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Abstract. We present in this paper a low order nonconforming mixed element
for plane elasticity on rectangular meshes. The 3 dimensional space of rigid body
motions is used to approximate the displacement and a 16 dimensional space is used
to discretize the space of symmetric tensors. This element may be viewed as the
rectangular analogue of the nonconforming Arnold-Winther element and is related
to a discrete version of the elasticity differential complex with a nonconforming H2

element related to the rotated Q1 element.

1. Introduction

It is well known that it is extremely difficult to construct mixed finite elements for elas-
ticity in stress displacement formulation. In a pioneering work, Arnold and Winther
constructed the first mixed elements for plane elasticity with symmetric stress fields,
using polynomial shape functions, [2].

Previous works circumvent the difficulty of the symmetry condition by using com-
posite elements, weakening or abandoning the symmetry condition, cf. [2] and the
references therein. As explained in [2], vertex degrees of freedom are unavoidable
for a finite element space for the stress field with continuous symmetric matrix fields
if one imposes interelement continuity only by means of quantities defined on the
edges. Simpler nonconforming elements which avoid vertex degrees of freedom were
constructed in [3].

In a very recent paper, [1], we introduced conforming mixed elements for elasticity
on rectangular meshes which may be viewed as analogues of the triangular elements.
It was reasonable to expect that nonconforming analogues could be constructed us-
ing polynomials of lower degree. Our work has created interest in the construction
of low order nonconforming rectangular mixed elements for elasticity, c.f. [5], and
[6]. The purpose of this paper is to present a nonconforming mixed element on rect-
angular meshes which is the analogue of the element of lowest order in [3]. Our
element involves 16 degress of freedom for the stress and 3 degrees of freedom for the
displacement with a convergence rate in L2 of O(h) for the stress and O(h) for the dis-
placement. The paper is organized as follows: In the second section, we introduce the
notations, the stability conditions and the elasticity sequence. A ”rotated” polyno-
mial version of the sequence is then constructed. It involves a nonconforming rotated
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H2 element which is described in section 3. Our mixed element and its analysis is
presented in section 4. We finish with some concluding remarks.

2. Preliminaries

2.1. Notations. Let Ω be a simply connected polygonal domain of R2, occupied by
a linearly elastic body which is clamped on ∂Ω and let H(div,Ω,S) be the space
of square-integrable fields taking values in the space S of 2 × 2 symmetric matrices,
and which have square integrable divergence. We denote as usual by L2(Ω,R2) the
space of square integrable vector fields with values in R2 and Hk(K,X) the space of
functions with domain K ⊂ R2, taking values in the finite dimensional space X, and
with all derivatives of order at most k square integrable. For our purposes, X will
be either S,R2, or R, and in the latter case, we simply write Hk(X). The norms in
Hk(K,X) and Hk(K) are denoted respectively by || · ||Hk and || · ||k. We use the usual
notations of Pk(K,X) for the space of polynomials on K with values in X of total
degree less than k and Pk1,k2(K,X) for the space of polynomials of degree at most k1

in x and of degree at most k2 in y. We write Pk and Pk1,k2 respectively when X = R.
So if we define Mk1,k2 = {xi, yj | 0 ≤ i ≤ k1, 0 ≤ j ≤ k2 }, then Pk1,k2 = span(Mk1,k2).

We will often consider spaces of polynomials on the reference element K̂ = [0, 1] ×
[0, 1]. We denote its vertices by v1 = (0, 0), v2 = (1, 0), v3 = (1, 1) and v4 = (0, 1).
Let us also denote by ei the edge 〈vi, vi+1〉, i = 1, . . . , 4 with v5 ≡ v1.

For a vector field v : Ω → R
2,∇v is the matrix field with rows the gradient of each

component of v and ε(v) =
[
∇v +∇vT

]
/2. For a matrix field τ, div τ is the vector

obtained by applying the divergence operator row wise and σ : τ =
2∑

i,j=1

σijτij. We

will denote by

(
Pk1,k2 Pk3,k4

Pk3,k4 Pk5,k6

)
S

the space of symmetric matrix fields σ =

(
σ11 σ12

σ21 σ22

)
such that σ11 ∈ Pk1,k2 , σ12 = σ2,1 ∈ Pk3,k4 and σ22 ∈ Pk5,k6 . Similarly the notation(
Pk1,k2

Pk3,k4

)
for Pk1,k2 × Pk3,k4 will also be used.

