ABSTRACT

We investigate how to reconstruct social networks from voting data. In particular, given a voting model that considers social network structure, we aim to find the network that best explains the agents’ votes. We study two plausible voting models, one edge-centric and the other vertex-centric.

For these models, we give algorithms and lower bounds, characterizing cases where network recovery is possible and where it is computationally difficult. We also test our algorithms on United States Senate data.

Despite the similarity of the two models, we show that their respective network recovery problems differ in complexity and involve distinct algorithmic challenges. Moreover, the networks produced when working under these models can also differ significantly. These results indicate that great care should be exercised when choosing a voting model for network recovery tasks.

1. INTRODUCTION

One approach to investigating voting data assumes that agents’ votes are independent of one another, conditioned on some underlying (sometimes probabilistic) model of ground truth. This is usually an unrealistic assumption, leading to a more recent line of inquiry which asks how the social network structure of the voters affects the relationship between votes. Each agent in a social network expresses a position (votes for or against a bill, prefers one brand over another, etc.) that is influenced by their social connections. In this view, it is possible to detect the organization and evolution of voting communities by looking at the social network structure. The literature on congressional and political voting networks focuses on detecting community structure, partisanship, and evolutionary dynamics [1, 9, 15, 20, 21], while the literature on idea propagation investigates how to best maximize the spread of ideas through a population [3, 10].

However, it is often not necessarily clear how to build this social network graph. For example, Macon et al. give a few different variants on how to define the social network of the voters of the United Nations [11]. In this approach, different graphs may reveal different aspects of the social network structure.

This corresponds neatly with a typical view in social choice theory that votes are manifestations of subjective preferences. At the other extreme, a voter votes according to a noisy estimate of the ground-truth qualities of the possible choices on which he or she is voting. While both are over-simplified extremes, it is useful to consider the extremes in order to investigate their consequences [4].

In this paper, as in previous work, we assume there is a fixed probabilistic model which is used to determine the relationship between initial preferences for the possible choices and how each individual ends up voting for those choices. This probabilistic model takes into account the social network structure in which the voters are embedded.

In this approach, it is typically assumed that the social network of the voters is known. The goal is then to find the correct choice from votes, as tackled by Conitzer and then others [4, 16, 19]. This can be made more difficult depending on the structure of a social network, which may enforce the wrong choice by aggregating individual opinions over dense subgraphs, leading voters with low degree to possibly change their mind to the majority view of the subgraph.

In practice, the social network is usually not known and it is not necessarily clear how to infer the graph. In this paper, we tackle the problem of inferring the social network from the votes alone. We discuss two similar but distinct voting models in the vein of Conitzer [4], and show how to recover the graph given the votes under these voting models and under several notions of what it means to recover the graph. We show that your ability to learn the graph from the votes is highly dependent on the underlying voting model - in some settings, it is computationally hard to do but not in others. Moreover, we demonstrate that the resulting learned graphs can differ significantly depending on which underlying voting model is assumed.

2. MODELS AND RESULTS

We give results for two similar models: an edge-centric model, which Conitzer calls the independent conversation model [4], and a vertex-centric model, introduced in this paper, which we will call the common neighbor model.

Similar to some existing models, the common neighbor model is, for instance, equivalent to the “deterministic binary majority process” run for one step (where the initial assignment is random). This process was examined by Goles and Olivos [6] and related work, e.g. by Frischknecht et al. [5], and it has been used in the press to illustrate the disproportionate influence of certain voters [17]. The models we consider herein also resemble settings in multiple previous works, e.g. by Grabisch and Rusinowska [7], Grandi et al. [8], and Schwind et al. [15].

In both of our models, there is an unknown simple undirected graph G on n vertices. Each vertex is an agent, who can vote ”1” or ”$−1$”. Both models describe how each agent votes in one round of voting. We consider m rounds of voting and in each round every
vertex votes, leading to a sequence of vote sets \(V^{[m]} = V_1, \ldots, V_m \), where each \(V_i \) is the set of votes from all voters. The problem is to recover \(G \) from \(V^{[m]} \).

First, we define the independent conversation model, a two-step process where edges represent conversations between voting agents, and each agent votes according to the majority outcome of his conversations.

Definition 1 (Independent Conversation Model). First, each edge flips a coin i.i.d. that with probability \(p \) is 1 and with probability \((1 - p) \) is \(-1\). Then each vertex votes according to the majority of its adjacent edges’ preferences. If there is a tie, then it is broken in favor of voting 1 with probability \(q \) and \(-1\) with probability \(1 - q \).

This process is depicted for a particular graph in Figure 1. Note that the set of votes \(V_i \) only includes the final votes, not the initial preferences.

