center of each tetrahedron, and globally C1.

Property 1: The scheme reproduces all quintic polynomials. This follows
from

Lemma 1. A polynomial p of degree 5 on T = 〈v1, v2, v3, v4〉 with center
v5 is uniquely determined by the following data:

Dα1

x Dα2

y Dα3

z p(vi), |α| ≤ 2, i = 1, . . . , 4,

the values of derivatives in two independent directions perpendicular to
each edge of T at the midpoint of the edge and

Dα1

x Dα2

y Dα3

z p(v5), |α| ≤ 1.

The proof of the lemma is given in the appendix.

Property 2: The interpolant is C2 around the vertices. If two tetrahedra
share the same vertex v, by construction the polynomial pieces share the
same values Dα1

x Dα2
y Dα3

z g(v). So Sg is C2 at v.

Property 3: The interpolant is C1 around the edges. Assume for example
that two tetrahedra share the common edge e = 〈v1, v2〉. The coefficients
of each polynomial piece on e are the same since they are computed using
data at the vertices v1 and v2. This gives continuity across the edge and
also continuity of Dv2−v1

across e. To prove C1 continuity, we need to
show continuity of derivatives in three independent directions. Notice that
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the interpolation conditions at the vertices determine all derivatives up to
order 2 at vertices. Any of the derivatives DeiSg, i = 1, 2 reduce to the
same univariate quartic polynomial on e. DeiSg is uniquely determined
by the 5 pieces of data

DeiSg(me), DeiSg(v1), Dv2−v1
DeiSg(v1), DeiSg(v2), Dv2−v1

DeiSg(v2).

This assures continuity of DeiSg, i = 1, 2 across e.
We show below continuity across interior faces of a tetrahedron which

implies continuity across the interior edges.

Property 4: The interpolant is globally C1. Recall that each tetrahe-
dron is subdivided into 4 subtetrahedra so we study differentiability across
tetrahedra in the original partition and differentiability across the subte-
trahedra obtained after refinement.

Intertetrahedral continuity: Assume two tetrahedra share a common
face f . By construction, coefficients on such a face are determined either
by using data at the vertices or data at the midpoints of edges of that
face. Hence the continuity of the interpolant Sg across f follows.

Intertetrahedral continuity of derivatives: To prove that the inter-
polant is C1 across a face f , it is enough to check continuity of the normal
derivative. We show that the restriction of such a derivative to f does not
depend on the polynomial pieces. Dηf

Sg is a polynomial of degree 4 on f
which is uniquely determined by the following 15 data:

Dηf
Sg(vi), i = 1, 2, 3; Dv2−v1

Dηf
Sg(vi), i = 1, 2, 3;

Dv3−v1
Dηf

Sg(vi), i = 1, 2, 3; Dηf
g(fi), i = 1, 2, 3

and the values of Dηf
Sg at the midpoints of the edges of f .

Internal continuity: This is obtained by construction since coefficients
on internal faces are computed by using data independent of the faces. So
they do not depend on the polynomial piece.

Internal continuity of derivatives: We explicitly show how C1 smooth-
ness is built across the interior face 〈v2, v3, v5〉 which is common to T1 =
〈v2, v3, v4, v5〉 and T4 = 〈v1, v2, v3, v5〉. We have

c40jkl = c1jk0l

and
c41jkl = −c1j+1,k,0,l − c1j,k+1,0,l − c1jk1l + 4c1j,k,0,l+1

for j + k + l = d. We group the c41jkl into 6 categories:

(1) c41400, c
4
1310 and c41301 are determined by data at v2. They satisfy the

conditions since they are entirely computed using these data.



10 G. Awanou and M. J. Lai

(2) c41130, c
4
1040 and c41031 are determined by data at v3. They satisfy the

conditions as explained above.

(3) c41022 and c41202 are computed by requiring smoothness conditions
across 〈v2, v3, v5〉.

(4) c41220 is computed by using data on the edge 〈v2, v3〉. It enters the
smoothness condition used to set c40221 above.