The solution (σ, u) ∈ H(div,Ω,S) × L2(Ω,R2) of the elasticity problem can be cha-
racterized as the unique critical point of the Hellinger-Reissner functional

J (τ, v) =

∫
Ω

(
1

2
Aτ : τ + div τ · v − f · v

)
dx.

The compliance tensor A = A(x) : S → S is given, bounded and symmetric pos-
itive definite uniformly with respect to x ∈ Ω, and the body force f ∈ L2(Ω,R2)
is also given. The unknowns, σ and u, represent the stress and displacement fields
respectively.

2.2. Stability Conditions. We discuss in this paper nonconforming mixed elements
for the elasticity problem in the sense that the stress space Σh is not contained in
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H(div,Ω,S) because the normal component of the discrete stress field is not conti-
nuous across element edges. The displacement space Vh satisfies Vh ⊂ L2(Ω,R2). We
extend the functional J to Σh × Vh by replacing the div operator by the divergence
operator divh applied element by element. The mixed finite element solution (σh, uh)
is then determined as the unique critical point of J over Σh × Vh.
It is known form Brezzi’s theory that for stable approximations the following condi-
tions are sufficient:

• There exists a positive constant c1, such that ||τ ||H(divh) ≤ c1||τ ||L2 , if τ ∈ Σh

and
∫

Ω
divh τ · v dx = 0 for all v ∈ Vh.

• There exists a positive constant c2 such that ∀v ∈ Vh, v 6= 0,∃τ ∈ Σh, τ 6=
0 with

∫
Ω

divh τ · v dx ≥ c2||τ ||H(divh)||v||L2 . Here ||τ ||H(divh) = (||τ ||L2 +

|| divh τ ||L2)1/2.

It can be shown that for a stable approximation, the following two conditions are also
sufficient:

• divh Σh ⊂ Vh
• There exists a linear operator Πh : H1(Ω,S) → Σh, such that there is a

constant c independent of h with ||Πhτ ||0 ≤ c||τ ||1 for all τ ∈ H1(Ω,S), and
such that divh Πhτ = Ph divh τ for all τ ∈ H1(Ω,S) where Ph : L2(Ω,R2)→ Vh
denotes the L2 projection.

The main tool used in the design of the mixed methods presented in this paper is the
elasticity differential complex, [2]:

0 −→ P1(Ω)
⊂−→ C∞(Ω)

J−→ C∞(Ω,S)
div−−→ C∞(Ω,R2) −→ 0,(1)

where J is the Airy stress operator defined by

Jq :=

(
∂2q
∂y2 − ∂2q

∂x∂y

− ∂2q
∂x∂y

∂2q
∂x2

)
.

Notice that on ∂Ω, if t and n denote the unit tangent and normal vectors,

(Jq)n · n =
∂2q

∂s2
and (Jq)n · t = − ∂2q

∂s∂n
.

2.3. Rotated Polynomial Sequence. Let k ≥ 0 be an integer. We recall, [1], that
the sequence

(2) 0 −→ P1(Ω)
⊂−→ Pk+2,k+2(Ω)

J−→
(
Pk+2,k Pk+1,k+1

Pk+1,k+1 Pk,k+2

)
S

div−−→
(
Pk+1,k

Pk,k+1

)
−→ 0

is exact. It is immediate that each operator maps a space in the sequence into the
next and like for (1), the kernel of J is P1(Ω). To prove that the kernel of div is the
image of J one uses again the exactness of (1). To verify the surjectivity of the last
map, one can notice that the alternating sum of the dimensions of the spaces in the
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sequence is zero. Next, analogous to the definition of the rotated Q1 space c.f. [4],
denoted here

P̃1,1 = span({1, x, y, x2 − y2}),
we introduce the rotated space

(3) P̃3,3 = P3 ⊕ span({x3y, xy3})⊕ bKP̃1,1.

