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Abstract. The spline element method with constraints is a discretization method
where the unknowns are expanded as polynomials on each element and Lagrange
multipliers are used to enforce the interelement conditions, the boundary conditions
and the constraints in numerical solution of partial differential equations. Spaces of
piecewise polynomials with global smoothness conditions are known as multivariate
splines and have been extensively studied using the Bernstein-Bezier representation
of polynomials. It is used here to write the constraints mentioned above as linear
equations. In this paper, we illustrate the robustness of this approach on two
singular perturbation problems, a fourth order problem and a Stokes-Darcy flow.
It is shown that the method converges uniformly in the perturbation parameter.

1. Introduction

In this paper, we use piecewise polynomials of arbitrary degree to approximate the
solutions of two singular perturbation problems. It is shown that the method, called
here spline element method, and described in [1], [5], [2], [6], [14] and [17] is robust
with respect to the perturbation parameter. We consider plane problems but the
method extends easily to 3D problems.

Let Ω ⊂ R2 be a simply connected bounded domain with Lipschitz continuous bound-
ary ∂Ω and let us denote by ε ∈ (0, 1] a real small parameter.

The first problem we solve is a fourth order elliptic singular perturbation problem

ε2∆2u−∆u = f in Ω

u = 0,
∂u

∂n
= 0 in ∂Ω,

(1)

where ∆ denotes the Laplace operator and ∂u
∂n

denotes the normal derivative on ∂Ω.
Robust numerical methods for the above problem which exhibit convergence rates
uniform with respect to the perturbation parameter have attracted recently a lot of
attention, [19], [8], [21], [22], [23] and [10]. As ε → 0, the problem formally degenerates
to Poisson equation and hence can be considered as a model for a plate equation which
degenerates to a membrane equation. For ε non zero, conforming elements require
C1 elements which are complicated, even in two dimensions. As explained in [19],
nonconforming elements for the biharmonic equation may not be suitable in the limit
where only C0 elements are needed. Robust numerical methods must accommodate
both regimes.

1
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The second problem we consider is a Stokes-Darcy flow

u− ε2∆u−∇p = f in Ω

div u = g in Ω

u = 0 on ∂Ω.

(2)

The unknowns here are the velocity vector u and the pressure p. Are given the
vector field f and the scalar field g. In the singular limit, the problem tends to a
Darcy flow, while for ε not too small, and g = 0, it is a Stokes equation with an
additional term and can be seen as modeling flow through an almost porous medium.
It was shown in [19] mainly by numerical experiments that most of the finite elements
proposed for the Stokes equations or the mixed formulation of the Poisson equation
do not exhibit convergence properties uniform in ε. A finite element with a smooth
transition between these two regimes was then introduced in the 2D case and later
extended to 3D in [18]. Another nonconforming approach is [9], while a least squares
formulation based on the nonconforming element introduced in [20], was presented in
[11].

As we shall see, the spline element method is robust for all the above singular prob-
lems in the two dimensional setting. The extension to three dimensions is straight-
forward. The advantages of this approach are that it can be applied to a wide range
of PDEs in science and engineering in both two and three dimensions; constraints
and smoothness are enforced exactly and there is no need to implement basis func-
tions with the required properties; it is particularly suitable for fourth order PDEs;
no inf-sup condition are needed to approximate Lagrange multipliers which arise due
to the constraints, e.g. the pressure term in Darcy-Stokes flow; one gets in a single
implementation approximations of variable order.

Other advantages of the method include the flexibility of using polynomials of different
degrees on different triangles and the simplicity of a posteriori error estimates since
the method is conforming for the problems considered. The issue of adaptivity is not
addressed in this paper though.

The paper is organized as follows: In the first section, we present an abstract setting
for the application of the method and briefly review the Bernstein-Bezier representa-
tion of polynomials and associated matrix notations. The following section is devoted
to the robustness of the fourth order elliptic equation, while the last section is devoted
to the Darcy-Stokes equation. Polynomials of low degrees 3 and 4 are used in the
numerical illustrations with MATLAB.