(5) c41121 and c41211 are determined by using the values of the normal
derivative. They enter the smoothness conditions used to set c40122
and c40212 respectively. Explicitly

c40122 =
c11211 + c41121 + c40221 + c40131

4

and

c40212 =
c12111 + c41211 + c40221 + c40311

4
.

(6) c41112, c
4
1103, c

4
1013 and c41004 are computed by considering a layer as

the B-net of a polynomial of degree 3. Such a polynomial is already
smooth.

Property 5: The interpolant is C3 at the center of each tetrahedron.
This follows from the construction process.

§6. Numerical Experiments

We have implemented the interpolation scheme in MATLAB. To make
sure that our implementation is correct, we have checked that our pro-
grams reproduce all polynomials of degree ≤ 5 by testing all 56 basis
functions. Starting with a cube subdivided into 12 subtetrahedra by con-
necting the midpoint of the cube to a diagonal of each face of the cube,
the maximum errors of spline interpolants of the 56 basis functions are
about .6661 × 10−15. When each of the 12 subtetrahedra is subdivided
into 8 subtetrahedra, the maximum errors are around .7772× 10−15. The
slight increase in the maximum errors is probably due to round-off errors.

Next we demonstrate how well this scheme approximates given func-
tions and how the interpolation error evolves when the partition is refined.
Starting with a single tetrahedron, we refine this tetrahedral partition 3
times and in a few cases, 4 times. Each time, we subdivide each tetra-
hedron t into 8 subtetrahedra by using the midpoints of six edges of t
and dividing the central octahedron into four subtetrahedra. The central
octahedron has three diagonals. The choice of a diagonal determines the
kind of refinement one has. A common measure of degeneracy used for a
tetrahedron T is

σ =
h

ρ
,
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Number of 1 8 64 512
tetrahedra
Dimension 68 254 1346 8762

Tab. 1. Numbers of tetrahedra and dimension of spline spaces.

where h is the diameter of T and ρ the diameter of the largest sphere
inscribed in T . From the three possible tetrahedral partitions that could
arise from the choice of the diagonal of the central octahedron, we choose
the diagonal that yields the smallest σ. With the tetrahedron with ver-
tices of coordinates (0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 0, 1) this leads to a
uniform refinement in the sense that all tetrahedra have the same mea-
sure of degeneracy. The choice of this model tetrahedron was suggested
by Ong [6]. We first display the dimension of the spline spaces that were
used for interpolation. The formula to compute the dimension was given
in [4]. If V denotes the number of vertices, E the number of edges, F the
number of faces and T the number of tetrahedra in a tetrahedral partition,
the dimension of the corresponding spline space is given by

10V + 2E + 3F + 4T.

The dimensions of the first three refinement levels are given in Table 1.
The fourth level of refinement involve 4096 tetrahedra and the dimension of
the corresponding spline space is 63338. The limitation of computational
power at hand prevents us from displaying additional levels of refinement.
We have tested the code on the following functions:

f1(x, y, z) = exp(x+ y + z), f2(x, y, z) = sin(x3 + y3 + z3),

f3(x, y, z) = x6 + y6 + z6, f4(x, y, z) = 10 exp(−x2 − y2 − z2).

The results are presented in Table 2. We also checked the results of inter-
polating the homogeneous polynomials of degree 6 and the polynomials
x7 + y7 + z7 and x8 + y8 + z8 of degree 7 and 8, respectively, see Table 3.

The maximum errors of the spline interpolants computed by evalua-
tion on each tetrahedron at the domain points

{ψijkl}i+j+k+l=10

are displayed as well as the numerical rate of convergence.
These results show that the errors decrease like O(h6) when the par-

tition is refined. The convergence rate is specially good for homogeneous
polynomials of degree 6.
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Number of f1(x, y, z) Rate f2(x, y, z) Rate
tetrahedra

1 3.9822× 10−3 0 4.9375× 10−2 0
8 9.8569× 10−5 40.40 1.5402× 10−2 32.05

64 1.9578× 10−6 50.34 6.4640× 10−4 23.82
512 3.4577× 10−8 56.62 1.3401× 10−5 48.23