Recall that the degrees of freedom of P̃1,1 are the averages on each edge or equivalently,∫
e
qbe, q ∈ P̃1,1, where be is a quadratic polynomial vanishing at the endpoints of e.

We have

Lemma 2.1.
P̃3,3 = span(M3,3 \ {x3y3})⊕ span({p0(x, y)}),

where p0(x, y) = x4y2 − x2y4 − x4y + xy4.

Proof. It is enough to prove the identity on the reference element K̂. Clearly P3 ⊕
span({x3y, xy3})⊕bK̂ span({1, x, y}) ⊂ span(M3,3\{x3y3}). Next x(x−1)y(y−1)(x2−
y2) = p0(x, y) + x2y3 − x3y2 + x3y − xy3. Therefore P̃3,3 ⊂ span(M3,3 \ {x3y3}) ⊕
span({p0(x, y)}). To prove the reverse inclusion, notice that p0(x, y) = bK̂(x − y +
x2 − y2) + xy2 − x2y. Moreover, span(M3,3 \ {x3y3}) ⊂ P3 ⊕ span({x3y, xy3}) ⊕ bK̂
since the spaces on both sides of the inequality have the same dimension. �

Let us introduce the polynomials

p11(x, y) =
∂2p0(x, y)

∂y2
(x, y) = 2x4 − 12x2y2 + 12xy2,

p22(x, y) =
∂2p0(x, y)

∂x2
(x, y) = −2y4 + 12x2y2 − 12yx2,

p12(x, y) =
∂2p0(x, y)

∂x∂y
(x, y) = 8x3y − 8xy3 − 4x3 + 4y3,

p3(x, y) =
∂p12

∂y
(x, y) =

∂p11

∂x
(x, y) = 8x3 − 24xy2 + 12y2, and

p4(x, y) =
∂p12

∂x
(x, y) =

∂p22

∂y
(x, y) = −8y3 + 24yx2 − 12x2.

Then

Jp0(x, y) =

(
p11(x, y) −p12(x, y)
−p12(x, y) p22(x, y)

)
, div

(
span({p11}) span({p12})
span({p12}) span({p22})

)
=

(
span({p3})
span({p4})

)
.

We also introduce the rotated spaces

P̃3,1 = span(M3,1 \ {x3y})⊕ span({p11(x, y)}),
P̃1,3 = span(M1,3 \ {xy3})⊕ span({p22(x, y)}),
P̃2,2 = span(M2,2 \ {x2y2})⊕ span({p12(x, y)}),
P̃2,1 = span(M2,1 \ {x2y})⊕ span({p3(x, y)}) and

P̃1,2 = span(M1,2 \ {xy2})⊕ span({p4(x, y)}),
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and claim that the rotated polynomial sequence

(4) 0 −→ P1(Ω)
⊂−→ P̃3,3(Ω)

J−→
(
P̃3,1 P̃2,2

P̃2,2 P̃1,3

)
S

div−−→
(
P̃2,1

P̃1,2

)
−→ 0

is exact, the proof being analogue to the one for (2) with k = 1. We show that the

kernel of div is the image of J . Let τ ∈
(
P̃3,1 P̃2,2

P̃2,2 P̃1,3

)
S

such that div τ = 0. By the

exactness of (1), τ = J(q), q ∈ C∞(Ω). Expressing that the components of Jq are in
the required spaces, one obtains immediately that q ∈ P̃3,3.

3. A Rotated H2
nonconforming finite element

We present in this subsection a nonconforming H2 finite element, Qh which together
with our mixed element described in the next section form a discrete version of the
elasticity complex (4). On each rectangle K, we take QK = P̃3,3(K) with dimension
16. The degrees of freedom are given in the next lemma.

Lemma 3.1. An element q of QK is uniquely determined by the degrees of freedom

- derivatives up to order 1 at each vertex (3× 4 = 12 degrees of freedom),
- average of ∂q/∂n on each edge (4 degrees of freedom).