2. Preliminaries

2.1. Spline element method. We consider the variational problem: Find u ∈ W
such that

(3) a(u, v) = (l, v) for all v ∈ V,

where W is the set where the solution is sought and V is a Hilbert space, a space of
test functions. The form l is bounded and linear and a is a continuous mapping in
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some sense on W × V which is linear in the argument v. Additional assumptions are
needed for the well-posedness of the variational problem. For example, for the weak
formulation of the Poisson equation with homogeneous boundary conditions: Find u
in H1

0 (Ω) such that ∫
Ω

∇u · ∇v =

∫
Ω

fv, ∀v ∈ H1
0 (Ω),

the form a need to be bounded and coercive on W = V = H1
0 (Ω) and f ∈ H−1(Ω).

For the weak formulation of the Navier-Stokes equations in Rn: Find u ∈ H1(Ω)n

such that

ν

∫
Ω

∇u · ∇v +
3∑

j=1

∫
Ω

uj
∂u

∂xj

· v =

∫
Ω

f · v ∀v ∈ V

div u = 0 in Ω

u = g on ∂Ω,

where

V = {v ∈ H1
0 (Ω)n, div v = 0},

and we take W = {u ∈ H1(Ω)n,u = g on ∂Ω}. The main differences between W
and V stem from the boundary conditions and the nature of the constraints. The
test functions take zero boundary conditions and are divergence free. The form a in
the Navier-Stokes problem comes from a trilinear form c and a(u, v) = c(u; u, v). For
existence, it is required that, f ∈ H−1(Ω)n,g ∈ H1/2(∂Ω)n the form a be coercive
in the usual sense and c weakly sequentially continuous. For uniqueness, stronger
assumptions are needed and they are satisfied if the viscosity is sufficiently large or
the body forces sufficiently small, c.f. [13]. We notice that if W = V and a is
bilinear and symmetric, the variational problem is equivalent to the minimization of
the functional

J(v) =
1

2
a(v, v)− (l, v)

over V .

From now on, let us assume that Ω is a polygonal domain and let T be a conforming
triangulation of Ω. In the spline element method, each unknown function u is appro-
ximated by a polynomial on each element and associated to a vector of coefficients.
Hence the space of test functions V is discretized as

Vh = {c ∈ RN , Rc = 0},
for some integer N with R a suitable matrix. For the space of trial functions, we take

Wh = {c ∈ RN , Rc = G}
for a suitable vector G. Here h is a discretization parameter which controls the size
of the elements in the triangulation.

The condition a(u, v) = (l, v) for all v ∈ V translates to

K(c)d = LT d ∀d ∈ Vh, that is for all d with Rd = 0
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for a suitable matrix K which depends on c and L is a vector of coefficients associated
to the linear form l. If for example (l, v) =

∫
Ω

fv, then L = MF where M is a mass
matrix and F a vector of coefficients associated to the spline interpolant of f . In the
linear case K(c) can be written cT K.

Introducing a Lagrange multiplier λ, the functional

K(c)d− LT d + λT Rd,

vanishes identically on Vh. The stronger condition

K(c) + λT R = LT ,

can be shown to have a unique solution c under the side condition Rc = G in many
situations and therefore are the discrete equations to be solved when the uniqueness
of a solution to the continuous problem is guaranteed.

By a slight abuse of notation, after linearization by Newton’s method for example,
this possibly nonlinear equation leads to solving systems of type

cT K + λT R = LT .

The approximation c of u ∈ W thus is a solution (or limit of a sequence of solutions)of
a system of type [

KT RT

R 0

] [
c
λ

]
=

[
L
G

]
Although the Lagrange multiplier λ may not be unique, it can be shown that the
component c of the discrete solution is unique under the assumption that the sym-
metric part of KT is positive definite with respect to the side condition Rc = 0, that
is cT KT c ≥ 0 and cT KT c and Rc = 0 implies c = 0. The component c can be re-
trieved by a least squares solution of the above system. We refer to [1] for a proof of
these results. To avoid systems of large size, a variant of the augmented Lagrangian
algorithm is used. We consider the sequence of problems(

KT RT

R −µM

) [
c(l+1)

λ(l+1)

]
=

[
L

G− µMλ(l)

]
,(4)

where λ(0) is a suitable initial guess for example λ(0) = 0, M is a suitable matrix and
µ > 0 is a small parameter taken in practice in the order of 10−5. The problem is
equivalent to

(KT +
1

µ
RT M−1R)c(l+1) + RT λ(l) = L +

1

µ
RT M−1G

λ(l+1) = λ(l) +
1

µ
M−1(Rc(l+1) −G)

Computing c(1) from λ(0), one solves

(KT +
1

µ
RT M−1R)c(l+1) = KT c(l) +

1

µ
RT M−1G, l = 1, 2, . . .