![Figure 1](image1.png)

Figure 1: Left: the outcome of pairwise “conversations” between connected neighbors. Right: the resulting votes. For simplicity, the edge probabilities are not depicted.

The common neighbor model is similar, except here the initial preferences are on the vertices, not the edges:

Definition 2 (Common Neighbor Model). Each vertex initially flips a coin i.i.d. that with probability \(p \) is 1 and with probability \(1 - p \) is \(-1\). Then each vertex votes 1 if more adjacent vertices’ initial preferences were 1 then \(-1\) and vice versa. If there is a tie, then it is broken in favor of voting 1 with some probability \(q \) and \(-1\) with probability \(1 - q \).

This process is illustrated in Figure 2.

![Figure 2](image2.png)

Figure 2: Left: the initial preferences of the nodes. Right: the resulting votes. For simplicity, the preference probabilities are not depicted.

It is straightforward to see how they are different. In the independent conversation model, two vertices’ votes are independent of each other if and only if they do not share an edge, while in the common neighbor model, they are independent if and only if they have no common neighbors.

Our main contribution consists of algorithms to recover the hidden graph \(G \) from the votes, lower bounds, and experiments for both models.

Our results span a few different notions of what it means to recover the unknown graph. First, we ask whether there exists a polynomial-time algorithm that succeeds with high probability (given only a polynomial number of votes in the number of voters) in finding the unknown graph \(G \) when the votes were drawn from \(G \). The algorithm must take time polynomial in both the number of votes given as input and the number of vertices. We refer to this as exact learning. We show the following:

Result 1. In the independent conversation model, there is a polynomial-time algorithm that exactly learns the unknown graph when \(p = 1/2 \) (with high probability). Moreover, for constant \(p \neq 1/2 \), an exponential number of votes are required to exactly learn the graph. (See Observation 1 and Theorem 2)

Our algorithm is a statistical test for edges between pairs of vertices by calculating sample covariances of their votes, which here measures how likely it is that two voters vote the same way. This is very similar to how voting networks are often constructed in the literature [2, 11, 20]. This result can then be seen as a formal motivation for why this type of method should be used.

Result 2. In the common neighbor model, no algorithm can exactly recover the unknown graph. (See Observation 3)

The above two results motivate us to consider other notions of what it means to recover the graph because the graph is generally not recoverable efficiently here. Moreover, in a setting where there is not necessarily a ground-truth graph from which the votes were drawn, we are still interested in finding a graph that explains the votes.

We make this precise by asking for the maximum likelihood estimator (MLE) graph, that graph that maximizes the probability of the observed votes over the distribution of votes induced by a fixed voting model. As is standard for the maximum likelihood estimator, we assume that the prior over graphs is uniform. We refer to this as maximum likelihood learning. Under this model of learning, votes do not necessarily need to come from any particular hidden graph. Nevertheless, the goal is to produce the MLE graph under a voting model for a set of input votes regardless of where the votes came from.

Result 3. In the independent conversation model, there is a polynomial-time bounded-probability random reduction from a \#P-complete problem to finding the likelihood of the MLE graph. However, if enough votes are drawn from a hidden graph \(G \) when \(p = 1/2 \), there is a polynomial-time algorithm that finds the MLE graph on the votes with high probability. (See Theorem 5 and Theorem 7)

This lower bound is an indication that computing the likelihood of the MLE graph is difficult, since if there were an efficient algorithm to compute this quantity then there would be an efficient algorithm to solve a \#P-complete problem that succeeds with high probability.

On the other hand, merely trying to find the MLE graph is possible, at least if there is enough votes given as input (specifically, for \(n \) voters, order \(n^4 \) votes suffices).

In the common neighbor model, we investigate a third approach to finding a graph that explains the votes. Given that we recover graphs in the independent conversation model using covariances between votes, it is natural to ask whether it is possible to find a graph whose expected covariances are close to the observed covariances in the common neighbor model. We show that even if you were to know the expected covariances exactly, it would still be computationally difficult to find such a graph.

Result 4. For the common neighbor model, finding a graph with given expected covariances between votes is at least as hard as
recovering an adjacency matrix from its square. Moreover, a generalization of this problem, namely the generalized squared adjacency problem, is NP-hard. (See Observation 9 and Theorem 11)

The squared adjacency problem and its generalized version are defined as follows:

Definition 3. The input for the squared adjacency matrix problem is a matrix B, and the decision problem asks if there is an adjacency matrix A of a simple graph such that $A^2 = B$.

Definition 4. The input for the generalized squared adjacency problem is a collection of n^2 sets $S_{i,j}$, and the decision problem asks if there is a simple graph whose adjacency matrix is A such that $A^2_j \in S_{i,j}$ for each entry A^2_j of A^2.