Proof. It is enough to prove the lemma for the reference rectangle K̂ = [0, 1]× [0, 1].
Let us assume that all degrees of freedom vanish. By definition of P̃3,3, on each
edge, q ∈ QK̂ is a polynomial of degree 3 with double roots at the vertices. Then

q vanishes identically on ∂K̂ and we have q = qbK̂ , q ∈ P̃1,1(K̂). On each edge
e, ∂q/∂n = q∂bK̂/∂n = qbe where be is a quadratic polynomial vanishing at the
endpoints of the edge e. Then the average of qbe vanishes on each edge, hence,
q ≡ 0. �

The finite element Qh is assembled the usual way. Elements of Qh are globally
continuous and of class C1 at the vertices. The element is nonconforming since
∂q/∂n ∈ P4(e,R) for each edge e, and only its values at the vertices and the first
moment on each edge are determined. The interpolation operator Ih : C∞(Ω)→ Qh

is defined by requiring

Ihq(x) = q(x) for each vertex x,

(∇Ih)q(x) = (∇q)(x) for each vertex x, and∫
e

∂Ihq

∂n
(s) ds =

∫
e

∂q

∂n
(s) ds for all edges e.
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4. Rotated Mixed Element for Elasticity

We now describe our mixed element. Let V (K) = {(a − cy, b + cx) | a, b, c ∈ R} be
the space of rigid body motions and

ΣK =

{
τ ∈

(
P̃3,1 P̃2,2

P̃2,2 P̃1,3

)
S

| div τ ∈ VK
}
.

The dimension of ΣK is at least 16, since the dimension of

(
P̃3,1 P̃2,2

P̃2,2 P̃1,3

)
S

is 25 and

the condition div τ ∈ VK imposes 9 constraints. We choose as degrees of freedom the
first two moments of τn · n and τn · t on each edge. Hence the dimension of ΣK is 16
by the following lemma.

Lemma 4.1. An element of ΣK is uniquely determined by the first two moments of
τn · n and τn · t on each edge.

Proof. It is enough to prove the lemma on the reference rectangle K̂. We assume
that all degrees of freedom for τ ∈ ΣK̂ vanish and we show that τ ≡ 0. For each
v ∈ VK̂ , ε(v) = 0 and each component of v is linear. It follows from∫

K̂

(div τ) · v dx = −
∫
K̂

τ : ε(v) dx+

∫
∂K̂

τn · v ds,

that div τ = 0. From the exactness of the sequence (4), div τ = 0 ⇒ τ = Jq, q ∈
P̃3,3(K̂). Now ∂2q/∂s2 = τn · n = 0 on each edge. Hence q is linear on each edge.
Adding a linear function, we may assume that q vanishes on the edges e1 and e4. We
can therefore write q = xyq for some polynomial q(x, y).

Next, q(1, y) = yq(1, y) must be linear in y so q(1, y) is a constant. Trivial calculations
yield ∂2q/∂s∂n = −q− x∂q/∂x on e1. Since the average of τn · t is zero on each edge

and τn·t = −∂2q/∂s∂n, we have

∫ 1

0

(
q + x

∂q

∂x

)
(x, 0) dx = 0. On the other hand, by

integration by parts,

∫ 1

0

x
∂q

∂x
(x, 0) dx = −

∫ 1

0

q(x, 0) dx+

[
xq(x, 0)

]x=1

x=0

. We conclude

that q(1, 0) = 0 and since q(1, y) is constant, q ≡ 0 on the edge {x = 1} which is e2.
But q is linear on e3 and vanishes at the vertices (since q ≡ 0 on e4 and e2), therefore

q ≡ 0 on e3 and we get q ≡ 0 on ∂K̂. We have q = bK̂ q̃, q̃ ∈ P̃1,1(K̂), using the

definition of P̃3,3.