A uniform convergence rate in µ for this algorithm was shown in [4]. But the algorithm
will not get correct results if the condition number of the matrix KT + 1

µ
RT M−1R
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deteriorates. As explained in [4], a judicious choice of M can balance the deteri-
oration of the condition number. But the choice of M is delicate. In some cases,
a small change of the parameter µ with M = I is enough. Determining a suitable
preconditioner M is an interesting problem still under consideration.

2.2. Splines on plane triangulations. We briefly review in this subsection the B-
form of polynomials. Precise formulas can be found in [1], [5], [2], [16], [14] and [7].
Let d ≥ 1 and r ≥ 0 be two fixed integers. We are going to use the spline spaces

Sr
d(Ω) = {p ∈ Cr(Ω), p|t ∈ Pd, ∀t ∈ T },

where Pd denotes the space of polynomials of degree d in two variables. Given a
non-degenerate triangle T = 〈v1, v2, v3〉, it is well known that any point v = (x, y)
has a unique set of barycentric coordinates (b1, b2, b3) relative to the triangle T , that
is

v = b1v1 + b2v2 + b3v3, b1 + b2 + b3 = 1.

Moreover the Bernstein polynomials,

Bd
ijk(v) =

d!

i!j!k!
bi
1b

j
2b

k
3, i + j + k = d,

form a basis of Pd. Any spline s in Sr
d can then be written uniquely

s =
∑
t∈T

∑
i+j+k=d

ct
ijkB

d
ijk.

A similar representation holds on boundary edges. Unknown functions are appro-
ximated by vector of coefficients {c = (ct

ijk), t ∈ T }, called B−nets and the given
scalar data are interpolated on a triangle T = 〈v1, v2, v3〉 at the domain points ξijk =
(iv1 + jv2 + kv3)/d. and on an edge 〈v1, v2〉 at the domain points ξij = (iv1 + jv2)/d.
Hence a boundary condition of type u = g is discretized as Bc = G, for a suitable
matrix B where G encodes the coefficients of the interpolant of g on ∂Ω. Moreover,
there are matrices D1 and D2 such that if c encodes the B-net of s, Dic, i = 1, 2
encode respectively the B-net of ∂s

∂xi
. Thus if c1 and c2 encode respectively the B-

nets of u1 and u2, then the divergence of the vector with components u1 and u2 has
B-net D1c1 +D2c2 which can be written Dc. Finally, the conditions on the coefficient
vector c of a spline s which assure that it has global smoothness properties are linear
relations which can be encoded as Hc = 0. It is straightforward to accommodate the
situation where on two adjacent triangles, the spline is represented by polynomials
of different degrees d1 > d2. One simply uses the degree raising formulas which are
linear relations connecting the B−form of a polynomial of degree d to its B−form as
a polynomial of degree d + 1, c.f. [14].

2.3. Approximation properties. In this subsection, we first discuss the approxi-
mation properties of scalar functions, then we discuss the approximation properties
of divergence-free vector fields. For s ≥ 0, we denote by Hs(K) the usual Sobolev
space on the domain K, with norm and semi-norm respectively ‖ · ‖s,K and | · |k,K .
We will use the notations ‖ · ‖s and | · |k when there is no ambiguity about the
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domain K. These notations are extended the usual way to vector valued functions.
The space Hs

0(K) is the closure in Hs(K) of the space of C∞ functions with compact
support in K.

For splines on plane triangulations, it is known that, [16], for d ≥ 3r + 2 and 0 ≤
m ≤ d, there exists a linear quasi-interpolation operator Q mapping L1(Ω) into the
spline space Sr

d(4) and a constant C such that if f is in the Sobolev space Hm+1(Ω),

(5) |f −Qf |k ≤ Chm+1−k|f |m+1,

for 0 ≤ k ≤ m. If Ω is convex, the constant C depends only on d,m and on the
smallest angle θ4 in 4. In the nonconvex case, C depends only on the Lipschitz
constant associated with the boundary of Ω.

