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Abstract

For n a positive integer and K a finite set of finite algebras,
let L(n,K) denote the largest n-generated subdirect product whose
subdirect factors are algebras in K. When K is the set of all n-
generated subdirectly irreducible algebras in a locally finite variety V,
then L(n,K) is the free algebra FV(n) on n free generators for V. For
a finite algebra A the algebra L(n, {A}) is the largest n-generated
subdirect power of A.

For every n and finite A we provide an upper bound on the cardi-
nality of L(n, {A}). This upper bound depends only on n and these
basic parameters: the cardinality of the automorphism group of A, the
cardinalities of the subalgebras of A, and the cardinalities of the equiv-
alence classes of certain equivalence relations arising from congruence
relations of A. Using this upper bound on n-generated subdirect
powers of A, as A ranges over the n-generated subdirectly irreducible
algebras in V, we obtain an upper bound on |FV(n)|. And if all the
n-generated subdirectly irreducible algebras in V have congruence lat-
tices that are chains, then we characterize in several ways those V for
which this upper bound is obtained.

Keywords: Arithmetical variety, interpolation, free algebra, clone,
finitely generated, subdirect power, primal algebra, primal cluster.
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1 Introduction

An algebra B that is a subalgebra of a direct product
∏

i∈I Ai is a subdirect
product of the Ai if each coordinate projection pri maps B onto Ai. Each
Ai is called a subdirect factor of B. If B is n-generated, then so is each of
its subdirect factors. For a given set K of algebras of the same similarity
type what is the largest size an n-generated algebra can be if it is a subdirect
product whose subdirect factors are algebras taken from the set K? This
paper investigates this question when K is a finite set of finite algebras.

Definition 1.1. For n a positive integer and K a finite set of finite algebras
of the same similarity type, L(n,K) denotes the largest n-generated subdirect
product whose subdirect factors are algebras in K.

If no algebra in K is n-generated or if K is empty, then L(n,K) is the
1-element algebra having the same similarity type as the algebras in K. For
A a finite algebra, L(n,A) denotes L(n, {A}). The algebra L(n,A) is the
largest n-generated subdirect power of A.

An easy argument shows that in Definition 1.1, up to isomorphism, the
algebra L(n,K) is unique.

If V is the variety generated by a finite set K of finite algebras of the
same similarity type, then |L(n,K)| ≤ |FV(n)| holds for all integers n. Here
FV(n) denotes the free algebra for V on n-free generators. However, when K
is the set of all n-generated subdirectly irreducible algebras in a locally finite
variety W , then |L(n,K)| = |FW(n)|.

There are several classic results that have been the impetus for this paper.
I group them together in the following omnibus theorem:
Primal Cluster Theorem. Let K = {A1, . . . ,Ak} be a finite set of finite,
nontrivial, pairwise nonisomorphic algebras of the same similarity type and
let V be the variety of algebras generated by K. Then for all n ≥ 0:

|L(n,K)| ≤ |FV(n)| ≤
k∏
i=1

|Ai||Ai|
n

[Birkhoff]. (1.1)

Moreover, the following are equivalent.

1. (bound obtained): |L(n,K)| =
∏k

i=1 |Ai||Ai|
n

for all n ≥ 0.

2. (interpolation condition): For every n ≥ 0 and for every 1 ≤ i ≤
k, if given an n-ary operation fi : A

n
i → Ai, then there exists a term

t(x1, . . . , xn) in the language of K for which tAi = fi for all i. [Foster]
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3. (algebraic condition): Each Ai is simple, has no proper subalge-
bras, has no proper automorphisms, and the variety generated by K is
congruence permutable and congruence distributive. [Pixley]

4. (computational condition): |L(m,K)| =
∏k

i=1 |Ai||Ai|
m

for m =
max{2, k}. [Sioson, Sierpinski]

The inequalities displayed in (1.1) are from G. Birkhoff’s classic theorem
of 1935 that bounds the size of a finitely generated algebra. The notion
of a set K of algebras being a primal cluster of algebras was introduced by
A. F. Foster in a 1955 paper. The interpolation condition (2) is essentially his
definition of a primal cluster when K consists of a finite set of finite algebras.
That the interpolation condition implies the bound obtained condition is due
to Foster.

In this Primal Cluster Theorem if k = 1 and K = {A}, then the upper
bound on |L(n,A)| is |A||A|n and if this bound is obtained the algebra is
known as a primal algebra. For a primal algebra the interpolation condition
is the statement that every n-ary operation on A is a term operation of A.
The algebraic condition may be phrased in a different terminology as stating
that the algebra A has no proper subalgebras, is simple, rigid, and the variety
generated by A is arithmetical. Note that a variety is V is arithmetical if
and only if it has a Pixley term [14], i.e., a ternary term t(x, y, z) such that
V |= t(x, y, x) ≈ t(x, y, y) ≈ t(y, y, x) ≈ x. The computational condition for
a primal algebra is essentially Sierpinski’s theorem [16] that for every n every
n-ary operation on A can be obtained as a composition of binary operations.
We use the word computational here since by computing |L(2,A)| one can
determine whether or not A is a primal algebra.

The initial motivation for this paper was to investigate how in Pixley’s
characterization of a primal algebra A, the severe restrictions on the subalge-
bras, congruences, and automorphisms might be relaxed with a corresponding
modification of the upper bound on the cardinality of L(n,A). This led to
an extension of the Primal Cluster Theorem that takes into account basic
numerical parameters based on the structure of the subalgebras, congruence
relations, and automorphisms of the algebras in the class K. The parame-
ters that are used in this upper bound place no restriction on the subalgebras
or automorphisms of the algebras in K but do require that the congruence
lattice Con A of every A ∈ K is linearly ordered. Corollaries 3.10 and 3.11
present this upper bound. Theorems 7.1 and 9.2 are two extensions of the
Primal Cluster Theorem given in this paper.
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A central notion used throughout is a valuation, which is a function v from
a finite set X of variables into an algebra A such that v(X) generates all of
A. Section 2 contains notation and basic facts about valuations and presents
the correspondence between a set U of valuations on A and an |X|-generated
subdirect power of A embedded in AU , which is denoted Ge(X,U).

If U is a set of valuations from X to a finite algebra A, and if C is a
linearly ordered subset of the congruence lattice of A, then in section 3 we
define a subuniverse of AU , denoted Ω(A, C, U), the cardinality of which is
an upper bound for the size of Ge(X,U) for any algebra A′ that has universe
A, a congruence lattice that contains C, and the set U is contained in the
set of valuations from X to A′.

Sections 4, 5, and 6 present the interpolation, algebraic, and computa-
tional conditions that appear in our version of the Primal Cluster Theorem.
Section 7 combines these results to state and prove this theorem. In section
8 we illustrate with a concrete example how our main theorem may be used
in various ways and how a software package such as the Universal Algebra
Calculator [10] can be utilized interactively with this theorem. The final
section contains several applications of the main theorem.

The notation and terminology follows that of [3] and [12]. I am indebted
to Alden Pixley for much helpful correspondence and conversation concern-
ing this paper. I acknowledge with thanks the many useful comments and
suggestions of an anonymous referee.

2 Valuations and subdirect representations

Given an algebra S generated by a set X and a subdirect product represen-
tation of S by algebras (Ai | i ∈ I) we view S as a subalgebra of

∏
i∈I Ai.

If pri : S → Ai is the projection map on coordinate i, then the function
vi : X → Ai defined by vi(x) = pri(x) for all x ∈ X has the property that the
set vi(X) generates all of Ai. Thus every subdirect representation of S has a
set of functions vi : X → Ai associated with it, each with the property that
vi(X) generates the algebra Ai. This set of functions codes the subdirect
representation. Functions of this kind play a central role in this paper.

Definition 2.1. Let X be a set, A an algebra with universe A, and u ∈ AX .

1. The subalgebra of A generated by u(X) is denoted Alg(u).
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2. If u(X) generates A, then u is called a valuation of X into A. The set
of all valuations of X into A is denoted val(X,A). For K a class of
algebras, val(X,K) denotes the collection of all u ∈ val(X,A) for all
A ∈ K.

3. If no set of size |X| generates A, then val(X,A) = ∅. If A and B are
distinct algebras, then val(X,A) ∩ val(X,B) = ∅.

4. For u, v ∈ val(X,A), uv denotes {(u(x), v(x)) | x ∈ X}.
We write B C A to denote that B is a subalgebra of A.

This definition of a valuation is adapted from the Foreward on Algebra
in the 1948 edition of G. Birkhoff’s Lattice Theory in which there is a con-
structive definition of the free algebra generated by a set X associated with
an algebra A. Here an arbitrary function u : X → A is called a “valuation”.
In our definition of a valuation we require that the set u(X) also generates
the algebra A.

Conversely, if we start with a set U of valuations, then we may associate
with U an algebra and a particular subdirect representation of this algebra
as in Definition 2.2 below. We view a set U of valuations as a particularly
efficient way to represent and to analyze a subdirect representation of an
algebra. In what follows we present a calculus for working with valuations.

Definition 2.2. Let K be a set of algebras of the same similarity type, X
a nonempty set, and U a nonempty subset of val(X,K). For x ∈ X, let
x∗ ∈

∏
v∈U Alg(v) denote the element given by prv(x

∗) = v(x) for all v ∈ U .
We let X∗ = {x∗ | x ∈ X}.

Ge(X,U) denotes the subalgebra of
∏

v∈U Alg(v) generated by X∗ and
Ge(X,U) denotes the universe of Ge(X,U).

If U = ∅, then Ge(X,U) is the 1-element algebra in the similarity type
of K.

Since v ∈ U in this definition is a valuation, it follows that Ge(X,U) is
subdirectly embedded in

∏
v∈U Alg(v). Thus, for n a positive integer and

K a set of algebras containing at least one algebra that is n-generated, the
algebra L(n,K) may be viewed as subdirectly embedded in

∏
v∈U Alg(v) for

U = val(X,K) with |X| = n. That is, L(n,K) ∼= Ge(X, val(X,K)). If
no algebra in K is n-generated, then L(n,K) and Ge(X,U) are both the
1-element algebra in the similarity type of K.
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In what follows we investigate L(n,K) by considering sets U ⊆ val(X,K)
for which L(n,K) is isomorphic to Ge(X,U). To this end we present some
definitions and notation.

Definition 2.3. Let Z be a nonvoid set.

1. A transversal of an equivalence relation ≡ on Z is any subset of Z
consisting of precisely one element from every equivalence class of ≡.

2. A quasi-order (also called a preorder) on Z is any binary relation �
on Z that is reflexive and transitive.

3. Given a quasi-order � on Z, an equivalence relation ∼ is defined on Z
by y ∼ z if and only if y � z and z � y.
A partial order ≤ associated with � is defined on the set of equivalence
classes of ∼ by y/∼ ≤ z/∼ if and only if y � z.

4. A minimal transversal of a quasi-order (Z,�) is any set T ⊆ Z such
that
(i) for every z ∈ Z there exists t ∈ T such that t � z and
(ii) for every t, t′ ∈ T , if t � t′, then t = t′.

Thus, a minimal transversal of (Z,�) is obtained by choosing one element
from each equivalence class of ∼ that is a minimal element in the partial order
≤ on ∼ equivalence classes.

Definition 2.4. Let K be a set of algebras in a variety V and let U ⊆
val(X,K).

1. The quasi-order � is defined on U by v � w if and only if there exists
a homomorphism h : Alg(v) → Alg(w) such that h(v(x)) = w(x) for
all x ∈ X.

2. Two valuations v and w in U are called equivalent, denoted v ∼ w,
if there exists an isomorphism h of Alg(v) onto Alg(w) such that
h(v(x)) = w(x) for all x ∈ X.