To the best of our knowledge, the squared adjacency matrix problem is not known to be NP-hard nor is it known to be in P. It is a difficult open problem in its own right, and other versions of it have been proven NP-hard [12]. It is equivalent to the special case of the generalized version where the set sizes are exactly one.

3. THE INDEPENDENT CONVERSATION MODEL

In this section, we show when there is a algorithm to recover the hidden graph. We will also show that it is hard to find the likelihood of the maximum likelihood graph for an input sequence of votes. Before we present those two results, we start with the following observation:

Observation 1. For constant $p \neq 1/2$, under the independent conversation model, it takes exponentially many votes to distinguish with high probability between the complete graph and the complete graph minus an edge.

This follows directly from the fact that in both the complete graph and the complete graph minus an edge, if $p \neq 1/2$, with exponentially high probability every voter will vote 1. Our only hope is that it becomes possible to recover the graph G when $p = 1/2$, which we show to be the case.

3.1 An algorithm for $p = 1/2$

In this section, we prove the following:

Theorem 2. Let $p = q = 1/2$. For any graph G on n vertices and $\delta > 0$, if $m = \Omega \left(n^2 \left(\ln n + \ln \frac{1}{\delta}\right)\right)$ votes are drawn from G under the independent conversation model, there is a polynomial-time algorithm that will recover G with probability at least $1 - \delta$.

Let $X_u \in \{1, -1\}$ be the random variable representing the output vote of vertex u, so $X_u = 1$ if u votes 1 and -1 otherwise. Now consider two vertices u and v. The votes of u and v are independent if and only if (u, v) is not an edge. This yields a natural approach to determining if (u, v) is an edge of G: measure the sample covariance between the votes of u and v and if this covariance is sufficiently far away from zero, there must be an edge.

To formalize this, we need to calculate the covariance between X_u and X_v if there is an edge between them:

Lemma 3. For any edge (u, v) of G, let d_u and d_v be the degrees of u and v. For convenience, let $\rho = (1 - 2p)q + p$. Then $Cov(X_u, X_v)$ is

$$
\begin{align*}
4p^2 \mathbb{E} \left(\mathbb{E} \left(d_u d_v \right) (p - 1) \right) &+ 4p^2 \mathbb{E} \left(\mathbb{E} \left(d_u d_v \right) (p - 1) \right) \\
4p^2 \mathbb{E} \left(\mathbb{E} \left(d_u d_v \right) (p - 1) \right) &+ 4p^2 \mathbb{E} \left(\mathbb{E} \left(d_u d_v \right) (p - 1) \right)
\end{align*}
$$

Proof. Consider an edge $(u, v) \in E(G)$. Since u and v vote independently given the vote of the edge (u, v), we will write the probability that each of these vertices votes 1 given the edge vote.

Namely, call $P_u = \mathbb{P}(X_u = 1 \mid \text{edge } (u, v) \text{ votes 1})$ and $P_u^{-1} = \mathbb{P}(X_u = 1 \mid \text{edge } (u, v) \text{ votes -1})$, and similarly P_v, P_v^{-1} the analogous probabilities for v.

We can write the covariance in terms of these four probabilities:

$$
Cov(X_u, X_v) = 4p(1-p)(P_u P_v^{-1} - P_u^{-1} P_v)
$$

To show this, it suffices to write the covariance as a function of the joint probabilities $P(X_u = 1, X_v = 1)$, etc., and then write each joint probability as a function of the probabilities that a vertex votes 1 given that the adjacent edge votes. For example, by conditioning on the vote of edge (u, v),

$$
P(X_u = 1, X_v = 1) = pP_u P_v + (1-p)P_u^{-1} P_v^{-1}
$$

The others are similar.

To complete the proof, all we need are formulae for P_u and P_u^{-1}, (P_v and P_v^{-1} are calculated analogously). This is done by choosing edges to form the majority vote of u’s neighborhood.

Recall $d(u) - 1$ and $d(v) - 1$ are the degrees of u and v, respectively, minus 1 (in order to discount the edge (u, v)). We then have

$$
P_u = \begin{cases}
\sum_{i=0}^{d(u) - 2} \frac{d(u)!}{d(u)^i (d(u) - i)!} & \text{even } d(u) \\
\sum_{i=0}^{d(u) - 2} \frac{d(u)!}{d(u)^i (d(u) - i)!} & \text{odd } d(u).
\end{cases}
$$

and

$$
P_u^{-1} = \begin{cases}
\sum_{i=0}^{d(u) - 2} \frac{d(u)!}{d(u)^i (d(u) - i)!} & \text{even } d(u) \\
\sum_{i=0}^{d(u) - 2} \frac{d(u)!}{d(u)^i (d(u) - i)!} & \text{odd } d(u).
\end{cases}
$$

The statement of the lemma then follows.

