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Abstract. We give a new, simple, dimension-independent definition of the seren-
dipity finite element family. The shape functions are the span of all monomials
which are linear in at least s − r of the variables where s is the degree of the
monomial or, equivalently, whose superlinear degree (total degree with respect to
variables entering at least quadratically) is at most r. The degrees of freedom are
given by moments of degree at most r−2d on each face of dimension d. We establish
unisolvence and a geometric decomposition of the space.

1. Introduction

The serendipity family of finite element spaces are among the most popular fi-
nite element spaces for parallelepiped meshes in two, and, to a lesser extent, three
dimensions. For each such mesh and each degree r ≥ 1 they provide a finite ele-
ment subspace with C0 continuity which has significantly smaller dimension than the
more obvious alternative, the tensor product Lagrange element family. However, the
serendipity elements are rarely studied systematically, particularly in 3-D. Usually
only the lowest degree examples are discussed, with the pattern for higher degrees
not evident. In this paper, we give a simple, but apparently new, definition of the
serendipity elements, by specifying in a dimension-independent fashion the space of
shape functions and a unisolvent set of degrees of freedom.

The serendipity finite element space Sr may be viewed as a reduction of the
space Qr, the tensor product Lagrange finite element space of degree r ≥ 1. The Qr
elements are certainly the simplest, and for many purposes the best, C0 finite elements
on parallelepipeds. They may be defined by specifying a space of polynomial shape
functions, Qr(In), and a unisolvent set of degrees of freedom, for the unit cube In.
Here I = [−1, 1] is the unit interval, n ≥ 1 is the space dimension, and for f ⊂ Rn

and r ≥ 0 the space Qr(f) is defined as the restriction to f of the functions on
Rn which are polynomial of degree at most r in each of the n variables separately,
so dimQr(In) = (r + 1)n. In addition to the usual evaluation degrees of freedom
associated to each vertex, to each face f of In of some dimension d ≥ 1 are associated
the degrees of freedom

(1.1) u 7→
∫
f

uq, q ∈ Qr−2(f),
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(properly speaking, q ranges over a basis of Qr−2(f), but we shall henceforth dispense
with this distinction). Since the number of faces of dimension d of In is 2n−d

(
n
d

)
, and,

by the binomial expansion,
n∑
d=0

2n−d
(
n

d

)
(r − 1)d = (r + 1)n,

we see that the total number of degrees of freedom coincides with the dimension of
Qr(In). The proof of unisolvence is straightforward, by using the degrees of freedom
to show, in turn, that u vanishes on the faces of dimension 0, 1, . . ..

The serendipity family in two dimensions is discussed in most finite element
textbooks, especially the lowest order cases, namely the 4-node, 8-node, and 12-node
rectangular elements. The idea is to maintain the same degrees of freedom as for Qr
on the boundary of the element, but to remove interior degrees of freedom, and specify
a correspondingly smaller shape function space for which the smaller set of degrees
of freedom is unisolvent. In this way, one obtains a space of lower dimension without
sacrificing C0 continuity and, hopefully, without much loss of accuracy. For r = 1,
there are no interior degrees of freedom for Qr, so the space S1 is identical to Q1. But
the serendipity space S2 and S3 have only 8 and 12 degrees of freedom, respectively,
compared to 9 and 16, respectively, forQ2 andQ3. A possible generalization to higher
degree is to keep only the 4r boundary degrees of freedom of Qr and to seek Sr as
a subspace of Qr of dimension 4r for which these degrees of freedom are unisolvent.
This is easily accomplished by taking Sr to be the span of the monomials xi, xiy, yi,
and xyi, for 0 ≤ i ≤ r+1, (4r monomials altogether, after accounting for duplicates).
The resulting finite element space is referred to as the serendipity space in some of
the literature, e.g., [1]. However, for r > 3 this space does not contain the complete
polynomial space Pr, and so does not achieve the same degree of approximation asQr.
Therefore the shape functions for the serendipity space in two dimensions is usually
taken to be the span of Pr(In) together with the above monomials, or equivalently,

Sr(In) = Pr(In) + span[xry, xyr].