3. The set U is called ∼-independent if whenever v, w ∈ U and v ∼ w,
then v = w. A set V ⊆ val(X,K) is ∼-equivalent to U , denoted U ∼ V ,
if there exists a bijection b between U and V such that b(u) ∼ u for all
u ∈ U .
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We note that if a homomorphism h from Alg(u) to Alg(w) is such that
h(u(x)) = w(x) for all x ∈ X, then h is necessarily onto since u and w are
valuations. Thus, if u and w are valuations with Alg(u) finite and if u � w,
and w � u, then u ∼ w. Likewise, if A is finite and u,w ∈ val(X,A) with
u � w, then u ∼ w. That is, for a finite algebra A the quasi-order � and
the equivalence relation ∼ on val(X,A) are the same.

The next lemma follows easily from Definition 2.4

Lemma 2.5. Suppose that K is a set of finite algebras in a variety V and
that U ⊆ val(X,K). Let V ⊆ U be a minimal transversal of the quasi-order
(U,�). Then for every W ⊆ U we have that W is ∼-equivalent to V if and
only if W is a minimal transversal of (U,�).

Lemma 2.6. Let A and B be finite algebras and X = {x1, . . . , xn}.

1. Suppose u : X → A is a function. Then |SgA(u(X))| = |A| if and only
if u ∈ val(X,A).

2. Suppose v ∈ val(X,A) and w ∈ val(X,B). Then |SgA×B(vw)| = |A|
if and only if there exists a homomorphism h from A to B such that
h(v) = w if and only if v � w.

Proof. The first item is immediate. For the second, if |SgA×B(vw)| = |A|,
then |A| ≥ |B| and the relation SgA×B(vw) is functional. Since this relation
is a subalgebra of A × B, it is also the graph of a homomorphism from A
onto B.

Definition 2.7. Let S, Y, and Z be sets with S ⊆ Y . Suppose f ∈ ZY .

1. We denote the projection of f on S by f |S. When f |S viewed as a
function we have f |S : S → Z.
If P ⊆ ZY , then P |S denotes {f |S | f ∈ P}.

2. For y ∈ Y and depending on the context we write f |y or f(y) for f |{y}.

3. If θ is an equivalence relation on Z, then f is called θ-constant on S if
f(S) is a subset of a θ-class.

Lemma 2.8. Let K be a finite set of finite algebras with U ⊆ U ′ ⊆ val(X,K).
If for each w ∈ U ′ there is a γ(w) ∈ U such that γ(w) � w, then Ge(X,U) ∼=
Ge(X,U ′).

7



Proof. Let W denote U ′ \ U . We may assume W is nonvoid. By hypothesis
there is a function γ : W → U such that γ(w) � w in the quasi-order of
Definition 2.4. Let hw : Alg(γ(w))→ Alg(w) be a homomorphism for which
hw (γ(w)(x)) = w(x) for all x ∈ X. Define h : Ge(X,U) → Ge(X,U ′) for
f ∈ Ge(X,U) by

h(f)(v) =

{
f(v) if v ∈ U ;

hv(f(γ(v))) if v ∈ W.

Then h is clearly a homomorphism since each hw is. The map h is onto
because it maps the generating set X∗ of Ge(X,U) onto the correspond-
ing generating set of Ge(X,U ′). Also, h is one-to-one since Ge(X,U) is
isomorphic to G(X,U ′)|U .

Corollary 2.9. Let K be a finite set of finite algebras with U ′ ⊆ val(X,K).
If U is a minimal transversal of (U ′,�), then Ge(X,U) ∼= Ge(X,U ′).

Proof. Since U = ∅ if and only if U ′ = ∅ we may assume both U and U ′

are nonempty. By hypothesis, for every u ∈ U ′ there is a w ∈ U such that
w � u. Hence the claim follows from Lemma 2.8.

We note that the reduction of the set U ′ to the smaller set U in Corollary
2.9 is implemented in the current version of the Universal Algebra Calculator
(UACalc) software developed by Ralph Freese, Emil Kiss, and Matt Valeriote
[10]. This version contains an efficient algorithm that may be used for finding
a subset U of U ′ such that for all u′ ∈ U ′ there is a u ∈ U such that u � u′.
The set U is called a thin set of coordinates in this software. When the
program computes the subalgebra of an m-th direct power generated by a
set of m-tuples, there is an option to reduce m coordinates to as many as
there are in a thin set, and thereby speed up the computation.

The paper [4] includes descriptions of various methods for computing the
exact value of |val(X,B)| for B a finite algebra. These methods only involve
numerical parameters determined by the subalgebras of B.

We now have our first upper bound on the cardinality of an n-generated
subdirect product.

Corollary 2.10. Suppose V is a locally finite variety and X = {x1, . . . , xn}
with W ⊆ val(X,V). Let {B1, . . . ,Bk} be a transversal with respect to iso-
morphism of {Alg(u) | u ∈ W}. Let U be a minimal transversal of (W,�).
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For each 1 ≤ i ≤ k, let Ui = {u ∈ U | Alg(u) = Bi}. Then

Ge(X,W ) ∼= Ge(X,U) ∼= Ge(X,U1 ∪ · · · ∪ Uk) C
k∏
i=1

Ge(X,Ui)

and thus

|Ge(X,W )| = |Ge(X,U)| ≤
k∏
i=1

|Bi||Ui|. (2.1)

Proof. Any transversal with respect to ∼= of the n-generated algebras in V is
finite because the variety V is locally finite. Since W = ∅ if and only if U = ∅
if and only if all the Ui = ∅ we may assume that W,U and at least one Ui
are nonempty. The Bi are pairwise distinct by so the Ui are pairwise disjoint
by Definition 2.1(3). The isomorphism between Ge(X,W ) and Ge(X,U) is
Lemma 2.8 and the other displayed claims are immediate.

If in Corollary 2.10 there are no onto homomorphisms from Bi to Bj, for
all 1 ≤ i < j ≤ k, then the quasi-order � on W reduces to the equivalence
relation ∼. In this situation, each Ui is a transversal with respect to ∼ of
W ∩ val(X,Bi).

Remark 2.11. Lemma 2.8 and Corollary 2.10 provide an upper bound
for |L(n,K)| when K is a finite set of finite algebras. Let {B1, . . . ,Bk}
be a transversal with respect to isomorphism of K, and let U be a mini-
mal transversal of the quasi-order � on val(X, {B1, . . . ,Bk}). Then as in
Corollary 2.10 we have

L(n,K) ∼= Ge(X,U) ∼= Ge(X,
k⋃
i=1

Ui)

and

|L(n,K)| ≤
k∏
i=1

|Ge(X,Ui)| ≤
k∏
i=1

|Bi||Ui|,

where Ui = {v ∈ U | Alg(v) = Bi}.

If the inequality of (2.1) in Corollary 2.10 is an equality, then for every v 6=
w ∈ U , the projection of Ge(X,U) on {v, w} is Alg(v)×Alg(w). This pro-
jection is also the subalgebra of Alg(v)×Alg(w) generated by {(v(x), w(x)) |
x ∈ X}, i.e., SgAlg(v)×Alg(w)(vw). Hence, if equality were to hold and if v 6= w

with Alg(v) = Alg(w), then SgAlg(v)2(vw) = CgAlg(v)(vw) = Alg(v)2.
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3 Bounds incorporating congruence relations

We consider a finite algebra A and U an arbitrary nonvoid subset of val(X,A)
with X = {x1, . . . , xn}. Suppose m ≥ 0 and Con A contains the congruence
relations

1A = θ0 > θ1 > · · · > θm > θm+1 = 0A.
Let C denote this chain of m+ 2 congruence relations {θ0, . . . , θ`, . . . , θm+1}
in Con A.

We label the congruence classes of the θ` by means of strings of positive
integers. For α = i1i2 . . . i` a string of ` integers, we write λ(α) to denote the
length of α, i.e., λ(α) = `. The empty string is denoted ε. Each congruence
class of θ` is denoted A(i1i2 . . . i`) where the A(i1i2 . . . i`) are defined induc-
tively as follows. For ` = 0, A(ε) = A, which is the only congruence class of
θ0. For ` = 1, the congruence classes of θ1 are A(1), A(2), . . . , A(r(ε)) where
r(ε) is the number of congruence classes of θ1 in A(ε). In general, for ` > 0,
if A(i1 . . . i`−1) is a congruence class of θ`−1, then the congruence classes of
θ` contained in A(i1 . . . i`−1) are

A(i1 . . . i`−11), A(i1 . . . i`−12), . . . , A(i1 . . . i`−1r(i1 . . . i`−1)),

where r(i1 . . . i`−1) denotes the number of θ` congruence classes contained in
A(i1 . . . i`−1). That is, r(i1 . . . i`−1) is the index of θ` restricted toA(i1 . . . i`−1).
Note that under this notation, if a is an arbitrary element of A, then there
is a unique string α, with λ(α) = m+ 1, such that {a} = A(α). Moreover, if
α = i1 . . . im+1, then for every 1 ≤ ` ≤ m + 1 we have 1 ≤ i` ≤ r(i1 . . . i`−1).
Also, for every 0 ≤ ` ≤ m and each θ` congruence class A(i1 . . . i`)

A(i1 . . . i`) =

r(i1...i`)⋃
i`+1=1

A(i1 . . . i` i`+1).

For each congruence relation θ` we define an equivalence relation ≡` on
the nonvoid set U of valuations by

v ≡` w if and only if (v(x), w(x)) ∈ θ` for all x ∈ X.

Thus,
1U = ≡0 ≥ ≡1 ≥ · · · ≥ ≡m ≥ ≡m+1 = 0U .

Note that v ≡` w if an only if CgA(vw) ≤ θ`. The equivalence classes of the
≡` are labelled analogously to the labelling for the congruence classes of the
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θ`: U = U(ε) and s(ε) is the number of equivalence classes of ≡1 in U(ε).
For ` > 0 the equivalence classes of ≡` are U(β) where β is the string j1 . . . j`
with 1 ≤ j` ≤ s(j1 . . . jl−1) and where s(j1 . . . jl−1) denotes the number of ≡`
classes contained in U(j1 . . . jl−1).

With this notation, for every u ∈ U there is a unique string j1 . . . jm+1 for
which {u} = U(j1 . . . jm+1) and 1 ≤ j` ≤ s(j1 . . . j`−1) for every 1 ≤ ` ≤ m+1.
Also, for every ≡`-class U(j1 . . . j`),

U(j1 . . . j`) =

s(j1...j`)⋃
j`+1=1

U(j1 . . . j` j`+1),

and this union is a disjoint union of nonvoid sets.

Definition 3.1. For a finite algebra A, for a chain

C = {1A = θ0 > · · · > θ` > · · · > θm+1 = 0A}

of congruence relations in Con A having A(i1 . . . i`) for 1 ≤ i` ≤ r(i1 . . . i`−1)
the θ` congruence classes contained in A(i1 . . . i`−1), and for a nonvoid set
U ⊆ val(X,A) with U(j1 . . . j`) for 1 ≤ j` ≤ s(j1 . . . j`−1) the ≡` equivalence
classes contained in U(j1 . . . j`−1), let Ω(A, C, U) ⊆ AU denote

s(ε)∏
j1=1

r(ε)⋃
i1=1

· · ·
s(j1...j`−1)∏

j`=1

r(i1...i`−1)⋃
i`=1

· · ·
s(j1...jm−1)∏

jm=1

r(i1...im−1)⋃
im=1

A(i1 . . . im)U(j1...jm),

with Ω(A, C, U) = {∅} if U = ∅.

Remark 3.2. Since for every ` the classes of θ` and of ≡` are pairwise
disjoint and finite, it follows that the cardinality of Ω(A, C, U) is

s(ε)∏
j1=1

r(ε)∑
i1=1

· · ·
s(j1...j`−1)∏

j`=1

r(i1...i`−1)∑
i`=1

· · ·
s(j1...jm−1)∏

jm=1

r(i1...im−1)∑
im=1

|A(i1 . . . im)||U(j1...jm)|.