In the case where $p = 1/2$, the covariance will be sufficiently large; namely that it will be $\Omega(1/n)$, where n is the number of vertices of G:

Corollary 4. When $p = 1/2$ and (u, v) is an edge of G,

$$
Cov(X_u, X_v) \geq \frac{1}{2n} \geq \frac{1}{2\pi n}.
$$

Proof. We simplify the formula for the covariance derived in Lemma 3 by giving lower bounds for the central binomial coefficients, from which the result immediately follows: For any positive integer k, the central binomial coefficient(s) satisfy

$$
\binom{k}{\lfloor k/2 \rfloor} \geq \frac{2^k}{\sqrt{\pi k}}.
$$

These lower bounds follow from Sterling’s approximation $k! = \sqrt{2\pi k} \left(\frac{k}{e}\right)^k (1 + O \left(\frac{1}{k}\right))$.
Note this lower bound was only polynomial in $1/n$ because $p = 1/2$; otherwise, the exponential term $(p(1-p))^m$, for p constant, ensures that the covariance goes to 0 exponentially quickly in n.

We are now ready to prove Theorem 2, which uses the Hoeffding bound to establish that the sample covariance converges quickly enough to its expectation, which if there is an edge is given in Lemma 3 and if there is no edge is just 0.

Proof of Theorem 2 Recall that in the independent conversation model, we are given m votes $X_{u,i} \overset{i.i.d.}{\sim} X_u$ for $i = 1, \ldots, m$ and all u in G, where X_u is the $\{-1, 1\}$-valued random variable found by taking the majority vote of the initial votes of u’s neighborhood.

For $p = q = 1/2$, $E(X_u) = 0$ for each vertex u, which means that $Cov(X_v, X_u) = E(X_u X_v)$. This means that the sample covariance between u and v is

$$C_{u,v}^m = \frac{1}{m} \sum_{i=1}^{m} X_{u,i} X_{v,i}.$$

The algorithm to recover G from the m votes is straightforward: For each pair of vertices u, v, calculate the sample covariance $C_{u,v}^m$. If $C_{u,v}^m > \frac{4}{\pi^2}$, then the algorithm claims there is an edge between u and v, and otherwise, the algorithm claims there is no such edge.

We call this the covariance test. It suffices to show that the probability that the covariance test is wrong is low. Using Corollary 4 we get for edge (u, v),

$$\Pr\left(C_{u,v}^m < \frac{1}{4\pi n} \right) \leq \Pr\left(C_{u,v}^m - E(C_{u,v}^m) < -\frac{1}{4\pi n} \right),$$

and for $(u, v) \notin E(G)$,

$$\Pr\left(C_{u,v}^m > \frac{4}{\pi^2} \right) = \Pr\left(C_{u,v}^m - E(C_{u,v}^m) > \frac{4}{\pi^2} \right).$$

By the Hoeffding bound each of these two terms is bounded above by $e^{-\frac{m}{\pi^2}}$ for some constant c.

Let G' be the network inferred by the above algorithm. Then the probability that G' is not G is no more than

$$\sum_{u,v \in E} \Pr\left(C_{u,v}^m < \frac{1}{4\pi n} \right) + \sum_{u,v \notin E} \Pr\left(C_{u,v}^m > \frac{4}{\pi^2} \right),$$

which is bounded from above by $\binom{n}{2} e^{-\frac{m}{\pi^2}}$.

Hence, for any $\delta > 0$, setting $m = \Omega\left(n^2 \left(n^2 + \ln \frac{1}{\delta} \right) \right)$ suffices so that $\binom{n}{2} e^{-\frac{m}{\pi^2}} < \delta$. \hfill \Box

3.2 Moving from exact learning to maximum likelihood learning

In the previous section, we showed that exact learning is possible when $p = q = 1/2$. We now show that it is possible to not only exactly learn the graph, but also find the maximum likelihood graph for the votes when $p = q = 1/2$, assuming we are given enough data. Recall the maximum likelihood graph (which we will also refer to as the MLE graph) is the graph that maximizes the probability of the observed votes over the distribution of votes.

Theorem 5. Let $p = q = 1/2$. For any graph G on n vertices and $\delta > 0$, if $m = \Omega\left(n^2 (n^2 + \ln \frac{1}{\delta}) \right)$ votes are drawn from G under the independent conversation model, there is a polynomial-time algorithm that will find the maximum likelihood graph on the drawn votes with probability at least $1 - \delta$.