On each edge e, ∂q/∂n = q̃∂bK̂/∂n = q̃be where be is a quadratic polynomial vanishing
at the endpoints of the edge e. Since the first moment of τn · t vanishes on each edge,
it follows that the average of q̃be vanishes on each edge, hence, q̃ ≡ 0. This concludes
the proof. � �

We now describe the finite elements on the rectangular partition Th. We denote by
Vh the space of vector fields which belongs to VK for each rectangle K ∈ Th and
Σh denotes the space of matrix fields which belong piecewise to ΣK subject to the
continuity conditions that τn · n for τ ∈ Σh is continuous across edges (since τn · n is
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linear on each edge for τ ∈ ΣK) as well as the first two moments of τn · t. The space
Σh is a nonconforming subspace of H(div,Ω,S) since τn · t is quadratic on each edge
and only the first two moments are continuous.

We define our interpolation operator Πh : H1(Ω,S)→ Σh by∫
e

(Πhτ − τ)n · n v ds = 0 for all edges e and v ∈ P1(e),∫
e

(Πhτ − τ)n · t v ds = 0 for all edges e and v ∈ P1(e).

Moreover, for τ ∈ H1(Ω,S), K ∈ Th and v ∈ VK , we have∫
K

(div Πhτ − div τ) · v dx = −
∫
K

(Πhτ − τ) : ε(v) dx+

∫
∂K

(Πhτ − τ)n · v ds.

The argument being similar to the one in the proof of the previous lemma, we conclude
that the commutativity property

divh Πh = Ph divh

holds. It remains to show that there is a constant c independent of h with ||Πhτ ||0 ≤
c||τ ||1 for all τ ∈ H1(Ω,S).

For this note that the interpolation operator Πh is local to the partition and preserve
piecewise constant matrix fields. Hence by scaling any element to a similar element
with unit diameter using translation, rotation and dilatation, and using a compactness
argument, we obtain

(5) ||Πhτ − τ ||0 ≤ ch||τ ||1,

from which the boundedness of Πh follows,

(6) ||Πhτ ||0 ≤ c||τ ||1.

We can now describe our discrete version of the elasticity sequence

0 −→ P1(Ω)
⊂−→ C∞(Ω)

J−→ C∞(Ω,S)
div−−→ C∞(Ω,R2) −→ 0yid yIh yπh yPh

0 −→ P1(Ω)
⊂−→ Qh

Jh−→ Σh
div−−→ Vh −→ 0,

where Jh denotes the operator J applied element by element. It is not difficult to
verify the diagram commutes, see [1] for similar computations.

We now give the error estimates which proofs follow closely [3].
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Theorem 4.2. Let (σ, u) and (σh, uh) be the unique critical points of the Hellinger-
Reissner functional over H(div,Ω,S)× L2(Ω,R2) and Σh × Vh respectively. Then

|| div σ − divh σh||0 ≤ chm|| div σ||m, 0 ≤ m ≤ 1,

||σ − σh||0 ≤ ch||u||2,
||u− uh||0 ≤ ch||u||2.

Proof. The mixed discretization is: Find (σh, uh) ∈ Σh × Vh such that∫
Ω

(Aσh : τ + divh τ · uh) dx = 0, τ ∈ Σh(7) ∫
Ω

divh σh · v dx =

∫
Ω

f · v dx, v ∈ Vh.(8)

We have

(9)

∫
Ω

(Aσ : τ + divh τ · u)dx = Eh(u, τ), τ ∈ Σh,

where

Eh(u, τ) =
∑
e∈Eh

∫
e

[τn · t]u · t ds

measures the consistency error for u ∈ H1(Ω,R2) and v ∈ Σh. Here Eh denotes the
set of all edges of the partition Th and [τn · t] denotes the jump of τn · t across the
associated edge. Since [τn · t] has mean value zero on each edge, it follows by shape
regularity and a scaling argument [3] that

|Eh(u, τ)| ≤ c||τ ||0||u||1, u ∈ H1(Ω,R2), τ ∈ Σh.

Moreover since the first two moments of [τn · t] are continuous, Eh(v, τ) = 0 for any
continuous piecewise bilinear function v. Therefore

(10) |Eh(u, τ)| = |Eh(u− uIh, τ)| ≤ ch||τ ||0||u||2, τ ∈ Σh, u ∈ H2(Ω,R2),

where uIh denotes interpolation in the space of piecewise bilinear continuous functions.