(3.1)
In particular, if U = ∅, then |Ω(A, C, U)| = 1 and if C = {0A, 1A}, then
|Ω(A, C, U)| = |A(ε)||U(ε)| = |A||U |.

From the definition it follows that if U(j1 . . . jm) is an arbitrary ≡m-class,
then

Ω(A, C, U)|U(j1...jm) =
⋃

all θm-classes

A(i1...im)

A(i1 . . . im)U(j1...jm) (3.2)
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and for 0 ≤ ` < m and an arbitrary ≡` -class U(j1 . . . j`)

Ω(A, C, U)|U(j1...jl) =⋃
all θ`-classes

A(i1...i`)

s(j1...j`)∏
j`+1=1

r(i1...i`)⋃
i`+1=1

· · ·
s(j1...jm−1)∏

jm=1

r(i1...im−1)⋃
im=1

A(i1 . . . im)U(j1...jm). (3.3)

Definition 3.3. Let A be a set and f an n-ary partial operation on A.

1. The support of f , denoted supp(f), is the subset of An on which f is
defined.

2. If θ is an equivalence relation on A, then f is said to preserve θ if
whenever (a1, . . . , an) and (b1, . . . , bn) are in supp(f) with (ai, bi) ∈ θ
for 1 ≤ i ≤ n, then (f(a1, . . . , an), f(b1, . . . , bn)) ∈ θ.

3. f is said to be θ-constant on a subset S of supp(f) if there is an equiv-
alence class C of θ such that f(S) ⊆ C.

Remark 3.4. Suppose A is an algebra and u ∈ U ⊆ val(X,A). We may
consider u as an n-tuple (u(x1), . . . , u(xn)). Any f ∈ AU may be viewed
as an n-ary partial operation on A with support U . That is, for u ∈ U we
have f(u) = f(u(x1), . . . , u(xn)). Likewise Ω(A, C, U) may be viewed as a
collection of n-ary partial operations on A, each with support U .

We will have occasion to use the following observations involving auto-
morphisms.

Lemma 3.5. Suppose A is an arbitrary algebra with θ ∈ Con A, u ∈
val(X,A), and α ∈ Aut A.

1. The set α(θ) = {(α(a), α(b)) | (a, b) ∈ θ} is also in Con A.

2. The function α(u) : X → A defined by α(u)(xi) = α(u(xi)) is a valua-
tion.

3. If A is finite, Con A is a chain 1A = θ0 � θ1 � · · · � θm � θm+1 = 0A,
and v, w ∈ val(X,A) with v ≡` w, then α(v) ≡` α(w) and α(θ`) = θ`.

4. If u is such that α(u) = u, then α is the identity permutation ι.
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5. If A is finite and U is a transversal with respect to ∼ of val(X,A),
then val(X,A) is the disjoint union of the sets α(U) where α ranges

over Aut A. Thus |U | = |val(X,A)|
|AutA| .

Proof. The first four items are easily proved. The fifth follows from (4) and
Burnside’s Lemma. Section 2 of [1] also contains a proof of item (5).

Lemma 3.6. Suppose that an algebra A, a chain C of congruence relations,
a set U of valuations, and Ω = Ω(A, C, U) are as in Definition 3.1. For
1 ≤ ` ≤ m let U(j1 . . . j`) be an ≡` equivalence class and let h ∈ AU(j1...j`).

1. For ` = m: h is in Ω|U(j1...jm) if and only if there exists a θm-class
A(i1 . . . im) such that h ∈ A(i1 . . . im)U(j1...jm).

2. For 0 ≤ ` < m: h is in Ω|U(j1...j`) if and only if there exists a θ`-
class A(i1 . . . i`) such that for every q, 1 ≤ q ≤ s(j1 . . . j`), there exists
hq ∈ Ω|U(j1...j`q) and there exists pq with 1 ≤ pq ≤ r(i1 . . . i`) such that
hq ∈ A(i1 . . . i`pq)

U(j1...j`q) and h = (h1, . . . , hq, . . . , hs(j1...j`)).

Proof. The ` = m claim is immediate from (3.2). Suppose 0 ≤ ` < m. It
follows from (3.3) that h ∈ Ω|U(j1...j`) if and only if there exists a θ`-class
A(i1 . . . i`) such that

h ∈
s(j1...j`)∏
j`+1=1

r(i1...i`)⋃
i`+1=1

· · ·
s(j1...jm−1)∏

jm=1

r(i1...im−1)⋃
im=1

A(i1 . . . i` . . . im)U(j1...j`...jm),

for the given strings j1 . . . j` and i1 . . . i`. This in turn will hold if and only if
for all q, with 1 ≤ q ≤ s(j1 . . . j`) there exists hq such that

hq ∈
r(i1...i`)⋃
i`+1=1

s(j1...j`q)∏
j`+2=1

· · ·
s(j1...j`qj`+2...jm−1)∏

jm=1

r(i1...im−1)⋃
im=1

A(i1 . . . im)U(j1...j`qj`+2...jm),

for which h = (h1, . . . , hq, . . . , hs(j1...j`)). This is equivalent to there being for
each q a pq with 1 ≤ pq ≤ r(i1 . . . i`) such that hq is in

s(j1...j`q)∏
j`+2=1

r(i1...i`pq)⋃
i`+2=1

. . .

s(j1...j`qj`+2...jm−1)∏
jm=1

r(i1...i`pqi`+2...im−1)⋃
im=1

A(i1 . . . i`pqi`+2 . . . im)U(j1...jlqj`+2...jm),

13



and h = (h1, , . . . , hq, . . . , hs(j1...j`)). Note that for each q we have hq in
Ω(A, C, U)|U(j1...j`q) by (3.3). Also, eachA(i1 . . . i`pq) is a subset ofA(i1 . . . i`).
Thus, the claim holds for ` < m.

The next lemma characterizes the elements of Ω(A, C, U).

Lemma 3.7. Suppose Ω(A, C, U) is as in Definition 3.1. Let f ∈ AU . Then
f ∈ Ω(A, C, U) if and only if f is θ`-constant on every ≡`-class U(j1 . . . j`)
for all 0 ≤ ` ≤ m.

Proof. For f ∈ Ω, let h denote f |U(j1...j`). Since h is in Ω|U(j1...j`), Lemma
3.6 applies. If ` = m, then h is in A(i1 . . . im)U(j1...jm) for some θm-class
A(i1 . . . im). So h is θm-constant on U(j1 . . . jm). If ` < m, then there
exists a θ`-class A(i1 . . . i`) and there exist hq ∈ A(i1 . . . i`pq)

U(j1...j`p) for
1 ≤ q ≤ s(j1 . . . j`) and 1 ≤ pq ≤ r(i1 . . . i`) such that h = (h1, . . . , hs(j1...j`)).
Therefore h is in A(i1 . . . i`)

U(j1...j`) and is thus θ`-constant on U(j1 . . . j`).
For the converse, we assume f is θ`-constant on all U(j1 . . . j`) for all

0 ≤ ` ≤ m and show that f |U(j1...j`) ∈ Ω|U(j1...j`). Then, for ` = 0, we have
f = f |U(ε) ∈ Ω|U = Ω as desired.

If ` = m, then there is a θm-class A(i1 . . . im) such that f |U(j1...jm) ∈
A(i1 . . . im)U(j1...jm) since f is θm-constant on U(j1 . . . jm). Thus the claim
holds for ` = m since A(i1 . . . im)U(j1...jm) ⊆ Ω|U(j1...jm).

Next assume ` < m and that by the induction hypothesis the claim
holds for ` + 1. For a given U(j1 . . . j`), there exists A(i1 . . . i`) such that
f(u) ∈ A(i1 . . . i`) for all u ∈ U(j1 . . . j`) since f is θ`-constant on U(j1 . . . j`).
Let fq denote f |U(j1...j`q) for 1 ≤ q ≤ s(j1 . . . j`). Since f is θ`+1-constant
on U(j1 . . . j`q) we have by the induction hypothesis that fq ∈ Ω|U(j1...j`q).
Also, since each fq is θ`+1-constant, for each q there exists an index pq
with 1 ≤ pq ≤ r(i1 . . . i`) such that fq ∈ A(i1 . . . i`pq)

U(j1...j`q). Finally,
f = (f1, . . . , fq, . . . , fs(j1...j`)) ∈ Ω|U(j1...j`) by Lemma 3.6.

The next lemma presents some basic facts about the set Ω(A, C, U).

Lemma 3.8. Suppose A is a finite algebra, U ⊆ val(X,A), and C = {1A =
θ0 > θ1 > · · · > θm > θm+1 = 0A} is a chain of congruence relations
contained in Con A. Let Ω denote Ω(A, C, U).

1. If x ∈ X, then x∗ ∈ Ω for x∗ as in Definition 2.2.

2. For all a ∈ A, the constant |U |-tuple ca is in Ω.
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3. Ω|u = A for all u ∈ U .

4. If v, w ∈ U and (v, w) ∈≡` \ ≡`+1, then Ω|{v,w} = θ`.

5. Ω is a subuniverse of AU .

Proof. For (1), suppose u, v ∈ U with u ≡` v. We have (x∗i (u), x∗i (v)) =
(u(xi), v(xi)) ∈ θ`. Hence x∗i is θ`-constant on every ≡` equivalence class. So
x∗i ∈ Ω by Lemma 3.7.

To prove (2) it suffices to observe that for all a ∈ A and every θ`, we
have(a, a) ∈ θ` and thus ca is θ`-constant on every ≡` equivalence class.

Claim (3) follows from Claim (2 since ca(u) = a for every a ∈ A.
For (4), suppose (v, w) ∈≡` \ ≡`+1. Let (a, b) ∈ θ` be arbitrary. Define

f ∈ AU by f(u) = a if u ≡`+1 v and f(u) = b otherwise. It suffices to
show f is ≡q-constant for every θq ∈ C on every ≡q-class. Let Uq be an
arbitrary ≡q-class. If f is constant on Uq or if q ≤ `, then f is ≡q-constant
on Uq. So suppose q > ` and u1, u2 ∈ Uq with, say, f(u1) = a and f(u2) = b.
Then u1 ≡`+1 u2 since ≡q⊆≡`+1. But v ≡`+1 u1 since f(u1) = a. But then
u2 ≡`+1 v, which contradicts f(u2) = b.

To prove that Ω is a subuniverse of AU it suffices by Lemma 3.7 to
show that if t is an arbitrary r-ary term for A and if f1, . . . , fr ∈ AU are
such that for every θ` all the fj are θ`-constant on every ≡`-class, then

tA
U

(f1, . . . , fr) ∈ AU is also θ`-constant on every ≡`-class. But this fol-
lows from the fact that if A(i11 . . . i

1
`), . . . , A(ir1 . . . i

r
`) are each θ`-classes, then

tA(A(i11 . . . i
1
`), . . . , A(ir1 . . . i

r
`)) is contained in a θ`-class since t is a term.

The next result provides the upper bound |Ω(A, C, U)| on the cardinality
of Ge(X,U), and it contains a collection of facts that hold whenever this
upper bound is obtained.

Corollary 3.9. Suppose Ω = Ω(A, C, U) is as in Lemma 3.8. Then Ge(X,U)
is a subalgebra of Ω(A, C, U) and

|Ge(X,U)| ≤ |Ω(A, C, U)|. (3.4)

If A, C, and U are such that |Ge(X,U)| = |Ω(A, C, U)|, then all of the
following statements are true:

1. The universe of Ge(X,U) is Ω.

2. Ω is generated by X∗ as a subalgebra of AU .
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3. SgA2

(vw) = CgA(vw) = Ω|{v,w} for all v 6= w ∈ U .

If v, w ∈ U and (v, w) ∈≡` \ ≡`+1, then SgA2

(vw) = θ`.

4. If v, w ∈ U and v � w, then v = w.

5. If h is an n-ary partial operation on A with supp(h) = U such that
h preserves every θ` ∈ C, then there exists g ∈ Ge(X,U) for which
g(u) = h(u) for all u ∈ U .

