Turn in the following five problems Friday 8 February

B1: Let L be an algebraic lattice and suppose $a, b, c \in L$ with c compact, $a < b$, $c \leq b$ but $c \not\leq a$. Prove that there exists an element $m \in L$ with $a \leq m \leq b$ and m is maximal with the property that $c \not\leq m$.
[Hint: You might want to use Zorn’s Lemma here. A statement of it is item (e) in the Preliminaries section of Burris and Sankappanavar. A more robust version is the following: If $\langle P, \leq \rangle$ is a nonvoid partially ordered set in which every chain has an upper bound, then $\langle P, \leq \rangle$ has a maximal element m, (that is, $m \in P$ and if $m \leq x \in P$, then $m = x$).]

B2: Show that if L is an algebraic lattice and $a < b$ in L, then there exist elements r and s such that $a \leq r \prec s \leq b$.
[Hint: If you wish you may use B1 in your argument.]

Problem #8, Section I.4. To the question if $a \wedge b$ is always compact, either give a proof if the answer is yes or a counterexample if the answer is no.

Problem #7, Section I.5

B3: Give an example of two algebras A and B each of type \mathcal{F} for which there is a one-to-one homomorphism $\alpha : A \to B$ and a one-to-one homomorphism $\beta : B \to A$, but A and B are not isomorphic.