The degrees of freedom associated to the vertices and other faces of positive codimen-
sion are taken to be the same as for Qr, and the degrees of freedom in the interior
of the element can be taken as the moments u 7→

∫
I2
uq, q ∈ Pr−4(I2), resulting in a

unisolvent set.

This definition does not generalize in an obvious fashion to three (or more)
dimensions, but many texts discuss the lowest order cases of serendipity elements in
three dimensions: the 20-node brick, and possibly the 32-node brick [1, 2, 4, 6], which
have the same degrees of freedom as Qr(I3) on the boundary, r = 2, 3, but none
in the interior. It is often remarked that the choice of shape function space is not
obvious, thus motivating the name “serendipity.” The pattern to extend these low
degree cases to higher degree brick elements is not evident and usually not discussed.
A notable exception is the text of Szabó and Babuška [5], which defines the space
of serendipity polynomials on the three-dimensional cube for all polynomial degrees,
although without using the term serendipity and by an approach quite different from
that given here. High-degree serendipity elements on bricks have been used in the
p-version of the finite element method [3].
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In this paper we give a simple self-contained dimension-independent definition of
the serendipity family. For general n, r ≥ 1, we define the polynomial space Sr(In) and
the degrees of freedom associated to each face of the n-cube and prove unisolvence.

2. Shape functions and degrees of freedom

2.1. Shape functions. We now give, for general dimension n ≥ 1 and general degree
r ≥ 1, a concise definition of the space Sr(In) of shape functions for the serendipity
finite element. (As usual, a monomial is said to be linear in some variable xi if it is
divisible by xi but not x2

i , and it is said to be superlinear if it is divisible by x2
i .)

Definition 2.1. The serendipity space Sr(In) is the span of all monomials in n
variables which are linear in at least s− r of the variables where s is the degree of the
monomial.

We may express this definition in an alternative form using the notion of the super-
linear degree. Define the superlinear degree of a monomial p, denoted deg2 p, to be
the total degree of p with respect to variables which enter it superlinearly (so, for
example, deg2 x

2yz3 = 5) and define the superlinear degree of a general polynomial
as the maximum of the superlinear degree of its monomials.

Definition 2.1′. The serendipity space Sr(In) is the space of all polynomials in n
variables with superlinear degree at most r.

It is easy to see that Definitions 2.1 and 2.1′ are equivalent, since for a monomial p
which is linear in l variables, deg p = deg2 p + l. Surprisingly, neither form of the
definition seems to appear in the literature.

Since any monomial is, trivially, linear in at least 0 variables, and no monomial in
n variables is linear in more than n variables, we have immediately from Definition 2.1
that Pr(In) ⊂ Sr(In) ⊂ Pr+n(In), where Pr(In) is the space of polynomial functions
of degree at most r on In. In fact, Sr(In) ⊂ Pr+n−1(In), since the only monomial
which is linear in all n variables is x1x2 · · ·xn, which is of degree n, not degree r+ n.
In particular, the one-dimensional case is trivial: Sr(I) = Pr(I) = Qr(I), for all
r ≥ 1. The two-dimensional case is simple as well: Sr(I2) is spanned by Pr(I2) and
the two monomials x1x

r
2 and xr1x2 (these two coincide when r = 1). Thus we recover

the usual serendipity shape functions in two dimensions. In three dimensions, Sr(I3)
is obtained by adding to Pr(I3) the span of certain monomials of degrees r + 1 and
r+ 2, namely those of degree r+ 1 which are linear in at least one of the n variables,
and those of degree r + 2 which are linear in at least two of them (there are three of
these—x1x2x

r
3, x1x

r
2x3, xr1x2x3—except for r = 1, when all three coincide).