In other words, if the votes really do come from a hidden graph and we are given order n^4 votes, we can find the maximum likelihood graph. Specifically, what we show is that if you are given this many votes from a hidden graph, then the MLE graph is the hidden graph with high probability. The proof of Theorem 5 then follows from applying Theorem 2 i.e. using the covariance test to find the hidden graph, which is the MLE graph. This moves a statement about exact learning to a statement about maximum likelihood learning.

We now prove (Lemma 9) that the MLE graph is the hidden graph for a sufficiently large set of votes drawn from a hidden graph. Indeed, we show something stronger: the hidden graph will be more likely (under this model) than any other graph by an arbitrarily large factor α (where the number of votes given as input needs to increase logarithmically in α). This stronger result will also be needed for the proof of Theorem 7.

The statement of this will need some notation: For any graph G on n vertices, let \mathcal{V}_G be the distribution over a set of n votes induced by G under the independent conversation model for $p = q = 1/2$. For convenience we will denote the product distribution $\mathcal{V}_G \times \ldots \times \mathcal{V}_G$ as $\mathcal{V}_G^{[m]}$. That is, for any vote $V \in \{-1, 1\}^n$, $\mathcal{V}_G(V) = \mathbb{P}(V(G))$ is the probability mass of V under \mathcal{V}_G. Similarly, for a sequence of votes $V^{[m]}, \mathbb{P}_{\mathcal{V}_G^{[m]}}(V^{[m]}) = \mathbb{P}(V^{[m]}|G)$ is the probability mass of $V^{[m]}$ under $\mathcal{V}_G^{[m]}$.

Lemma 6. For $\delta > 0$, $\alpha > 1$,

$$\mathbb{P}_{\mathcal{V}_G^{[m]}}(V^{[m]}|G) \leq \alpha \max_{G' \neq G} \mathbb{P}_{\mathcal{V}_G^{[m]}}(V^{[m]}|G') < \delta,$$

for $m = \Omega\left(n^2 (n^2 + \ln \frac{1}{\delta} + \ln \alpha) \right)$.

Proof. Fix $\alpha > 1$ and denote by E the event that

$$\max_{G' \neq G} \mathbb{P}(V^{[m]}|G') \geq \frac{1}{\alpha}.$$

(If $\mathbb{P}(V^{[m]}|G) = 0$, then this event occurs, so we can safely assume the converse.) The idea of this proof is that we will show the probability of E happening is small by conditioning on what the vote sequence $V^{[m]}$ looks like when drawn from G. Specifically, in the proof of Theorem 2 we showed that the covariance test would have successfully found G with high probability, so we condition on this happening.

Fix a graph $G' \neq G$. If we want to show that the probability that $V^{[m]}$ is pulled from G' (instead of G) is sufficiently small, the covariance test failed if $V^{[m]}$ were pulled from G'; the covariance test returned G on $V^{[m]}$ instead of G'. And again, the probability that the covariance test failed is low, as showed in the proof of Theorem 2, so the probability that $V^{[m]}$ is pulled from G' must be small.

We denote the set of vote sequences for which the covariance test returns G by Φ_G. Using this notation, we condition on $V^{[m]}$ being in Φ_G or not and then get an immediate upper bound:

$$\mathbb{P}_{\mathcal{V}_G^{[m]}}(E) \leq \mathbb{P}_{\mathcal{V}_G^{[m]}}(E|V^{[m]} \in \Phi_G) + \mathbb{P}_{\mathcal{V}_G^{[m]}}(V^{[m]} \notin \Phi_G).$$

We then bound each of these two terms. The probability that the covariance test failed on $V^{[m]}$ is small: By inspecting the proof of Theorem 2 we have that for some constant c,

$$\mathbb{P}_{\mathcal{V}_G^{[m]}}(V^{[m]} \notin \Phi_G) \leq \left(\frac{n}{2}\right) e^{-\frac{m}{\pi^2}}. \tag{1}$$

Otherwise, the covariance test succeeded and we condition on $V^{[m]} \in \Phi_G$. We now show that

$$\mathbb{P}_{\mathcal{V}_G^{[m]}}(E|V^{[m]} \in \Phi_G) \leq \alpha \left(2\binom{n}{2} - 1\right) \left(\frac{n}{2}\right) e^{-\frac{m}{\pi^2}}. \tag{2}$$
Markov’s inequality gives
\[\Pr_{V_G}[\max_{G' \neq G} P(V[m]|G')] \leq \frac{1}{\alpha} \Pr_{V_G}[V[m] \in \Phi_G] \]
\[\leq \alpha \cdot \sum_{V[m] \in \Phi_G} \max_{G' \neq G} \Pr_{V_G}[V[m]|G'] \cdot \left| V[m] \in \Phi_G \right| . \]