Proof. By Definition 2.2, X∗ ⊆ AU generates Ge(X,U). That Ω is a sub-
universe of AU and X∗ ⊆ Ω follow from Lemma 3.8(5) and Lemma 3.8(1).
Hence Ge(X,U) ⊆ Ω(A, C, U) and the inequality (3.4) follows.

If |Ge(X,U)| = |Ω|, then (1) and (2) are immediate since Ω is finite.

Because X∗ generates Ω, we have SgA2

(vw) = Ω|{v,w}. It is always the case

for any v, w ∈ val(X,A) that SgA2

(vw) ⊆ CgA(vw). Let ` be such that
(v, w) ∈≡` \ ≡`+1. Then θ` = Ω|{v,w} by Lemma 3.8 (4). Thus,

Ω|{v,w} = SgA2

(vw) ⊆ CgA(vw) ⊆ θ` = Ω|{v,w},

which justifies claim (3).
If v � w, then there is an endomorphism e of A such that e(v(x)) = w(x)

for all x ∈ X. So SgA2

(vw) = {(a, e(a)) | a ∈ A}. Thus |SgA2

(vw)| = |A|
and hence SgA2

(vw) = θm+1 = 0A by claim (3). This implies e(v(x)) = v(x)
for all x ∈ X. Therefore v = w.

For (5), given the n-ary partial operation h with supp(h) = U , let g ∈ AU
be such that g = h. That h preserves every θ` ∈ C is equivalent to g being
θ`-constant on every ≡`-class U(j1 . . . j`). So g ∈ Ω(A, C, U) by Lemma 3.7.
Thus g ∈ Ge(X,U) = Ω.

Corollary 3.10. Let K = {S1, . . . ,Sk} be a finite set of pairwise nonisomor-
phic finite algebras of the same similarity type. Suppose for each 1 ≤ i ≤ k
that Ci is a chain in Con Si with 0Si , 1Si ∈ Ci. Let U ⊆ val(X,K) be ar-
bitrary with Ui := {u ∈ U | Alg(u) = Si}. Then for Ω(Si, Ci, Ui) as in
Definition 3.1

Ge(X,U) ∼= Ge(X,U1 ∪ · · · ∪Uk) C
k∏
i=1

Ge(X,Ui) C
k∏
i=1

Ω(Si, Ci, Ui). (3.5)
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If U is a minimal transversal with respect to � of val(X,K), then

|L(n,K)| ≤
k∏
i=1

|Ω(Si, Ci, Ui)|. (3.6)

Proof. The isomorphism and the first embedding in (3.5) are immediate since
the Ui are all pairwise disjoint by Definition 2.1(3). The second embedding
is from Corollary 3.9. The inequality (3.6) follows from Remark 2.11.

The next result gives our desired upper bound on the cardinality of an
n-generated subdirect power in terms of the set Ω(A, C, U) as in Definition
3.1.

Corollary 3.11. Let A be a finite algebra whose congruence lattice contains
a chain C = {1A = θ0 > θ1 > · · · > θm+1 = 0A}. Then L(n,A), the
largest n-generated subdirect power of A, is isomorphic to a subalgebra of
Ω(A, C, U), where U is any transversal with respect to ∼ of val(X,A) for
X = {x1, . . . , xn}. The resulting upper bound on |L(n,A)| for this choice of
U is

s(ε)∏
j1=1

r(ε)∑
i1=1

· · ·
s(j1...jm−1)∏

jm=1

r(i1...im−1)∑
im=1

|A(i1 . . . im)||U(j1...jm)| = |Ω(A, C, U)|.

Proof. This follows from Corollary 3.10 and the observation in the paragraph
following Definition 2.4 that on val(X,A) the quasi-order � is ∼.

It is important to note that in Corollary 3.11 if U and U ′ are both
transversals with respect to ∼ of val(X,A), then |Ge(X,U)| = |Ge(X,U ′)|
by Corollary 2.9. However, the cardinalities of Ω(A, C, U) and Ω(A, C, U ′)
may differ. Section 6 presents an effective way to choose a particular mini-
mal transversal that may be used in the computational condition of our main
theorem.

4 The interpolation condition

This section presents a condition involving the interpolation of a collection of
n-ary partial operations on a finite set K of finite algebras of the same simi-
larity type by an n-ary term operation t(y1, . . . , yn) in the language of K. The
existence of t is shown to be equivalent to the embedding displayed in (3.5) of
Corollary 3.10 being an isomorphism

∏k
i=1 Ge(X,Ui) ∼=

∏k
i=1 Ω(Si, Ci, Ui).
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Theorem 4.1. Let S1, . . . ,Sk be a finite set of pairwise nonisomorphic fi-
nite algebras of the same similarity type. Suppose for each i that Ci is a
linearly ordered subset of Con Si that contains both 0Si and 1Si. Let U ⊆
val(X, {S1, . . . ,Sk}). For each 1 ≤ i ≤ k, let Ui = {u ∈ U | Alg(u) = Si}.
The following two statements are equivalent:

1. |Ge(X,U)| =
∏k

i=1 |Ω(Si, Ci, Ui)|.

2. If for each 1 ≤ i ≤ k an n-ary partial operation hi : S
n
i → Si is given

with supp(hi) = Ui and such that each hi preserves every congruence
relation in Ci, then there exists an n-ary term t in the language of the
Si such that tSi(u) = hi(u) for every 1 ≤ i ≤ k and u ∈ Ui.

Proof. Assume (1) and suppose the hi are as given in (2). Let Ωi denote
Ω(Si, Ci, Ui). We have |Ge(X,Ui)| ≤ |Ωi| for all i by Corollary 3.9. It is
always the case that

|Ge(X,U)| = |Ge(X,
k⋃
i=1

Ui)| ≤
k∏
i=1

|Ge(X,Ui)| ≤
k∏
i=1

|Ωi|

by Corollary 3.10. Therefore |Ge(X,Ui)| = |Ωi|. Apply Corollary 3.9(5)
to find an fi ∈ Ge(X,Ui) such that fi(u) = hi(u) for each 1 ≤ i ≤ k
and each u ∈ Ui. From (1) and the displayed chain of inequalities, it follows
that |Ge(X,U)| =

∏k
i=1 |Ge(X,Ui)| and hence Ge(X,U) =

∏k
i=1 Ge(X,Ui).

Thus there is an f ∈ Ge(X,U) such that f = (f1, . . . , fk). Let t(y1, . . . , yn)
be the n-ary term for which tGe(X,U)(x∗1, . . . , x

∗
n) = f . Then for all i and for

all u ∈ Ui we have tSi(u) = fi(u) = hi(u).
Next, assume condition (2) holds. Let fi ∈ Ωi for 1 ≤ i ≤ k be chosen

arbitrarily. By using the notation of Definition 3.3 we have that each fi is
an n-ary partial operation on Si with support Ui. Each fi preserves every
congruence relation in Ci since each fi ∈ Ω(Si, C, Ui). Let t be an n-ary term
for which tSi(u) = f(u) for every i and u ∈ Ui. Such a term exists by virtue
of (2). Now consider tGe(X,U)(x∗1, . . . , x

∗
n) = g ∈ Ge(X,U). Then g|Ui = fi

for all i. Hence
∏k

i=1 Ωi ⊆ Ge(X,U).

5 The algebraic condition

In this section we present some necessary and sufficient algebraic condi-
tions on an algebra A and on sets U ⊆ val(X,A) for the upper bound
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on |Ge(X,U)| of Corollary 3.11 to be obtained. To this end we now focus
on finite algebras A for which there exists m ≥ 0 such that

Con A = {1A = θ0 > θ1 > · · · > θm > θm+1 = 0A}.

Suppose U ⊆ val(X,A) is such that

|Ge(X,U)| = |Ω(A,Con A, U)|.

Since Ge(X,U) ⊆ Ω(A,Con A, U) and is finite, we have

Ge(X,U) = Ω(A,Con A, U).

A variety V of algebras is said to have a majority term if there is a ternary
term t(x, y, z) in the language of V such that V |= t(x, x, y) ≈ t(x.y, x) ≈
t(y, x, x) ≈ x.

The following is a consequence of the Baker-Pixley Theorem [2]:

Lemma 5.1. Let V be a variety that has a majority term m(x, y, z).

1. Suppose A is a finite algebra in V and S is a subalgebra of Ak. If
f ∈ Ak is such that for each 1 ≤ i < j ≤ k there exists s ∈ S such that
(si, sj) = (fi, fj), then f ∈ S.

2. Let A1, . . . ,Ak be finite algebras in V. Suppose G is a subalgebra of
AY1

1 × · · · ×AYk
k for finite, pairwise disjoint index sets Y1, . . . , Yk. Sup-

pose also that for all i 6= j, if yi ∈ Yi and yj ∈ Yj, then G|{yi,yj} =
Ai × Aj. If gi ∈ G|Yi for all 1 ≤ i ≤ k, then there exists g ∈ G such

that g|Yi = gi for all 1 ≤ i ≤ k. Thus, in particular, G =
∏k

i=1G|Yi.

The next lemma provides a context for a converse of Corollary 3.9(3) and
is the crux of our algebraic condition.

Lemma 5.2. Let A be a finite algebra with

Con A = {1A = θ0 > θ1 > · · · > θm > θm+1 = 0A}

and let U be any subset of a transversal with respect to ∼ of val(X,A).
Suppose that the variety generated by A has a ternary majority term and
suppose that U is such that SgA2

(vw) = CgA(vw) for all v 6= w ∈ U .
Then the universe of Ge(X,U) is Ω(A,Con A, U) and thus |Ge(X,U)| =
|Ω(A,Con A, U)|.
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Proof. Let f ∈ Ω(A,Con A, U). By Lemma 5.1(1) it suffices to show for
all v, w ∈ U that f |{v,w} ∈ Ge(X,U)|{v,w}. We have f |{v,w} ∈ CgA(vw) by

Lemma 3.7. By hypothesis, CgA(vw) = SgA2

(vw). But it is always the case

that SgA2

(vw) = Ge(X,U)|{v,w}.

If an algebra A has Con A linearly ordered, then all the congruence rela-
tions of A permute and the congruence lattice of A is a distributive lattice.
That is, the congruence lattice of A is an arithmetical lattice of equivalence
relations. It is shown in [11] that if a finite algebra A has an arithmetical
congruence lattice, then there is a Pixley operation on A that preserves all
the congruence relations of A. We appeal to this result in our proof of the
next theorem. In the case that Con A is linearly ordered then the operation
t : A3 → A defined by

t(a1, a2, a3) =


a3 if CgA(a1, a2) < CgA(a1, a3)

and CgA(a1, a2) < CgA(a2, a3);

a1 otherwise

can be shown to be a Pixley operation on A and t preserves all the congru-
ence relations of A. Moreover t preserves all subuniverses of A since it is a
conservative operation. As observed in Remark 3.5 we have α(θ) = θ for all
congruence relations θ and automorphisms α of A. From this it follows that
t preserves all the automorphisms of A.

Theorem 5.3. Suppose V is a locally finite variety, X = {x1, . . . , xn}, and
Sn = {S1, . . . ,Sk} is a transversal with respect to ∼= of the n-generated sub-
directly irreducible algebras in V. Let U be a minimal transversal of the
quasi-ordered set (val(X,Sn),�). For each 1 ≤ i ≤ k, let Ui = {u ∈ U |
Alg(u) = Si}. If each Con Si is linearly ordered, then

|L(n,Sn)| ≤
k∏
i=1

|Ω(Si,Con Si, Ui)|, (5.1)

and if n ≥ 3, then the following are equivalent:

1. The variety V and the set U are such that equality holds in (5.1).

2. V is congruence permutable and congruence distributive and for all
v, w ∈ U

SgAlg(v)×Alg(w)(vw) ⊇

{
0Alg(v) if Alg(v) = Alg(w);

Alg(v)×Alg(w) if Alg(v) 6= Alg(w).
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Proof. The inequality (5.1) follows from Corollary 3.10 and the fact that the
free algebra on n free generators in any variety is a subdirect product of the
n-generated subdirectly irreducible algebras in the variety.