To calculate dimSr(In) we count the monomials in n variables with superlinear
degree at most r. For any monomial p in x1, . . . , xn, let J ⊂ Nn := {1, . . . , n} be the
set of indices for which xi enters p superlinearly and let d ≥ 0 be the cardinality of
J . Then

p =
(∏
j∈J

x2
j

)
× q ×

(∏
i∈Jc

xaii
)
,

where q is a monomial in the d variables indexed by J and each ai, i ∈ J c (the
complement of J), equals either 0 or 1. Note that deg2 p = 2d + deg q. Thus we
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r
n 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9
2 4 8 12 17 23 30 38 47
3 8 20 32 50 74 105 144 192
4 16 48 80 136 216 328 480 681
5 32 112 192 352 592 952 1472 2202

Table 1 dimSr(I
n)

may uniquely specify a monomial in n variables with superlinear degree at most r
by choosing d ≥ 0, choosing a set J consisting of d of the n variables (for which
there are

(
n
d

)
possibilities), choosing a monomial of degree at most r − 2d in the d

variables (
(
r−d
d

)
possibilities), and choosing the exponent to be either 0 or 1 for the

n− d remaining indices (2n−d possibilities). Thus

(2.1) dimSr(In) =

min(n,br/2c)∑
d=0

2n−d
(
n

d

)(
r − d
d

)
.

Table 1 shows the dimension for small values of n and r.

2.2. Degrees of freedom. We complete the definition of the serendipity finite ele-
ments by specifying a set of degrees of freedom and proving that they are unisolvent.
Let f be a face of In of dimension d ≥ 0. Then the degrees of freedom associated to
f are given by

(2.2) u 7→
∫
f

uq, q ∈ Pr−2d(f).

Note that Ps(f) is defined to be the space of restrictions to f of Ps(In), so if f is a
vertex, then Ps(f) = R for all s ≥ 0. In this case the integral is with respect to the
counting measure, so each vertex is assigned the evaluation degree of freedom.

In contrast to the degrees of freedom (1.1) of the tensor product Lagrange family,
for the serendipity family, the degrees of freedom on faces are given in terms of the
Ps(f) rather than Qs(f). For example, for S6(I2), there are 6 = dimP6−2×2(I2)
degrees of freedom internal to the square. For S6(I3), there are 6 degrees of freedom
on each face of the cube and one degree of freedom internal to the cube. Figure 2.2
shows degree of freedom diagrams for the spaces Sr(In) for r ≤ 4 and n ≤ 3.

Theorem 2.2 (Unisolvence). The degrees of freedom specified in (2.2) are unisolvent
for Sr(In).

Proof. First we note that number of degrees of freedom equals the dimension of the
space. Indeed, there are 2n−d

(
n
d

)
faces of the cube of dimension d (obtained by fixing

n− d of the variables to ±1) and, for f of dimension d, dimPr−2d(f) =
(
r−d
d

)
, so the

total number of degrees of freedom proposed is precisely dimSr(In) given by (2.1).
It remains to show that if u ∈ Sr(In) and all the quantities in (2.2) vanish, then
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Fig. 1 Degrees of freedom for Sr(In) for r = 1, 2, 3, 4, n = 1, 2, 3. Dots indicate the
number of degrees of freedom associated to each face.

u vanishes. We do this by induction on n, the case n = 1 being trivial. Let F be
a face of In of dimension n − 1 and let U = u|F . The U is a polynomial in n − 1
variables with superlinear degree at most r, i.e., U ∈ Sr(F ). Moreover, if f is any
face of F of dimension d, and q ∈ Pr−2d(f), then

∫
f
Uq =

∫
f
uq = 0. Therefore, by

the inductive hypothesis, U vanishes. In this way, we see that u vanishes on all its
faces, i.e., whenever we fix some xi to ±1. Therefore

u = (1− x2
1) · · · (1− x2

n) p

for some polynomial p. Note that deg2 u = 2n+ deg p. Therefore deg p ≤ r− 2n, and
we make take f = In and q = p in (2.2) to find∫

In
(1− x2

1) · · · (1− x2
n) p2 = 0.