4096 5.7476× 10−10 60.16 2.1887× 10−7 61.23

Number of f3(x, y, z) Rate f4(x, y, z) Rate
tetrahedra

1 4.6875× 10−2 0 1.2769× 10−1 0
8 7.3242× 10−4 64 6.9864× 10−3 18.27

64 1.1444× 10−5 64 1.5328× 10−4 45.57
512 1.7881× 10−7 64 2.6073× 10−6 58.78

4096 2.7940× 10−9 64 4.1614× 10−8 62.65

Tab. 2. Numerical maximum errors of the interpolation scheme.

x6 Rate x5y Rate x5z Rate
1.5625× 10−2 0 1.5625× 10−2 0 1.5625× 10−2 0
2.4966× 10−4 62.59 2.4659× 10−4 63.36 2.4414× 10−4 64
3.9349× 10−6 63.45 3.8618× 10−6 63.85 3.8525× 10−6 63.37
6.1482× 10−8 64 6.0341× 10−8 64 6.0341× 10−8 63.84

x4y2 Rate x4yz Rate x4z2 Rate
1.5625× 10−2 0 1.5625× 10−2 0 1.5625× 10−2 0
2.4529× 10−4 63.70 2.4414× 10−4 64 2.4414× 10−4 64
3.8334× 10−6 63.99 3.8147× 10−6 64 3.8334× 10−6 63.69
5.9897× 10−8 64 5.9605× 10−8 64 5.9897× 10−8 64

x3y3 Rate x3y2z Rate x3yz2 Rate
1.5625× 10−2 0 1.5625× 10−2 0 1.5625× 10−2 0
2.4414× 10−4 64 2.4414× 10−4 64 2.4414× 10−4 64
3.8147× 10−6 64 3.8147× 10−6 64 3.8147× 10−6 64
5.9605× 10−8 64 5.9605× 10−8 64 5.9605× 10−8 64

x3z3 Rate x2y4 Rate x2y3z Rate
1.5625× 10−2 0 1.5625× 10−2 0 1.5625× 10−2 0
2.4414× 10−4 64 2.4414× 10−4 64 2.4414× 10−4 64
3.8147× 10−6 64 3.8303× 10−6 63.74 3.8147× 10−6 64
5.9605× 10−8 64 5.9884× 10−8 63.97 5.9605× 10−8 64

Tab. 3a. Numerical maximum errors of the interpolation scheme.
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x2y2z2 Rate x2yz3 Rate x2z4 Rate
1.5625× 10−2 0 1.5625× 10−2 0 1.5625× 10−2 0
2.4414× 10−4 64 2.4414× 10−4 64 2.4414× 10−4 64
3.8147× 10−6 64 3.8147× 10−6 64 3.8147× 10−6 64
5.9605× 10−8 64 5.9605× 10−8 64 5.9897× 10−8 63.69

xy5 Rate xy4z Rate xy3z2 Rate
1.5714× 10−2 0 1.5625× 10−2 0 1.5625× 10−2 0
2.4554× 10−4 64 2.4414× 10−4 64 2.4414× 10−4 64
3.8618× 10−6 63.58 3.8147× 10−6 64 3.8147× 10−6 64
6.0341× 10−8 64 5.9605× 10−8 64 5.9605× 10−8 64

xy2z3 Rate xyz4 Rate xz5 Rate
1.5625× 10−2 0 1.5625× 10−2 0 1.5625× 10−2 0
2.4414× 10−4 64 2.4414× 10−4 64 2.4414× 10−4 64
3.8147× 10−6 64 3.8147× 10−6 64 3.8365× 10−6 63.64
5.9605× 10−8 64 5.9605× 10−8 64 6.0341× 10−8 63.59

y6 Rate y5z Rate y4z2 Rate
1.6048× 10−2 0 1.5625× 10−2 0 1.5625× 10−2 0
2.5183× 10−4 63.72 2.4414× 10−4 64 2.4414× 10−4 64
3.9349× 10−6 64 3.8525× 10−6 63.37 3.8334× 10−6 63.69
6.1482× 10−8 64 6.0341× 10−8 63.84 5.9897× 10−8 64