For (1) implies (2) let U and Sn be as in the hypotheses and suppose
|Ge(X,U)| =

∏k
i=1 |Ω(Si,Con Si, Ui)|. Then

Ge(X,U) =
∏k

i=1 Ω(Si,Con Si, Ui)
and

Ge(X,Ui) = Ge(X,U)|Ui = Ω(Si,ConSi, Ui)
since Ge(X,U) ⊆

∏k
i=1 Ω(Si,Con Si, Ui) by Corollary 3.10 and Ge(X,Ui) ⊆

Ω(Si,ConSi, Ui) by Lemma 3.8(5).
For every algebra Si ∈ Sn let ti : S3

i → Si be a Pixley operation on Si that
preserves all the congruence relations of Si. By [11, Theorem 2.2.5] such ti

exist for each 1 ≤ i ≤ k. Since n ≥ 3, we may define qi : Sni → Si by
qi(y1, . . . , yn) = ti(y1, y2, y3).

Then each qi is an n-ary operation that does not depend on y4, . . . , yn and
qi also preserves all the congruences of Si. Let hi denote the n-ary partial
operation on Si obtained by restricting the domain of qi to Ui. Then by
Theorem 4.1 there is an n-ary term h in the language of V such that

hSi(u(x1), . . . , u(xn)) = hi(u(x1), . . . , u(xn)) = ti(u(x1), u(x2), u(x3)) (5.2)

for all i and u ∈ Ui ⊆ U .
We wish to show that

y = hSi(y, x, x, x, . . . , x) = hSi(x, x, y, y, . . . , y) = hSi(y, x, y, y, . . . , y) (5.3)

for all Si ∈ Sn and all x, y ∈ Si. For then the term p(y1, y2, y3) defined as
h(y1, y2, y3, y3, . . . , y3) will be a Pixley term for V since the identities

y ≈ p(y, x, x) ≈ p(x, x, y) ≈ p(y, x, y)
hold for all algebras in Sn, the set of n-generated subdirectly irreducible
algebras in V .

Let S be an arbitrary member of Sn. (To simplify the notation we sup-
press the subscript in Si.) For b = (b1, b2, b3, b3, . . . , b3) ∈ Sn we need to show
that hS(b) behaves as in (5.3) whenever at least two of the bi are equal.

Let B be the subalgebra of S generated by {b1, b2, b3}. If |B| = 1, then
b1 = b2 = b3 = hS(b) as desired in (5.3). So we assume |B| ≥ 2. The algebra
B is a subdirect product of algebras in Sn since it is at most 3-generated and
n ≥ 3 by hypothesis. Let

e : B→ T1 × · · · ×Tm
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be a subdirect embedding where the Tj are algebras in Sn. (In fact, each Tj

is 3-generated.) The homomorphism prje, for prj denoting the projection on
the j-th coordinate, maps B onto Tj. Let bij denote prje(bi). The algebra
Tj is generated by {b1j, b2j, b3j}. By wj we denote the valuation in val(X,Tj)
for which wj(x1) = b1j, wj(x2) = b2j and wj(xi) = b3j for 3 ≤ i ≤ n.

We work with a fixed but arbitrary valuation wj. The original minimal
transversal U contains a valuation v such that v � wj. Suppose S` ∈ Sn
is such that v ∈ val(X,S`). So there exists a homomorphism f : S` → Tj

such that f(v(xi)) = wj(xi) for 1 ≤ i ≤ n. Let a1, a2, a3 ∈ S` denote
v(x1), v(x2), v(x3) respectively. Thus f(ai) = bij for 1 ≤ i ≤ 3. By (5.2)

hS`(v) = hS`(v(x1), . . . , v(xn)) = hS`(a1, a2, a3, . . . ) = t`(a1, a2, a3). (5.4)

If f is applied in (5.4) we have

hTj(wj) = hTj(b1j, b2j, b3j, b3j, . . . , b3j) = f(t`(a1, a2, a3)) = pTj(b1j, b2j, b3j).

We wish to show that the equations of (5.3) hold for hTj(b1j, b2j, b3j, b3j, . . . , b3j)
when at least two of b1j, b2j, b3j are equal.

If say, b2j = b3j, then a2/ ker f = a3/ ker f . Thus,

hS`(v)/ ker f = t`(a1, a2, a3)/ ker f = t`(a1, a3, a3)/ ker f = a1/ ker f

since t` preserves all the congruence relations of S`. Therefore

hTj(b1j, b3j, b3j, . . . , b3j) = b1j = pTj(b1j, b3j, b3j).

A similar argument applies if b1j = b2j or b1j = b3j. So p is a Pixley term for
V and thus V is congruence permutable and congruence distributive.

Next, suppose v, w ∈ U with Alg(v) = Alg(w) = Si for some 1 ≤ i ≤ k.
For all a ∈ Alg(v) we have (a, a) ∈ Ω(Alg(v),Con Si, Ui)|{v,w} by Lemma
3.8(2). But Ge(X,Ui) = Ω(Si,Con Si, Ui) since (1) holds. Thus

0Alg(v) ⊆ SgAlg(v)×Alg(w)(vw) = Ω(Si,Con Si, Ui)|{v,w}.

If Alg(v) 6= Alg(w) with say v ∈ Ui and w ∈ Uj for i 6= j, and if
a ∈ Si and b ∈ Sj are arbitrary, then by Lemma 3.8(2) there is a ca ∈
Ω(Si,Con Si, Ui) = Ge(X,Ui) and a cb ∈ Ω(Sj,Con Sj, Uj) = Ge(X,Uj)
with ca|v = a and cb|w = b. Then (ca, cb) ∈ Ge(X,Ui)×Ge(X,Uj). We have
Ge(X,Ui ∪ Uj) = Ge(X,Ui) × Ge(X,Uj) since condition (1) holds. Thus
(a, b) ∈ SgAlg(v)×Alg(w)(vw).
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We next assume that condition (2) holds: V is congruence permutable and
congruence distributive and U is such that for all v, w ∈ U the subalgebra
SgAlg(v)×Alg(w)(vw) behaves as in the statement of the Theorem. So V is
arithmetical and therefore has a ternary majority term. It is known (e.g.,
Theorem 1.2.13 in [11]) that if an algebra A is in a congruence permutable
variety and if B is a subuniverse of A2 with 0A ⊆ B, then B is a congruence
relation of A. Thus, for v, w ∈ Ui ⊆ U we have SgAlg(v)×Alg(w)(vw) =
CgAlg(v)(vw). Then Ge(X,Ui) = Ω(Si,Con Si, Ui) by Lemma 5.2 and the
hypothesis that V has a majority term. Now by hypothesis, for v ∈ Ui and
w ∈ Uj with i 6= j we have SgAlg(v)×Alg(w)(vw) = Si × Sj. Thus Lemma
5.1(2) applies to prove that

Ge(X,U) = Ge(X,U1)× · · · ×Ge(X,Uk) =
k∏
i=1

Ω(Si,Con Si, Ui).

Finally, by combining this equality with the fact that |L(n,Sn)| ≥ |Ge(X,U)|,
we have equality in (5.1).

Remark 5.4. The condition (2) in Theorem 5.3 can be replaced by:
(2’) V has a majority term and for all v, w ∈ U ,

SgAlg(v)×Alg(w)(vw) =

{
CgAlg(v)(vw) if Alg(v) = Alg(w);

Alg(v)×Alg(w) if Alg(v) 6= Alg(w).

For we have (1) implies (2’) since (2) implies (2’). That (2’) implies (1) can
be argued by suitably modifying the final paragraph of the proof of Theorem
5.3.

6 The computational condition

For the inequality

|L(n,Sn)| ≤
k∏
i=1

|Ω(Si,Con Si, Ui)|, (6.1)

presented in Theorem 5.3, a natural question is if there is a minimal transver-
sal of (val(X,Sn),�) for which equality holds. Although any two such min-
imal transversals U and U ′ will be ∼-equivalent by Lemma 2.5 and will
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have |Ge(X,U)| = |Ge(X,U ′)| by virtue of Corollary 2.9, the values of
|Ω(Si,Con Si, Ui)| and |Ω(Si,Con Si, U

′
i)| can be different. The computa-

tional condition we present is a set of numerical conditions for a given n, Sn,
and minimal transversal U that are based on the values of some basic param-
eters involving the algebras in Sn and the valuations in U , which, if satisfied,
imply that equality holds in (6.1). The next result provides a method to
select a minimal transversal W such that if equality were to hold in (6.1)
for a minimal transversal U , then it must hold for W as well. Thus, there
exists a minimal transversal U for which equality holds in (6.1) if and only
if equality holds in (6.1) for the minimal transversal W .

Theorem 6.1. Suppose A is a finite algebra with Con A a chain

1A = θ0 � θ1 � · · · � θm � θm+1 = 0A.

Let W ′ be any ∼-independent subset of val(X,A). Then a set W ⊆ val(X,A)
can be constructed such that W ∼ W ′ and for all 0 ≤ q ≤ m + 1, for all
w,w′ ∈ W , and for all u, u′ ∈ val(X,A) if u ∼ w and u′ ∼ w′ with u ≡q u′,
then w ≡q w′.

Proof. We work with orbits of the automorphism group Aut A acting on
val(X,A). So let O be the set of such orbits. Each orbit is an equivalence
class of the relation ∼. Consider a binary relation ≡` defined on O by
O ≡` O′ if and only if there exist valuations u ∈ O and u′ ∈ O′ such that
u ≡` u′. It is easily checked using Remark 3.5(3) that the relation ≡` on O
is an equivalence.

The proof will consist of a construction of successive ∼-independent sets
Wm+1,Wm, . . . ,W0 with the properties that

• Wm+1 = W ′;

• W`+1 ∼ W` for all m ≥ ` ≥ 0;

• if W` = {w1, . . . , wp} with wr ∈ Or ⊆ O for 1 ≤ r ≤ p, then for all
q ≥ ` and 1 ≤ r, s ≤ p, if Or ≡q Os, then wr ≡q ws.

Thus, W0 is the desired set W .
For ` = m + 1 let W` = W ′ = {w1, . . . , wp} with wr ∈ Or for 1 ≤ r ≤ p.

For valuations u and v we have u ≡m+1 v if and only if u = v. It follows that
if Or ≡m+1 Os, then Or ∩Os 6= ∅, and thus r = s and so wr ≡m+1 ws.
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Next, let ` < m + 1. Suppose W`+1 = {u1, . . . , up} with ur ∈ Or for all
1 ≤ r ≤ p is such that for all q ≥ `+ 1 and for all 1 ≤ r, s ≤ p, if Or ≡q Os,
then ur ≡q us. We construct W` from W`+1.

Note that if q ≥ ` and if Or ≡q Os, then Or ≡` Os since ≡q⊆≡`. So to
construct W` we may consider each equivalence class C of ≡` on the set O
of orbits separately.

Let C be an arbitrary ≡`-class of O and let B1, . . . , Bt be the ≡`+1 classes
contained in C. For each i, with 1 ≤ i ≤ t, let Bi = {Oi1 , . . . , Oiki

}. Then
Or ≡`+1 Os for all Or, Os ∈ Bi. So ur ≡`+1 us by hypothesis. For each r
with Or ∈ B1, we define wr ∈ W` to be ur. Thus, for all q ≥ ` and for all
Or, Os,∈ B1, if Or ≡q Os, then wr ≡q ws. Without loss of generality we
assume O1 ∈ B1.