In three dimensions, the result holds for d ≥ 8r + 1, c.f. [16], although this lower
bound can certainly be improved. It is also known c.f. [12] that the full approxima-
tion property for spline spaces holds for certain combinations of d and r on special
triangulations.

Next, we discuss the approximation properties of divergence free vector fields by
continuous divergence free splines. We recall the following result from [13].

Theorem 2.1. A vector field f ∈ (L2(Ω))2 satisfies div f = 0 if and only if there
exists a stream function φ in H1(Ω) such that f = curl φ.

We recall that for φ in H1(Ω)

curl φ =

(
∂φ

∂x2

,− ∂φ

∂x1

)
It is not clear what would be the regularity of the stream function φ for f ∈ Hm(Ω),
m ≥ 1, if the boundary of Ω is not sufficiently smooth. We therefore restrict the
analysis to those divergence-free vector fields which are the curl of a stream function.
Let

V d = {f ∈ (Hd(Ω))2, f = curl φ, φ ∈ Hd+1(Ω)}
and

Vd = {s ∈ (S0
d(Ω))2, s = curl S, S ∈ S1

d+1(Ω)}
be spaces of divergence-free vector fields. We denote by ∇f the matrix of derivatives
∂fi/∂xj

Theorem 2.2. For f ∈ V d,

inf
s∈Vd

||f − s||0 ≤ Chd|f |d and inf
s∈Vd

||∇f −∇s||0 ≤ Chd−1|f |d,

for d ≥ 4.

For a given f ∈ V d, let φ ∈ Hd+1(Ω) be a stream function satisfying curl φ = f . By
(5), let S = Q(φ) in S1

d+1(Ω) be a spline approximation of φ such that

|φ− S|1 ≤ Chd|φ|d+1,
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for d ≥ 4. Then put sf = curl S. Then sf ∈ Vd and

||f − sf ||0 = || curl φ− curl S||0
= |φ− S|1
≤ Chd|φ|d+1 = Chd|f |d.

The other assertion is proved similarly.

It is not clear what would be the corresponding result in three dimensions.

3. Robustness for a fourth order problem

For simplification in the discussion of the error estimates, we will assume homogeneous
boundary conditions, although they are easily imposed in the spline element method.
Given f ∈ L2(Ω), take V = W = H2

0 (Ω), the variational formulation of (1) is: Find
u ∈ V such that

ε2

∫
Ω

∆u∆v +

∫
Ω

∇u · ∇v =

∫
Ω

fv, ∀v ∈ W.(6)

We discretize the problem (6) using the space of C1 spline spaces S1
d(Ω), which yield

fully conforming approximations. According to Cea’s lemma, the error in the energy
norm, ‖u‖2

ε = ε2|u|22 + |u|21 is bounded by infv∈S1
d
‖u− v‖ε.

Moreover, for u ∈ Hd+1(Ω), for d ≥ 5,

infv∈S1
d
‖u− v‖2

ε ≤ ε2h2(d−1)|u|2d+1 + h2d|u|2d+1,

= h2(d−1)(h2 + ε2)|u|2d+1.

It follows that for smooth solutions, we have a hd−1 convergence rate which improves
to hd as ε → 0 for d ≥ 5. Clearly, this convergence rate would not hold for ε dependent
solutions. We notice the remark at the end of [19] which seems to suggest that the best

convergence rate uniformly in ε is
√

h. The numerical investigation of the boundary
layers turns out to be difficult since the linear systems become more ill-conditioned.
We illustrate the robustness of the spline element method using polynomials of low
degrees 3, 4 and 5, Tables 1, 2 and 3.

The computational domain is the unit square [0, 1]2 which is first divided into squares
of side length h. Then each square is divided into two triangles by the diagonal with

negative slope. We compute the relative error in the energy norm,
||uI

h−uh||ε
||uI

h||ε
where

uI
h is the spline interpolant of the exact solution. We include the results for the case

ε = 0 for the Poisson equation using C1 cubic splines and for the Poisson equation
using only C0 continuous functions. The parameter µ in the variant of the augmented
Lagrangian algorithm was chosen to be 0.99 10−3. Numerical results with a * were
computed with µ = 10−5. The test function in Tables 1, 2 and 3 is

u(x, y) = (sin(πx) sin(πy))2.