y3z3 Rate y2z4 Rate yz5 Rate
1.5625× 10−2 0 1.5625× 10−2 0 1.5625× 10−2 0
2.4414× 10−4 64 2.4414× 10−4 64 2.4554× 10−4 63.64
3.8147× 10−6 64 3.8237× 10−6 63.85 3.8484× 10−6 63.80
5.9605× 10−8 64 5.9897× 10−8 63.83 6.0341× 10−8 63.77

z6 Rate x7 + y7 + z7 Rate x8 + y8 + z8 Rate
1.5625× 10−2 0 1.6406× 10−1 0 3.6328× 10−1 0
2.5075× 10−4 62.31 2.9907× 10−3 54.86 8.2966× 10−3 43.79
3.9179× 10−6 64 5.0068× 10−5 59.73 1.6653× 10−4 49.82
6.1482× 10−8 63.72 8.0839× 10−7 61.93 2.9523× 10−6 56.41

Tab. 3b. Numerical maximum errors of the interpolation scheme.
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§7. Future Research Problems

The authors plan to use the energy minimization method to construct C1

quintic spline interpolants for given scattered data. This method will not
require higher order derivatives information at vertices. Also, the authors
plan to apply this interpolation scheme to some real life data sets from
oceanography and/or meteorology.

§8. Appendix

We now give the proof of Lemma 1 of Section 5. Let

p =
∑

i+j+k+l=5

cijklB
5
ijkl

be the B-form of a polynomial of degree 5 with respect to T . For a face of
T , say f = 〈v1, v2, v3〉, from the given data we can determine the following
21 degrees of freedom on f .

1) p(v1), p(v2) and p(v3)
2) Dv1−v2

p(vi), Dv3−v2
p(vi), i = 1, 2, 3.

3) D2
v1−v2

p(vi), Dv1−v2
Dv3−v2

p(vi) and D2
v3−v2

p(vi), i = 1, 2, 3.

4) Values of the outward normal derivative at the midpoints of the three
edges of f .

These data (fifth-degree Argyris element) determine completely p on the
given face f . Similarly, p is determined on other faces of T . It remains
to determine the coefficients of p which are not associated with domain
points on any face of T . These coefficients are c2111, c1211, c1121 and c1112.
We therefore write

p = c2111B
5
2111 + c1211B

5
1211 + c1121B

5
1121 + c1112B

5
1112 + q

where all coefficients in q are determined, i.e. q is known. Now for any
point v with barycentric coordinates (b1, b2, b3, b4),

B5
ijkl(v) =

5!

i!j!k!l!
bi1b

j
2b

k
3b

l
4 ,

and so

p(v) =
5!

2
b1b2b3b4(c2111b1 + c1211b2 + c1121b3 + c1112b4) + q(v).

The data

p(v5),
∂

∂x
p(v5),

∂

∂y
p(v5),

∂

∂z
p(v5),
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at the center v5 determine L(v5), Dv1−v2
L(v5), Dv1−v3

L(v5), Dv2−v3
L(v5),

where
L(v) = c2111b1 + c1211b2 + c1121b3 + c1112b4.

This is because v5 is not on any face of T . For example,

L(v5) =

(
5!

2
b1b2b3b4|v5

)−1

(p(v5) − q(v5)) =
44 × 2

5!
(p(v5) − q(v5))

and

Dv1−v2
p(v5) = Dv1−v2

(
5!

2
b1b2b3b4)|v5

L(v5) + (
5!

2
b1b2b3b4)|v5

Dv1−v2
L(v5)

from which we can compute Dv1−v2
L(v5) since its coefficient in this last

equation is
5!

2!

(
1

4

)4

. Using the formula for directional derivatives of Sec-

tion 2 with v5 = (v1 + v2 + v3 + v4)/4, we get

c2111 + c1211 + c1121 + c1112 =4L(v5),

c2111 − c1211 =
1

5
Dv1−v2

L(v5),

c2111 − c1121 =
1

5
Dv1−v3

L(v5),

c1211 − c1121 =
1

5
Dv2−v3

L(v5).

These equations form a system of equations which can be readily solved.
This determines all the coefficients of p and concludes the proof of the
lemma.
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