It is then enough to expand this expected value using the definition to get that
\[\Pr_{V_G}[E|V[m] \in \Phi_G] \leq \alpha \sum_{V[m] \in \Phi_G} \max_{G' \neq G} \Pr_{V_G}[V[m]|G'] . \]

Now we group the terms of the sum by which graph \(G' \neq G \) maximizes the probability \(\Pr \left(V[m]|G' \right) \). There may be many terms in the sum that any one graph \(G' \) maximizes, but certainly each vote sequence associated with each term is in \(\Phi_G \). There are of course \(2^{|E|} - 1 \) such graphs, so
\[\sum_{V[m] \in \Phi_G} \max_{G' \neq G} \Pr_{V_G}[V[m]|G'] \leq \sum_{G' \neq G} \sum_{V[m] \in \Phi_G} \Pr_{V_G}[V[m]|G'] \]
\[= 2^{|E|} - 1 \Pr_{V_G}[V[m]|G'] \]

If \(V[m] \) were in \(\Phi_G \) but \(V[m] \) was pulled from \(G' \), then the covariance test has failed at returning \(G' \). So
\[\Pr \left(V[m] \in \Phi_G|G' \right) \leq \left(\frac{n}{2} \right) \cdot 2^{|E(G)|} \cdot e^{-\frac{\alpha m}{n}} , \]

implying Equation 2. Combining Equations 1 and 2 we get
\[\Pr_{V_G}[E|V[m] \in \Phi_G] \leq \alpha \left(\frac{n}{2} \right) \cdot 2^{|E(G)|} \cdot e^{-\frac{\alpha m}{n}} . \]

For \(\Pr_{V_G}[E] \) to be upper bounded by \(\delta > 0 \), it suffices to set
\[m = \Omega \left(\frac{n^2 \left(n^2 + \ln \frac{1}{\delta} + \ln \alpha \right)}{2} \right) . \]

3.3 Hardness of computing the MLE

As we have seen, when \(p = q = 1/2 \), distinguishing between graphs can be done in polynomial time. This might give hope that, in this case, computing the likelihood of the MLE graph, given a set of votes, may be easy. That is, given a graph \(G \) which is the maximum likelihood graph for a set of input votes \(V[m] \) over \(G \), we wish to compute \(\Pr(V[m]|G) \). Alas, we give hardness results indicating this is not easy to do.

We reduce from Conitzer’s problem of computing \(\Pr(V^*|G) \), where \(V^* \) is a vote produced by a given graph \(G \). He shows that this is a problem is \#P-hard by reducing from counting the number of perfect matchings in a bipartite graph. Surprisingly, our proof of this hardness result uses the easiness of finding the MLE graph in polynomial time in the case when \(p = q = 1/2 \). Namely, we use Lemma 4 to be able to say when the input \(G \) is the maximum likelihood graph for a set of votes \(V[m] \), which in turn says when the oracle will successfully compute \(\Pr(V[m]|G) \). Formally, we prove the following theorem:

Theorem 7. There is a randomized polynomial-time oracle reduction from computing the MLE of the maximum likelihood graph from a sequence of votes with high probability to counting the number of perfect matchings in a balanced bipartite graph.

\(^3\)While the problem Conitzer considers is slightly different than computing \(\Pr(V^*|G) \), in the case where \(p = 1/2 \), his problem reduces to computing \(\Pr(V^*|G) \).

Proof Sketch. It suffices to consider the case when \(p = q = 1/2 \). Instead of directly reducing from the \#P-hard problem of counting the number of perfect matchings in a balanced bipartite graph, we reduce from the \#P-hard problem of computing \(\Pr(V^*|G) \) given a graph \(G \) and vote \(V^* \) on \(n \) voters under the independent conversation model.

The idea of the proof is going to be to build a sequence of votes \(V[m] \) whose MLE we know to be the input \(G \), and then compute \(\Pr(V^*|G) \).

Our oracle will give us the values of the right-hand side. This approach will work if \(\Pr(V^*|G) \neq 0 \).

We first test for the case if \(\Pr(V^*|G) = 0 \). Conitzer provides a way to do this for a similar problem when the vertices of the graph have all odd degree: his reduction is from the maximum weighted \(b \)-matching problem, which we can adapt to the so-called “c-capacitated” version that we need [4].

Else, \(\Pr(V^*|G) \neq 0 \). We draw a sequence of votes \(V[m] \) i.i.d. \(V_0 \times \ldots \times V_G \). Lemma immediately implies that \(G \) will be the MLE for \(V[m] \) with failure probability less than \(\delta/2 \) when \(m = \Omega(n^2(n^2 + \ln \frac{1}{\delta})) \). In other words, with just \(\Omega(n) \) votes we will successfully query the oracle for \(\Pr(V[m]|G) \) with high probability.