Consider an ≡`+1-class Bj, for 2 ≤ j ≤ t, and choose an orbit Oj0 ∈ Bj.
Since O1 ≡` Oj0 , there exist valuations y ∈ O1 and z ∈ Oj0 such that y ≡` z.
Let β ∈ Aut A be such that β(y) = w1. Since both y and w1 are in the same
orbit O1, such an automorphism exists. Then β(z) ≡` β(y) = w1 by Remark
3.5(3). Both β(z) and uj0 are in Oj0 so there exists α ∈ Aut A such that
α(uj0) = β(z). For each Os ∈ Bj let ws denote α(us). Since all us ∈ Os ∈ Bj

are ≡`+1 related, it follows that all the ws for Os ∈ Bj are ≡`+1 related by
virtue of Remark 3.5(3). However, w1 ≡` β(z) = α(uj0) ≡`+1 α(us) = ws
for all Os ∈ Bj. Therefore w1 ≡` ws. Hence all the ws ∈ Os ∈ C are ≡`
related. Let W` be the set of all ws constructed in this way as C ranges over
the ≡` classes of O. The set W` is clearly a transversal with respect to ∼
of val(X,A). Moreover, if wr, ws ∈ W0 and if u ∼ wr and u′ ∼ ws with
u ≡q u′ for a q ≥ 0, then Or ≡q Os by definition and hence wr ≡q ws by
construction.

One property of the ∼-independent set W constructed in Theorem 6.1 is
that for all wr, ws ∈ W , if u ∼ wr and v ∼ ws, then CgA(wrws) ≤ CgA(uv).
Indeed, if CgA(uv) = θ`, then u ≡` v and hence wr ≡` ws and CgA(wrws) ≤
θ`.

This property motivates the next definition and corollary.

Definition 6.2. An ∼-independent set W contained in val(X,A) is called
congruence-reduced if for all w,w′ ∈ W and for all u, u′ ∈ val(X,A) if u ∼ w
and u′ ∼ w′, then CgA(ww′) ≤ CgA(uu′).

Corollary 6.3. Suppose K is a finite set of finite algebras with each algebra
in K having a congruence lattice that is a chain. Then there exists a minimal
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transversal with respect to � of (val(X,K),�) that is congruence-reduced.

Proof. Without loss of generality the algebras in K are pairwise nonisomor-
phic. Let U be any minimal transversal of (val(X,K),�). For each A ∈ K
let UA denote {u ∈ U | Alg(u) = A}. Each nonvoid UA is an ∼-independent
subset of val(X,A). For each such UA let WA be constructed from UA as in
Theorem 6.1. Then UA ∼ WA and WA is congruence-reduced. Let W denote
the union of all the WA. Then W is a minimal transversal of (val(X,K),�)
since U ∼ W . Moreover, W is congruence-reduced since each WA is.

7 Main theorem

The following is our extension of the Primal Cluster Theorem presented in
the Introduction.

Theorem 7.1. Suppose V is a locally finite variety, X = {x1, . . . , xn}, and
Sn = {S1, . . . ,Sk} is a transversal with respect to ∼= of the n-generated sub-
directly irreducible algebras in V. Let U be a minimal transversal of the
quasi-ordered set (val(X,Sn),�). For each 1 ≤ i ≤ k, let Ui = {u ∈ U |
Alg(u) = Si}. Then

FV(n) ∼= L(n,Sn) ∼= Ge(X,U) ∼= Ge(X,U1∪· · ·∪Uk)C
k∏
i=1

Ge(X,Ui). (7.1)

If Ci, for each i, is a linearly ordered subset of Con Si containing both 0Si
and 1Si, then

|L(n,Sn)| ≤
k∏
i=1

|Ω(Si, Ci, Ui)|, (7.2)

and thus if each congruence lattice Con Si is linearly ordered, then

|L(n,Sn)| ≤
k∏
i=1

|Ω(Si,Con Si, Ui)|. (7.3)

Moreover, if each Con Si is linearly ordered and n ≥ 3, then the first three of
the following conditions are equivalent and are implied by the fourth.

1. (bound obtained): The variety V and the minimal transversal U are
such that equality holds in (7.3).
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2. (interpolation): If given, for each 1 ≤ i ≤ k, an n-ary partial op-
eration hi : S

n
i → Si with supp(hi) = Ui such that hi preserves every

congruence relation of Si, then there exists an n-ary term t in the lan-
guage of the Si such that tSi(u) = hiu) for every 1 ≤ i ≤ k and u ∈ Ui.

3. (algebraic): V is congruence permutable and congruence distributive
and U has the property that for all v, w ∈ U

SgAlg(v)×Alg(w)(vw) ⊇

{
0Alg(v) if Alg(v) = Alg(w);

Alg(v)×Alg(w) if Alg(v) 6= Alg(w).

4. (computational): Suppose X ′ = {x1, x2, x3} with S3 = {S′1, . . . ,S′k′}
a transversal with respect to ∼= of the 3-generated subdirectly irreducible
algebras in V. Let V be any minimal transversal of the quasi-ordered
set (val(X ′,S3),�) that is congruence-reduced. For each 1 ≤ i ≤ k′ let
Vi = {v ∈ V | Alg(v) = S′i}. Suppose that the minimal transversal U
is congruence-reduced. Then for this V and this U

|Ge({x1, x2, x3}, V )| =
k′∏
i=1

|Ω(S′i,Con S′i, Vi)| (7.4)

and for all v, w ∈ U

|SgAlg(v)×Alg(w)(vw)| =

{
|CgAlg(v)(vw)| if Alg(v) = Alg(w);

|Alg(v)×Alg(w)| if Alg(v) 6= Alg(w).

(7.5)

Proof. The chain of isomorphisms in (7.1) is Remark 2.11. The embedding
in (7.1) is immediate since the Ui are pairwise disjoint. The inequality (7.2)
follows from Remark 2.11 and Corollary 3.9. The inequality (7.3) is from
(7.2). It remains to prove the ‘Moreover’.

The equivalence of (1) and (2) is Theorem 4.1. The equivalence of (1)
and (3) is Theorem 5.3.

We complete the proof by showing that if the computational condition (4)
holds, then the algebraic condition (3) follows. From Corollary 6.3 we know
that the congruence-reduced minimal transversals U and V that appear in
condition (4) can always be constructed. We have S3 ⊆ Sn since n ≥ 3.
So every S′i ∈ S3 has a congruence lattice that is a finite linearly ordered
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set. If the equality (7.4) holds for V , then it follows that equality holds
in the inequality (7.3) when n = 3. Thus V is congruence permutable and
congruence distributive by virtue of the equivalence for n = 3 of the bound
obtained condition (1) and the algebraic condition (3). If the equality in
(7.5) holds for U , then the second part of the algebraic condition (3) holds
for all v, w ∈ U since the set SgAlg(v)×Alg(w)(vw) is always contained in
Alg(v)×Alg(w) and it is also contained in CgAlg(v)(vw) if Alg(v) = Alg(w).
Then the equality of cardinalities implies the equality of the sets since the sets
are all finite. Thus the algebraic condition (3) holds for V and all v, w ∈ U
since 0Alg(v) is contained in every congruence relation on Alg(v).

Remark 7.2. If the bound obtained condition (1) holds for every n, then
all four conditions in Theorem 7.1 are equivalent since in this case the two
transversals U and V of the computational condition (4) will exist and have
the desired properties.

8 An Example

This section illustrates for a particular 3-element algebra A and for the va-
riety V(A) generated by A the computation of upper bounds for |L(n,A|
and |FV(A)(n)| by means of the formula for |Ω(A,Con A, val(X,A))|. The
section also illustrates how the interpolation, algebraic, and computational
conditions of Theorem 7.1 may be applied to show that these upper bounds
are obtained for this A.

Let A = {0, 1, 2} and suppose that θ is the equivalence relation given by
the partition 01|2, B is the subset {2}, and α is the permutation (01)(2) that
interchanges 0 and 1 and leaves 2 fixed. We investigate Ω(A,Con A, U) if A
were an algebra with universe A, with congruence lattice {1A � θ � 0A}, with
subalgebra lattice {A � B}, with Aut A = {ι, α}, and with U a transversal
with respect to ∼ of val(X,A).

It is easily seen that if |X| = n, then val(X,A) = AX \BX and that the
cardinality of the transversal U is (3n − 1)/2. In the notation of Definition
3.1 we have r(ε) = 2. Let A(1) = {0, 1} and A(2) = {2}. Here m = 1 and we
write θ for θ1. The value of s(ε) is the number of n-tuples (A(p1), . . . , A(pn))
with each pq ∈ {1, 2} and with at least one pq not 2. Thus, s(ε) = 2n − 1.
Then U(1), . . . , U(2n−1) are the ≡1 equivalence classes in U . If, say, U(j) ⊆
A(p1) × · · · × A(pn), then |U(j)| = 2e1n−e/2 = 2e−1, where e is the number
of pq that have value 1.
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With these values for r(ε), s(ε), |A(i)| and |U(j)| we have from Remark
3.2 that

|Ω(A,Con A, U)| =
s(ε)∏
j=1

r(ε)∑
i=1

|A(i)||U(j)| =
2n−1∏
j=1

2∑
i=1

|A(i)||U(j)| =
n∏
e=1

(22e−1

+1)(
n
e)

(8.1)
where

(
n
e

)
is the number of U(j) ⊆

∏n
q=1A(pq) that have e coordinates that

are in A(1).
If FV(A)(n) denotes the free algebra on n free generators for the variety

V(A) generated by the algebra A, then |FV(A)(n)| = |L(n,A)| since the
free algebras in V(A) are subdirect products of A and the proper nontrivial
subalgebras of A. From formula (8.1) and Corollary 3.11 we have

|FV(A)(n)| = |L(n,A)| ≤
n∏
e=1

(22e−1

+ 1)(
n
e). (8.2)

A question which remains is whether there exists an algebra A with uni-
verse {0, 1, 2}, Con A = {0A, θ, 1A}, Sub A = {B,A}, and Aut A = {ι, α}.
And if there is such an algebra for which the upper bound of (8.1) is obtained.

It is easily checked that the algebra A0 = 〈{0, 1, 2}, u1, u2〉 in which u1
is the unary operation α and u2 is the unary constant operation with value
2 has the desired congruence lattice, subalgebra lattice, and automorphism
group. But, of course, the upper bound in (8.1) is far too large for this A0. A
natural candidate for an algebra A that obtains this upper bound would be
the algebra whose term operations are all finitary operations on {0, 1, 2} that
preserve θ, B, and α. This A would be an expansion of A0 and thus would
have the desired congruence lattice, subalgebra lattice, and automorphism
group. We show that the upper bound of (7.1) is indeed obtained for V(A)
when the n-ary term operations of A are all n-ary operations on A that
preserve θ, B, and α.

Our arguments do not always make full use of the very simple form of
θ,B, and α in this example since we wish to illustrate techniques that may
be used for more complex algebras.

One method to show that equality holds in (8.2) for this algebra A is
to apply Theorem 4.1 with k = 1 and U a transversal with respect to ∼ of
val(X,A). We sketch an argument to show that the interpolation condition
(2) of this theorem holds. To this end let h be an n-ary partial operation on
A with supp(h) = U that preserves θ. To show that condition (2) holds it
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suffices to find an n-ary operation f on A that preserves θ, B, and α and for
which f(u) = h(u) for all u ∈ U . For each a ∈ An define f by

f(a) =


h(a) if a ∈ U ;

α(h(α−1(a))) if a ∈ α(U);

2 if a ∈ Bn.

Since AX is the disjoint union of val(X,A) and BX , and val(X,A) is the
disjoint union of U and α(U), it is immediate that f is an n-ary operation
on A that preserves B. A straightforward argument that f preserves θ can
be given using the facts that in this example B is an equivalence class of θ
and (a, α(a)) ∈ θ for all a ∈ A. Likewise, an easy argument that f preserves
α can be given using the facts that α(B) = B and α2 = ι. Thus, for this A
the inequality in (8.2) may be replaced with equality by virtue of Theorem
4.1.