For d = 3, the convergence rate oscillates between 1 and 2 but definitely gets close
to 2 as ε → 0. For the Poisson and biharmonic equations using C1 splines, the
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ε/h 2−3 2−4 2−5 2−6

20 2.1265 10−1 1.0271 10−1 1.9464 10−2 3.3889 10−3

2−2 1.8980 10−1 9.4724 10−2 4.5625 10−2 8.5138 10−3

2−4 9.6005 10−2 4.5406 10−2 2.2429 10−2 1.0786 10−2

2−6 4.0374 10−2 1.4142 10−2 6.3389 10−3 3.0774 10−3

2−8 3.2036 10−2 7.5016 10−3 2.2452 10−3 8.6681 10−4

2−10 3.1423 10−2 6.8540 10−3 1.6684 10−3 4.4247 10−4

Poisson (C1) 2.3071 10−2 5.2191 10−3 1.2678 10−3 3.1412 10−4

Poisson 1.9685 10−3 2.6203 10−4 3.3516 10−5 4.2260 10−6

Biharmonic 2.1450 10−1 1.0367 10−1 1.965410−2 4.3614 10−3

Table 1. Fourth order equation using polynomials of degree 3

ε/h 2−3 2−4 2−5 2−6

20 2.4378 10−2 5.8674 10−3 1.0959 10−3 2.7988 10−4∗
2−2 2.1598 10−2 5.1899 10−3 1.2694 10−3 2.3759 10−4∗
2−4 1.0534 10−2 2.4702 10−3 6.0576 10−4 9.4533 10−5

2−6 4.0397 10−3 7.6437 10−4 1.7134 10−4 4.1365 10−5

2−8 2.9540 10−3 3.9977 10−4 6.1923 10−5 1.1852 10−5

2−10 2.8664 10−3 3.6170 10−4 4.6177 10−5 6.2184 10−6

Poisson (C1) 1.9956 10−3 2.571210−4 3.2459 10−5 4.5161 10−6

Poisson 2.4134 10−4 1.5286 10−5 9.5869 10−7 6.2866 10−10

Biharmonic 2.4605 10−2 5.9116 10−3 1.2668 10−3 3.0533 10−4*

Table 2. Fourth order equation using polynomials of degree 4

convergence rate is 2, while the convergence rate is 3 for the Poisson equation using
C0 piecewise functions.

For d = 4, the results are more consistent with convergence rates increasing from 2 to
3. The convergence rate is 3 for the Poisson equation using C1 functions but 4 when
C0 functions are used. The convergence rate of the biharmonic equation remained 3.

For d = 5, the convergence rates are consistent with the known approximation prop-
erties of the spline spaces. It increases from 4 to 5.

Clearly, for d < 5, we have suboptimal convergence rate but the optimal convergence
rate should be restored on a triangulation where the spline space has full approxima-
tion properties.

4. Robustness for Darcy-Stokes flow

We assume homogeneous boundary conditions to simplify the discussion of the error
estimates. We will also assume that g = 0 since for g ∈ L2(Ω), there is w ∈ H1(Ω)2

such that div w = g.
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ε/h 2−3 2−4 2−5 2−6

20 1.2589 10−3 7.5266 10−5 5.0278 10−5 3.6544 10−3+
2−2 1.1136 10−3 6.6545 10−5 4.0541 10−6 1.9367 10−6

2−4 5.3098 10−4 3.1458 10−5 1.9126 10−6 1.1867 10−7

2−6 1.6784 10−4 8.9118 10−6 5.2641 10−7 3.2259 10−8

2−8 9.3491 10−5 3.3119 10−6 1.5078 10−7 8.3996 10−9

2−10 8.6210 10−5 2.5592 10−6 8.1835 10−8 3.0649 10−9

Poisson (S) 2.3672 10−5 7.5557 10−7 2.3764 10−8 8.1405 10−10

Poisson 7.0434 10−5 2.2509 10−6 7.0976 10−8 2.2292 10−9

Biharmonic 1.2708 10−3 7.5979 10−5 1.1226 10−4+ 1.0374 10−2+

Table 3. Fourth order equation using polynomials of degree 5

Given f ∈ L2(Ω), let W = V = {u ∈ H1
0 (Ω)2, div u = 0}. We have the variational

formulation: Find u ∈ W such that

(7) ε2

∫
Ω

∇u · ∇v +

∫
Ω

u · v =

∫
Ω

f · v ∀v ∈ V.