It suffices to ensure that with high probability we will also successfully query the oracle for the \(m+1 \)-length sequence \(V[m+1] \). Recall that since \(\Pr(V^*|G) \) is the sum, over all satisfying edge votes, of the quantity \(\left(\frac{1}{2} \right)^{|E(G)|} \), \(E(G) \) is the edge set of \(G \) and \(p = 1/2 \). There must be at least one satisfying edge-vote assignment since \(\Pr(V^*|G) \neq 0 \), so \(\Pr(V^*|G) \geq \left(\frac{1}{2} \right)^{|E(G)|} \). In addition, again by Lemma 4, for any \(G' \neq G \) \(\Pr(V[m]|G') > \alpha \) with failure probability no more than \(\delta/2 \) when \(m = \Omega(n^2(n^2 + \ln 2 + \ln \alpha)) \). Then for any \(G' \neq G \),

\[\Pr(V[m], V^*|G') \leq \left(\frac{1}{\alpha} \Pr(V[m]|G) \right) \left(2^{|E(G)|} \Pr(V^*|G) \right) \]
\[= \frac{2^{|E(G)|}}{\alpha} \Pr(V[m], V^*|G) \]

Setting \(\alpha = \Omega(e^{\alpha^2}) \) suffices to ensure that \(\alpha > 2^{|E(G)|} \). Thus setting
\[m = \Omega(n^2(n^2 + \ln \frac{2}{\delta} + \ln \alpha)) \]
as above for this setting of \(\alpha \), a query to the oracle for \(\Pr(V[m], V^*|G) \) will fail with probability less than \(\delta/2 \). Setting \(\delta \) to be, say, \(\Theta(\frac{1}{\sqrt{n}}) \), yields that \(m = \Omega(n^4) \). The oracle reduction, once it tests for the existence of at least one valid edge vote, simply consists of drawing \(m \) votes from \(G \) and then querying the oracle for \(\Pr(V[m], V^*|G) \) and \(\Pr(V[m]|G) \). The reduction then succeeds with probability at least \(1 - \delta \).

4. THE COMMON NEIGHBOR MODEL

We now turn our attention to the common neighbor model. Again, we ask if it is possible to recover \(G \) by seeing only polynomially many votes. In general, it is not possible to recover \(G \) at all, let alone with only polynomially many votes:

Observation 8. Under the common neighbor model, no algorithm can distinguish between two different perfect matchings.

If \(G \) is a matching between the vertices, each vertex will vote how its neighbor votes, meaning that each vertex votes i.i.d. with
probability p regardless. Thus there is no way to distinguish between different matchings.

4.1 Recovering A^2 from covariances

Given the impossibility of recovering the graph, we relax the problem to the following: Find a graph that is likely to produce the given votes in the sense that the expected covariances of this graph should be as close as possible (under some norm) to the covariances of the observed votes. This problem is motivated by the algorithm for the independent conversation model which finds a graph whose expected covariances match the measured covariances.

Yet even if we were to know the expected covariances of the input votes, finding a graph whose expected covariances are close to those input covariances remains challenging:

Observation 9. For the common neighbor model, finding a graph with given expected vote covariances is at least as hard as recovering an adjacency matrix from its square.

To prove this observation, it suffices to show that the expected covariances are a function solely of the entries of A^2. Then recovering A from A^2 consists of using the entries of A^2 to compute the expected covariances, at which point the adjacency matrix of a graph with those covariances will be exactly A. The i, jth entry of A_{ij} is already 1; on the other hand if there aren’t enough remaining vertices to vote 1, then the probability of voting 1 is already 1; on the other hand if there aren’t enough remaining vertices to vote 1, then the probability of voting 1 is 0. This yields $P_{u,v}(k)$ as the probability that u votes 1 given that k common neighbors of u and v voted 1.

Now we can write

$$P(X_u = X_v = 1) = \sum_{k=0}^{d_{uv}} \binom{d_{uv}}{k} p^k (1-p)^{d_{uv}-k} P_{u,v}(k) P_{v,u}(k),$$

completing the proof.

When recovering a graph from a sequence of input votes, we are not even given the expected covariances of the input votes. Instead we can calculate the measured covariances, from which we can determine A^2. At this point, we have a function inversion problem on our hands: We can find A^2 merely by recovering these d_{uv}’s from the covariances, but given that the formula given in Lemma 10 is not closed, this is not trivial. Since there are only polynomially many possible values for d_{uv} and d_v, we can simply try all values to find the covariance closest to the observed value. However, there may be covariances that are exponentially close to each other, making it impossible to distinguish between these values for given d_{uv}, d_v. In this case the values recovered for the entries of A^2 may not be unique, which in the worst case leads to the generalized squared adjacency problem. Even in the case when we recover unique values, it still reduces to the squared adjacency problem.