Another way to show that equality holds in (8.2) is to argue that the
algebraic condition (2) of Theorem 5.3 holds for this A with n ≥ 3. The
Pixley operation displayed immediately before Theorem 5.3 preserves the
congruence relation θ, the automorphism α, and every subset of A. Hence
it is a term operation of A. So it is a Pixley term for A and for the variety
V = HSPA. Thus V is congruence permutable and congruence distributive.
The only subdirectly irreducible algebras in V are A and A/θ by Jónsson’s
Theorem. It is easily seen that for every valuation w on A/θ there is a
valuation u ∈ val(X,A) such that u � w. So a minimal transversal U with
respect to � of val(X, {A,A/θ}) is any transversal with respect to ∼ of
val(X,A).

To complete the argument we show that (c, c) ∈ SgA2

(vw) for every c ∈ A
and v, w ∈ U . For each c ∈ A consider an operation fc : An → A given by

fc(a) =

{
δ(c) if a ∈ δ(U) for a δ ∈ Aut A;

a1 if a 6= u for all u ∈ val(X,A).

Each fc is indeed an n-ary operation since, by Remark 3.5(5), val(X,A) =⋃
δ∈AutA δ(U) and AX = val(X,A) ∪ BX are both disjoint unions. Each

fc preserves θ since in A the subuniverse B is a congruence class of θ and
δ(a)/θ = a/θ for all a ∈ A and δ ∈ Aut A. It is immediate that fc preserves
subuniverses and automorphisms of A. So fc is a term operation of A.
Hence (c, c) ∈ SgA2

(vw) for all v, w ∈ U . Therefore the algebraic condition
of Theorem 7.1 holds for this A, and in particular, equality holds in (8.2).
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We next use computational methods to explicitly construct an algebra C
with universe C = {0, 1, 2}, Con C = {0A, θ, 1A}, Sub C = {B,A}, Aut C =
{ι, α}, and having a transversal U with respect to ∼ of val(X,C) for which

|FV(C)(n)| = |Ω(C,Con C, U)| =
n∏
e=1

(22e−1

+ 1)(
n
e), (8.3)

In particular, we find a small set of fundamental operations for C. Our
presentation illustrates the use of the computational condition in Theorem
7.1 and of the software package UACalculator [10].

We have observed in (8.2) that the expression in (8.3) is an upper bound.
Thus |FV(C)(1)|, |FV(C)(2)|, and |FV(C)(3)| are bounded above by 3, 45, and
57,375 respectively. By inspection we can see that for the given θ, B, and
α the only unary operations that could be term operations for C are the
constant function 2, the identity function ι, and the permutation α. We start
to build C by choosing 2 and α as its fundamental unary term operations.
As already observed it is easily seen that the congruence lattice, subalgebra
lattice, and automorphism group of the algebra 〈C, α, 2〉 are as desired. This
could also be verified using UACalculator.

All binary operations that preserve θ, B, and α must conform to this
template:

· 0 1 2

0 a b c
1 α(b) α(a) α(c)
2 d α(d) 2

Here c and d are arbitrary elements of C and (a, b) can be any ordered pair
in θ. Thus there are 32 ·5 possible binary term operations for C. By selecting
binary operations that conform to this template and by including them with
the unary terms α and 2 as fundamental term operations of C, and then
using UACalculator to compute the free algebra on 2 free generators for the
variety generated by C it is possible to find two binary operations, say b1 and
b2, such that C = 〈C, α, 2, b1, b2〉 has |FV(C)(1)| = 3 and |FV(C)(2)| = 45.
Finally, we include the Pixley operation t(a1, a2, a3) displayed immediately
before Theorem 5.3 as a fundamental term operation of C. If we attempt to
compute the cardinality of the free algebra on 3 free generators for this C,
then after approximately two hours 57,375 elements are enumerated. The
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estimated time that UACalculator predicts for completion of this computa-
tion is impossibly long. However, since 57,375 is also the upper bound on
the size of FV(C)(3) we can conclude for the algebra C = 〈C, α, 2, b1, b2, t〉
that |FV(C)(3)| = |Ge({x1, x2, x3}, U)| = |Ω(C,Con C, U)|. Thus (7.4) in
the computational condition of Theorem 7.1 holds for the variety V(C). In
order to show that (7.5) holds it suffices to show that every subalgebra of
C2 that has cardinality greater than |C| is a congruence relation of C. This
is easily checked using UACalculator. Thus, the computational condition
of Theorem 7.1 holds for the variety generated by C and for all values of
n ≥ 3. Therefore, all four conditions of that theorem hold. We conclude that

|L(n, {C,C/θ})| = |FV(C)(n)| = |Ω(C,Con C, U)| =
∏n

e=1(2
2e−1

+ 1)(
n
e) for

all n.

9 Applications

Throughout this section A is a finite algebra and C is a linearly ordered
subset of Con A that contains 0A and 1A. The sets U ⊆ val(X,A) and
Ω(A, C, U) ⊆ AU are as in Definition 3.1. We consider methods for deter-
mining the cardinality of Ω(A, C, U) and we present some applications of
Theorem 7.1.

We first provide a version of Theorem 7.1 for semisimple varieties. Next
come formulas based on inclusion-exclusion arguments for determining the
cardinality of Ω(A, C, U). We then consider in detail the case of an arbitrary
finite algebra that is rigid, has no proper subalgebras, and has a congruence
lattice that is a chain. The section concludes with an analysis of L(n,A) and
|Ω(A,Con A, val(X,A))| when A is congruence uniform.

9.1 Simple algebras and semisimple varieties

We call a variety n-semisimple if every n-generated subdirectly irreducible
algebra in it is simple. A variety is semisimple if every subdirectly irreducible
algebra in it is simple.

Proposition 9.1. Suppose |X| = n and A is a finite algebra with U a
transversal with respect to ∼ of val(X,A). Then

|Ge(X,U)| = |L(n,A)| ≤ |Ω(A, {0A, 1A}, U)| = |A||U | = |A|
|val(X,A)|
|Aut A| ,
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and Ge(X,U) is subdirectly embedded in Ω(A, {0A, 1A}, U).

Proof. The equalities and inequality follow from Remark 2.11, Corollary 3.10,
Remark 3.2, and Lemma 3.5(5).

The upper bound on L(n,A) in Proposition 9.1 depends only on the
cardinality of the automorphism group and on certain numerical parameters
involving the lattice of subuniverses of A. It can be argued that if equality
holds in this proposition for n = 1 + |A|, then A is simple.

The next result is a version of Theorem 7.1 restricted to n-semisimple
varieties. In these varieties we show that all four conditions in the main
theorem are equivalent. A proof of the equivalence of the bound obtained
condition (1) and the algebraic condition (3) for n-semisimple locally finite
varieties has been given in [4].

Theorem 9.2. Suppose V is a locally finite variety, X = {x1, . . . , xn}, and
Sn = {S1, . . . ,Sk} is a transversal with respect to ∼= of the n-generated sub-
directly irreducible algebras in V. Let U be a minimal transversal of the
quasi-ordered set (val(X,Sn),�). For each 1 ≤ i ≤ k, let Ui = {u ∈ U |
Alg(u) = Si}. Then

L(n,Sn) ∼= Ge(X,U) ∼= Ge(X,U1 ∪ · · · ∪ Uk) C
k∏
i=1

Ge(X,Ui).

|L(n,Sn)| ≤
k∏
i=1

|Ω(Si, {0Si , 1Si}, Ui)| =
k∏
i=1

|Si||Ui|. (9.1)

If each Si is a simple algebra, then

|L(n,Sn)| ≤
k∏
i=1

|Ω(Si,Con Si, Ui)| =
k∏
i=1

|Si|
|val(X,Si)|
|Aut Si| . (9.2)

Moreover, if n ≥ 3 and V is n-semisimple, then the following are equivalent:

1. (bound obtained): The variety V is such that equality holds in (9.2).

2. (interpolation): If given, for each 1 ≤ i ≤ k, an n-ary partial opera-
tion hi : S

n
i → Si, with supp(hi) = Ui then there exists an n-ary term t

in the language of V such that tSi(u) = hi(u) for every 1 ≤ i ≤ k and
u ∈ Ui.
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3. (algebraic): V is congruence permutable and congruence distributive.

4. (computational): Suppose X ′ = {x1, x2, x3} with S3 = {S′1, . . . ,S′k′}
a transversal with respect to ∼= of the 3-generated subdirectly irreducible
algebras in V. Let U ′ be a transversal with respect to ∼ of val(X ′,S3).
Then,

|Ge(X ′, U ′)| =
k′∏
i=1

|S ′i|
|val(X′,S′i)|
|Aut S′

i
| .

Proof. The first display is Corollary 2.10 and Remark 2.11. The inequality
in (9.1) is Corollary 3.10 with C = {0Si , 1Si}. The equality is from Remark
3.2.

If each Si is simple, then (9.2) follows from (9.1) and Proposition 9.1 since
a minimal transversal with respect to � of (val(X,Sn),�) is a transversal
with respect to ∼ of val(X,Sn).

We use Theorem 7.1 for the proof of the ‘Moreover’. (1) implies (2) as in
Theorem 7.1 since every n-ary partial operation preserves 0Si and 1Si . That
(2) implies (3) is immediate from the corresponding parts of Theorem 7.1.
For (4) implies (3) we observe that if (4) holds, then (1) of Theorem 7.1 holds
for n = 3. Thus (3) of Theorem 7.1 holds, which gives (3).

We conclude the proof by showing (3) implies (4). Let X ′, S3, and U ′

be as in the computational condition (4). Then Ge(X ′, U ′) is subdirectly
embedded in

k′∏
i=1

|S ′i|
|val(X,S′i)|
|Aut S′

i
|

as in Proposition 9.1. By hypothesis V is congruence permutable so by a
result of Foster and Pixley [9, Theorem 2.4] for all v 6= w ∈ U ′ the algebra
SgAlg(v)×Alg(w)(vw) is isomorphic to Alg(v)×Alg(w) or Alg(v) or Alg(w).
If, say, SgAlg(v)×Alg(w)(vw) ∼= Alg(w), then by Lemma 2.6 there is homomor-
phism from Alg(w) onto Alg(v) mapping w to v, which is impossible since
Alg(w) is simple and U ′ is a transversal with respect to ∼. Hence

Ge(X ′, U ′)|{v,w} = SgAlg(v)×Alg(w)(vw) = Alg(v)×Alg(w)

for all v 6= w in U ′. By hypothesis the variety V is arithmetical and thus has
a majority term. Then

Ge(X ′, U ′) ∼=
k′∏
i=1

|S ′i|
|val(X,S′i)|
|Aut S′

i
|
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by the Baker-Pixley Theorem as in Lemma 5.1.

9.2 Valuations and inclusion-exclusion

This subsection is devoted to the actual computation of the cardinality of
Ω(A, C, U) by means of the formula in Remark 3.2. In this formula we have
|X| = n. The index ` runs from 0 to m+1. The four main parameters are the
cardinalities of the congruence classes A(i1 . . . i`) of the congruence relation
θ`; the cardinalities of the equivalence classes U(j1 . . . js) of the equivalence
relation ≡`; the number r(i1 . . . r`−1) of θ` congruence classes contained in
A(i1 . . . i`−1); and the number s(j1 . . . j`−1) of equivalence classes of ≡` con-
tained in U(j1 . . . j`−1).

The congruence relations θ`, for 0 ≤ ` ≤ m+ 1, as well as the congruence
classes A(i1 . . . i`) of each θ` are considered as given as are the cardinalities of
these congruence classes. The value of each r(i1 . . . i`), which is the number
of congruence classes of θ`+1 contained in the congruence class A(i1 . . . i`), is
also considered as given. The total number of congruence classes of θ0 is 1,
of θ1 is r(ε), and for 2 ≤ ` ≤ m+ 1 is easily seen to be

r(ε)∑
i1=1

r(i1)∑
i2=1

· · ·
r(i1...i`−2)∑
i`−1=1

r(i1 . . . i`−1).