We notice that in the singular limit, the variational problem is not well posed on V
but on the space

Ṽ = {u ∈ L2(Ω)2, div u = 0,u · n = 0 on ∂Ω},
but that the energy norm |||.|||ε defined by

|||v|||2ε = ||v||20 + ε2||∇v||20,
converges to the norm of L2(Ω)2.

We discretize the problem (7) using the space of spline vectors

Vh = {s ∈ (S0
d(Ω))2, div s = 0, s = 0 on ∂Ω}.

For the case ε = 0, it is possible to use

Ṽh = {s ∈ Pd(T )2, T ∈ T , s · n is continuous across edges, div s = 0, s · n = 0 on ∂Ω},

since Ṽ ⊂ H(div) = {u ∈ L2(Ω)2, div u ∈ L2(Ω)}.
For u ∈ V d ∩ V , the error in the energy norm is bounded by infs∈Wh

|||u − s|||ε, for
d ≥ 4. However, we have

{s ∈ Vd, s = 0 on ∂Ω} ⊂ Vh.

Hence, for d ≥ 4, the error in the energy norm cannot be worse that

inf s∈Vd

s=0 on ∂Ω

|||u− s|||ε ≤ (εhd−1 + hd)|u|d

using Theorem (2.2). This shows that the convergence rate is at least hd−1 for ε non
zero and hd in the singular limit for d ≥ 4.

We do not know what are the approximation properties of the space Ṽh. Next we
discuss the approximation of the pressure.
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ε/h 2−2 2−3 2−4 2−5

2−0 1.0061 10−1 2.3718 10−2 5.8212 10−3 1.4467 10−3

2−2 8.9696 10−2 2.1014 10−2 5.1490 10−3 1.2791 10−3

2−4 4.6793 10−2 1.0240 10−2 2.4505 10−3 6.0662 10−4

2−6 2.3921 10−2 3.8922 10−3 7.5706 10−4 1.8105 10−4

2−8 2.0934 10−2 2.8315 10−3 3.9537 10−4 1.3380 10−4

0.00 2.0708 10−2 2.7403 10−3 3.5598 10−4 5.8378 10−5*
Darcy 4.3368 10−3 8.6596 10−4 1.7278 10−5* 1.9652 10−2+

Table 4. Darcy-Stokes using polynomials of degree 3

Recall that we have assumed g = 0. Formally taking the divergence and the normal
component of the first equation in (2), we obtain

−∆p = div f

∂p

∂n
= (−f + u− ε2∆u) · n.

We use the spline space S0
d+1(Ω) to approximate the pressure when polynomials of

degree d are used for the velocity because of the second equation above.

The computational domain is the same as in the previous section. We compute the

relative error of the velocity in the energy norm,
|||uI

h−uh|||ε
|||uI

h|||ε
where uI

h is the spline

interpolant of the exact solution. We include the results for the case ε = 0 which
correspond to approximations of the Darcy equation using continuous splines and
Dirichlet boundary conditions. Under Darcy below, we list the numerical results
when the space W̃h is used. The relative error for the scalar pressure equation is
computed as in the previous section. The test functions are

u = curl
(
sin(πx)2 sin(πy)2

)
, and p = sin(πx).

It would be interesting to prove convergence rates independent of ε for boundary
layers similar to the ones in [18] and [19]. For d=3, we observe that the convergence
rate for the velocity increases from 1.8 to 2.7, while for the Darcy equation, requiring
only continuity of the normal derivative, the convergence rate is approximately 3.5.
For d=4, the convergence rate increases from 4 to 4.5. A ”+” in the tables indicate
that we were not able to solve successfully the discrete system of equations. Some
type of preconditioning for the linear systems need to be used. This is a topic which
is still under investigation.
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ε/h 2−2 2−3 2−4

2−0 7.9689 3.1380 8.9906 10−1

2−2 5.0369 10−1 1.9471 10−1 5.6019 10−2

2−4 3.3121 10−2 1.1486 10−2 3.4025 10−3

2−6 2.9191 10−3 6.8701 10−4 1.9454 10−4

2−8 1.5185 10−3 9.0396 10−5 1.1731 10−5

0.00 1.4690 10−3 6.9076 10−5 2.7063 10−6
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