It follows that p = 0. �

In the proof of unisolvence we established that the degrees of freedom associated
to a face and its subfaces determine the restriction of u to the face. This is important,
since it implies that an assembled serendipity finite element function is continuous.

3. Geometric decomposition and degrees of freedom

In this section we give a geometric decomposition of Sr(In), by which we mean
a direct sum decomposition into subspaces associated to the faces. Such a decom-
position can be used to derive explicit local bases which are useful for the efficient
implementation of the elements, and also for insight.
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First we introduce some notation. Let ∆d(I
n) denote the set of faces of the n-

cube of dimension d and ∆(In) =
⋃n
d=0 ∆d(I

n) the set of all faces of all dimensions.
A face f ∈ ∆d(I

n) is determined by the equations xj = cj for j ∈ J where J ⊂ Nn is
a set of cardinality n− d and each cj ∈ {−1, 1}. We define the bubble function for f
as

bf =
∏
j∈Jc

(1− x2
j)
∏
j∈J

(1 + cjxj),

the unique (up to constant multiple) nontrivial polynomial of lowest degree vanishing
on the (n−1)-dimensional faces of In which do not contain f . Note that bf is strictly
positive on the relative interior of f and vanishes on all faces of In which do not
contain f . For s ≥ 0 we denote by Pfs (In) the space of polynomials of degree at most
s in the d variables xj, j ∈ J c. If d = 0, then Pfs (In) is understood to be R.

To a face f of dimension d we associate the space of polynomials Vf := Pfr−2d(I
n)bf .

By definition, any element q ∈ Vf has the form q = p
∏

j∈J(xj +cj) where p ∈ Pfr (In),

and so deg2 q ≤ r. Thus Vf ⊂ Sr(In). The following theorem states that they do
indeed form a geometric decomposition.

Theorem 3.1 (Geometric decomposition of the serendipity space). Let Sr(In) denote

the serendipity space of degree r, and for each f ∈ ∆d(I
n), let Vf = Pfr−2d(I

n)bf . Then

(3.1) Sr(In) =
∑

f∈∆(In)

Vf .

Moreover, the sum is direct.

Proof. Clearly dimVf = dimP f
r−2d(I

n) =
(
r−d
d

)
, and so (2.1) implies that

dimSr(In) =
∑

f∈∆(In)

dimVf .

Hence, it is sufficient to prove that if p is a monomial with superlinear degree ≤ r,
then p ∈

∑
f Vf . Write p = xα1

1 · · ·xαnn and let

J0 = { i ∈ Nn |αi = 0 }, J1 = { i ∈ Nn |αi = 1 }, J2 = (J0 ∪ J1)c,

denote the sets indexing the variables in which p is constant, linear, and superlinear,
respectively. By assumption,

∑
j∈J2

αj ≤ r. Now we expand

x
αj
j =


1
2
(1 + xj) + 1

2
(1− xj), j ∈ J0,

1
2
(1 + xj)− 1

2
(1− xj), j ∈ J1,

1
2
(1 + xj) + (−1)αj

2
(1− xj) + (1− x2

j)rj(xj), j ∈ J2,

where deg rj = αj− 2, and insert these into p = xα1
1 · · ·xαnn . We find that p is a linear

combination of terms of the form

(3.2) q =
∏
j∈J ′

rj(xj)(1− x2
j)

∏
j∈J ′′∪J0∪J1

(1± xj),

where J ′ and J ′′ partition J2. Let f be the face given by 1∓ xj = 0, j ∈ J ′′ ∪ J0 ∪ J1,
where the signs are chosen opposite to those on (3.2). Then dim f = #J ′ and q = rbf
with r ∈ Pfs (In), s =

∑
j∈J ′(αj − 2) ≤ r − 2 dim f . This shows that q ∈ Vf and

p ∈
∑

f Vf , as desired. �
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