In order to consider the cardinalities of the U(j1 . . . j`) we introduce some
notation for arguments involving inclusion-exclusion.

For finite sets S and T1, . . . , Tk let T denote {T1, . . . , Tk} and let Inx(S, T )
denote the set S \

⋃k
i=1 Ti. The cardinality of Inx(S, T ) is denoted inx(S, T ).

For ∅ 6= D ⊆ {1, . . . , k} let TD = (
⋂
d∈D Td)∩S and let T∅ = S. In particular,

T{d} = Td ∩ S. With this notation the inclusion-exclusion formula provides
the following expression for the cardinality of Inx(S, T ):

inx(S, T ) =
∑

D⊆{1,...,k}

(−1)|D||TD|.

Thus, the value of inx(S, T ) is determined by the cardinalities of S and all
of the

⋂
d∈D Td ∩ S.

In what follows,M denotes the set {M1, . . . ,Mk} of universes of maximal
proper subalgebras of a finite algebra A. Suppose w ∈ W ⊆ AX . Then
w ∈ W is in val(X,A) if and only if w 6∈ Mn

i for all 1 ≤ i ≤ k. Let
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Mn = {Mn
1 , . . . ,M

n
k }. Thus W ∩ val(X,A) = Inx(W,Mn) and the number

of valuations in W is inx(W,Mn).
Suppose U(j1 . . . j`) ⊆ U ⊆ val(X,A) is an equivalence class of ≡` and

let h ∈ Ω(A, C, U)U(j1...j`). Then h is θ`-constant by Lemma 3.7 and there
exist congruence classes A(ip1 . . . ip`) of θ` for 1 ≤ p ≤ n such that

Ω(A, C, U)|U(j1...j`) ⊆
n∏
p=1

A(ip1 . . . ip`) \
k⋃
q=1

MX
q .

Thus an upper bound for |U(j1 . . . j`)| is inx(
∏n

p=1A(ip1 . . . ip`),Mn).
If U is all of val(X,A) and if v ∈

∏n
p=1A(ip1 . . . ip`) is a valuation, then

v ∈ U(j1 . . . j`). In this case

|U(j1 . . . j`)| = inx
( n∏
p=1

A(ip1 . . . ip`),Mn

)
=

∑
D⊆{1,...k}

(−1)|D|
∣∣(⋂
d∈D

Mn
d

)⋂ n∏
p=1

A(ip1 . . . ip`)
∣∣

=
∑

D⊆{1,...k}

(−1)|D|
n∏
p=1

∣∣(⋂
d∈D

Md

)⋂
A(ip1 . . . ip`)

∣∣. (9.3)

We now consider for U ⊆ val(X,A) the number s(j1 . . . j`) of ≡`+1

classes contained in U(j1 . . . j`). Suppose U(j1 . . . j`) ⊆
∏n

p=1A(ip1 . . . ip`).
The ≡`+1 equivalence classes in U(j1 . . . j`) are U(j1 . . . j`j`+1) for 1 ≤ j`+1 ≤
s(j1 . . . j`). For each p, with 1 ≤ p ≤ n, there exists ip, `+1 with 1 ≤ ip, `+1 ≤
r(ip1 . . . ip`) such that U(j1 . . . j`j`+1) ⊆

∏n
p=1A(ip1 . . . ip`ip, `+1). Thus

s(j1 . . . j`) ≤
n∏
p=1

r(ip1 . . . ip`).

This upper bound can be improved upon by including in the count only
those

∏n
p=1A(ip1 . . . ip` ip, `+1) that contain at least one valuation. That is,

those for which inx(
∏n

p=1A(ip1 . . . ip` ip, `+1),Mn) ≥ 1. Let sgn denote the
signum function, that is, sgn(x) = 1, 0, or−1 if x is positive, zero, or negative,
respectively. Suppose U(j1 . . . j`) ⊆

∏n
p=1A(ip1 . . . ip`). Then

s(j1 . . . j`) ≤
∑

(i1, `+1,...,in, `+1)

1≤ip, `+1≤r(ip1...ip`)

sgn
(

inx
( n∏
p=1

A(ip1 . . . ip`ip, `+1),Mn

))
. (9.4)
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In the event that U = val(X,A) the inequality in this expression becomes
an equality.

An upper bound for the cardinality of Ω(A, C, U) may be obtained using
the upper bounds on U(j1 . . . j`) and s(j1 . . . j`) given above. But further
sharpening of this upper bound would, in general, require additional details
about the set U ⊆ val(X,A). However, if U consists of all of val(X,A), then
the value of |U(j1 . . . jm)| is presented in (9.3) and the value of s(j1 . . . j`) is
given by the upper bound in (9.4). Together, they provide an expression for
the cardinality of Ω(A, C, val(X,A)) when used in (3.1) of Remark 3.2.

As an example, consider the case of a finite rigid algebra A with Con A =
{1A = θ0 > θ1 > θ2 = 0A}. Suppose M = {M1, . . . ,Mk} is the set of
universes of the maximal proper subalgebras of A. A transversal with respect
to ∼ of val(X,A) is all of val(X,A) since A is rigid. Then

|L(n,A)| ≤ |Ω(A,Con A, val(X,A))| =
s(ε)∏
j1=1

r(ε)∑
i1=1

|A(i1)||U(j1)| =

∏
(q1,...,qn)∈{1,...,r(ε)}n

inx(
∏n
p=1 A(qp),Mn)>0

r(ε)∑
i1=1

|A(i1)|inx(
∏n
p=1 A(qp),Mn).

9.3 Rigid algebras with no proper subalgebras

The computation of |Ω(A, C, U)| is of particular interest in the case that
U = AX . This would be the case if U were the transversal with respect
to ∼ for an algebra A that is rigid and has no proper subalgebras. For
such an algebra |Ω(A, C, AX)| may be computed as follows: If U(j1 . . . j`) ⊆∏n

p=1A(ip1 . . . ip`), then equality must hold and the cardinality of U(j1 . . . j`)
is
∏n

p=1 |A(ip1 . . . ip`)|. The number s(j1 . . . jl) of ≡`+1 classes in U(j1 . . . j`)
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is
∏n

p=1 r(ip1 . . . ip`). Then

|Ω(A, C, AX)| =
∏

(i11,...,in1)
1≤ip1≤r(ε)
1≤p≤n

r(ε)∑
i1=1

∏
(i12,...,in2)

1≤ip2≤r(ip1)
1≤p≤n

r(i1)∑
i2=1

∏
(i13,...,in3)

1≤ip3≤r(ip1ip2)
1≤p≤n

r(i1i2)∑
i3=1

. . .

∏
(i1m,...,inm)

1≤ipm≤r(ip1ip2...ip,m−1)
1≤p≤n

r(i1i2...im−1)∑
im=1

|A(i1 . . . im)|
∏n
p=1 |A(ip1...ipm)|. (9.5)

If A is an algebra whose set of term operations consists of all finitary
operations on A that preserve every equivalence relation θ` ∈ C, then A is
rigid and has no proper subalgebras. Since A has no proper subalgebras,
L(n,A) ∼= FV(A)(n) for all n. The congruence lattice of A is the chain C
by [15]. The algebra is hence congruence primal (also called hemiprimal).
Section 3.4 of [11] contains some fundamental results on congruence primal
and related algebras. As observed in the paragraph before Theorem 5.3,
there is a Pixley operation that preserves every equivalence relation in C.
By Jónsson’s Theorem the subdirectly irreducible algebras in V(A) are the
algebras A/θ` for 1 ≤ ` ≤ m+ 1. Hence the hypotheses of Theorem 7.1 hold
for V(A).

Condition 2 of Theorem 4.1 holds with U = AX and all n since every
partial operation with support U is in fact a total operation on A. Therefore
by Remark 7.2 the four equivalent conditions of 7.1 hold for this variety and
we conclude that the values of |L(n,A)| and |FV(A)(n)| are given by the
expression in (9.5).

For example, if A is the algebra whose term operations consist of all
operations on A that preserve a single equivalence relation θ1 of A, then
(9.5) applies with m = 1 and yields

|L(n,A)| = |FV(A)(n)| =
∏

(q1,...,qn)∈{1,...,r(ε)}n

r(ε)∑
i=1

|A(i)||A(q1)|×···×|A(qn)|.

Let r denote r(ε). For each r-tuple (n1, . . . , nr) of non-negative integers
that sum to n assign all those n-tuples (q1, . . . , qn) ∈ {1, . . . , r}n for which the
number of coordinates that have value q is nq. If (q1, . . . , qn) and (q′1, . . . , q

′
n)
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are assigned to the same (n1, . . . , nr), then |A(q1)|× · · ·× |A(qn)| = |A(q′1)|×
· · · × |A(q′n)|. Since there are

(
n

n1...nr

)
n-tuples assigned to (n1, . . . , nr), the

expression may be rewritten as

∏
n1+···+nr=n
0≤nq≤n

(
r∑
i=1

|A(i)|
∏r
q=1 |A(q)|

nq

)( n
n1...nr

)

.

This formula for the free spectrum of V(A) is given in [7].
We next consider Ω(A, C, U) in the case that the algebra A is congruence

uniform. Then for each 0 ≤ ` ≤ m there are integers c` and r` such that
|A(i1 . . . i`)| = c` for all θ` classes and r(i1 . . . i`) = r`. In particular, c0 = |A|
and cm+1 = 1. We have r` = c`/c`+1 and r` is the index of the equivalence
relation θ`+1 when restricted to a θ` class. Note that cm = rm.

Suppose for this algebra A and for every 0 ≤ ` ≤ m there are integers
d` and s` for which all ≡` classes U(j1 . . . j`) have cardinality d` and have
s(j1 . . . j`) = s`. Then s` is in fact d`/d`+1 and dm = sm. Note that the
product s0 . . . s` = d0/d`+1, which is the index of the equivalence relation
≡`+1 in the set U . Then from Remark 3.2 we have

|Ω(A, C, U)| = (r0(r1(. . . (rm−2(rm−1c
dm
m )sm−1)sm−2 . . . )s2)s1)s0 =

rs00 r
s0s1
1 . . . r

s0...sm−2

m−2 r
s0...sm−1

m−1 cdms0...sm−1
m =

m∏
`=0

rs0...s`` =
m∏
`=0

r
d0/d`+1

` . (9.6)

An example of an algebra A for which the d` an s` exist as in (9.6) would
be a congruence uniform algebra that is rigid and has no proper subalgebras.

Theorem 9.3. Let A be a finite set and suppose

C = {1A = θ0 > θ1 > · · · > θm > θm+1 = 0A}

is a chain of uniform equivalence relations on A with the blocks of θ` having
cardinality c` for each 0 ≤ ` ≤ m + 1. If A is any algebra on A with
Con A = C that is rigid and has no proper subalgebras, then for every n

|L(n,A)| = |FV(A)(n)| ≤ |Ω(A, C, AX)| =
m∏
`=0

(c`/c`+1)
(|A|/c`+1)

n

.

Moreover, there exist algebras A with Con A = C for which |L(n,A)| =
|Ω(A, C, AX)| holds for every n ≥ 0 and hence for which all four conditions
of Theorem 7.1 hold.
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Proof. Any transversal with respect to ∼ of val(X,A) is AX since A is rigid
and has no proper subalgebras. Hence both L(n,A) and FV(A)(n) are iso-
morphic to Ge(X,AX). Therefore the first equality holds. The inequality
is from Corollary 3.11. Since A is congruence uniform and the equivalence
relations ≡` partition the entire set AX , it follows that each ≡` is also uni-
form with |U(j1 . . . j`)| = cn` . So the second equality follows from (9.6). As
observed in the two paragraphs following (9.5), if A is an algebra whose term
operations are all finitary operations on A that preserve all the θi ∈ C, then
all four conditions of Theorem 7.1 hold for the variety V(A) and for all n.
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