Recall that divh Σh ⊂ Vh and define ||τ ||2A :=

∫
Ω

Aτ : τ dx. As in [3], it is not difficult

to obtain

divh σh = Ph div σ(11) ∫
Ω

A(σ − σh) : (Πhσ − σh) dx = Eh(u,Πhσ − σh)(12)

||σ − σh||2A ≤ ||σ − Πhσ||2A + 2Eh(u,Πhσ − σh).(13)

Next, ||Πhσ− σh||2A =

∫
Ω

A(σ− σh) : (Πhσ− σh) dx+

∫
Ω

A(Πhσ− σ) : (Πhσ− σh) dx

= Eh(u,Πhσ − σh) +

∫
Ω

A(Πhσ − σ) : (Πhσ − σh) dx,

using (12). By the equivalence of the norms, || · ||A and L2,

(14) ||Πhσ − σh||0 ≤ ch||u||2 + c||Πhσ − σ||0, u ∈ H2(Ω,R2).
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Now, let τ ∈ H1(Ω,S) such that div τ = Phu− uh with ||τ ||1 ≤ c||Phu− uh||0. Then
using the commutativity property we have divh Πhτ = Ph div τ = Phu−uh and using
(6), ||Πhτ ||0 ≤ c||τ ||1 ≤ c||Phu− uh||0. Moreover, since divh Σh ⊂ Vh, by (9), (7) and
(10)

||Phu− uh||20 =

∫
Ω

divh Πhτ · (Phu− uh) dx

=

∫
Ω

divh Πhτ · (u− uh) dx =

∫
Ω

divh Πhτ · u dx−
∫

Ω

divh Πhτ · uh dx

= −
∫

Ω

Aσ : Πhτ + Eh(u,Πhτ) +

∫
Ω

Aσh : Πhτ dx

= −
∫

Ω

A(σ − σh) : Πhτ dx+ Eh(u,Πhτ)

≤ c||σ − σh||0||Phu− uh||0 + ch||Phu− uh||0||u||2, for u ∈ H2(Ω,R2).

That is,

(15) ||Phu− uh||0 ≤ c (||σ − σh||0 + h||u||2) , u ∈ H2(Ω,R2).

Moreover, by shape regularity, we have the estimate

(16) ||Phv − v||0 ≤ chm||v||m, for all v ∈ Hm(Ω), 0 ≤ m ≤ 1.

With these preliminaries, we can now give the error estimates. By (16) and (11),
|| div σ − divh σh||0 = ||(I − Ph) div σ||0 ≤ chm|| div σ||m, 0 ≤ m ≤ 1.

Using (5) and a norm equivalence,

||σ − Πhσ||A ≤ ch||σ||1,

so that using (13), (10), (14) and (5),

||σ − σh||2A ≤ ch2||σ||21 + 2Eh(u,Πhσ − σh)

≤ ch2||σ||21 + ch||Πhσ − σh||0||u||2

≤ ch2||σ||21 + ch2||u||22 + ch2||u||2||σ||1.

Since σ = ε(u), we get

||σ − σh||0 ≤ ch||u||2.

Finally for the displacement, we have by (16), (15) and the above result

||u− uh||0 ≤ ||u− Phu||0 + ||Phu− uh||0
≤ ch||u||1 + c (||σ − σh||0 + h||u||2) ,

≤ ch||u||1 + ch||u||2 + ch||u||2 ≤ ch||u||2.

�
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5. Concluding remarks

It is probably possible to extend the element described here to higher order noncon-
forming elements. One would need higher order versions of the rotated Q1 element.
We also want to point out that the divergence free elements in the local stress space of
the element described in [6], namely P3⊕ span({x3y, xy3}) turns out to be a subspace
of the local space of our nonconforming H2 element. The rotated nonconforming H2

element is a generalization of the rotated Q1 element on quadrilaterals of Rannacher
and Turek, [4]. This makes us believe that our rectangular elements can be extended
to quadrilateral meshes. Finally, we note that extensions to mixed or pure traction
boundary conditions are straightforward.
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