While the squared adjacency problem is open, we show the following:

Theorem 11. The generalized squared adjacency problem is NP-hard.

Proof. The reduction is from CLIQUE, which asks if there is a clique of size k on the input graph. Given a graph $G = (V,E)$ and an integer k, we construct a set system $\{S_i\}$ of $(n + 1)^2$ sets, where $n = |V|$. We then show that G has a clique of size k if and only if there is a graph $G' = (V \cup \{v\}, E')$ such that the i,jth entry of $A(G')^2$ is in $S_{i,j}$, where $A(G')$ is the adjacency matrix of G'. The $(n + 1)^2$-sized set system $\{S_i\}$ is defined as follows:

$$S_{i,j} = \begin{cases} \{0, 1\} & \text{if } i \neq j \text{ and } j \neq v \text{ and } (i, j) \notin E(G) \\ \{0\} & \text{if } i \neq j \text{ and } j \neq v \text{ and } (i, j) \notin E(G) \\ \{0\} & \text{if } i = j = v \\ \{k\} & \text{if } i = j \neq v \\ \{0\} & \text{if } i = j \text{ and } i, j \neq v \end{cases}$$

Assume there is a clique of size k in G. Then G' is defined as follows: Denote the vertex set of the clique in G by C, G' will have an edge between v and all members of C, and no other edges. It is straightforward to check that the i,jth entry of $A(G')^2$ is in $S_{i,j}$ by noting that the diagonal entries of $A(G')^2$ are the vertices’ degrees and the off-diagonal entries counts the number of common neighbors.

In the other direction, assume there is such a graph G' whose squared adjacency matrix satisfies the constraints imposed by the set system $\{S_{i,j}\}$. In this case, the clique of size k in G will be exactly the neighborhood of v in G' (not including v itself). Call $N(v)$ the neighborhood of v in G'. Note the degree of v in G' must be k, by definition of $S_{i,j}$, i.e. $|N(v)| = k$. Consider a distinct pair of vertices $i, j \in N(v)$. The vertices i and j have at least one common neighbor in G', namely v, because both are in $N(v)$, meaning that $A(G')^2_{i,j} \geq 1$. But if (i, j) is not an edge in G then $S_{i,j} = \{0\}$ by the definition of $S_{i,j}$, a contradiction, forcing $N(v)$ to be a clique as required.

4.2 A heuristic approach

Unlike in the independent conversation model, we have no efficient algorithm for producing the social network under the common neighbor model. Hence, we employ a heuristic to find a graph that satisfies or comes close to satisfying the constraints imposed on it by the measured covariances.

Because of the computational hardness of this problem, we propose a heuristic approach to learn networks under the common neighbor model. This heuristic will be used in our experimental results in Section 5. Our heuristic, Algorithm 11 finds those pairs of
vertices whose current expected covariance (assuming $p = 1/2$) is farthest away from the measured covariance and modifies the graph to decrease that gap.

The local changes we want to make clearly cannot just consist of adding/removing single edges: Say the covariance between a given pair of vertices needs to go up and those vertices’ neighborhoods are currently empty. The only way to increase the covariance is to add at least two edges: (i, v) and (v, j) for some other vertex v. The natural compromise is then to add or remove the minimal number of edges (either one or two) to change the covariance, as seen in Algorithm 2.

5. EXPERIMENTAL RESULTS

In this section, we test our algorithms on United States Senate roll call votes. We examine each two-year congressional session as
Given the highly structured nature of these graphs, it is possible to recover senators' places on the left/right political spectrum, but since this is not the focus of this paper, we do not go into any further detail here.

For the common neighbor model, we use Algorithm 1. Examples of results of this heuristic run on US Senate data are shown in Figure 4.

To demonstrate these marked differences, in Figure 5 we give modularity values and average degrees of Democrats and Republicans under both models for the period 1989-2014 (corresponding to the 101st through 113th Congresses). Modularity is a standard measure of the amount of division between communities [13]. Both average degree and modularity are much higher under the independent conversation model (dashed lines in Figure 5) than under the common neighbor model (solid lines). Since the heuristic is randomized, we average these statistics over twenty graphs, each of which is an independent run of the heuristic with 100,000 rounds.

6. CONCLUSION

In this paper we derive algorithms and lower bounds for recovering graphs from their vertices' votes under two distinct models. We also present experiments on the U.S. Senate voting network. In the independent conversation model, we show when the graph is recoverable using only a polynomial number of votes. However, if we want to instead take a maximum likelihood approach to recovering graphs, then the task becomes computationally hard.

The common neighbor model, on the other hand, leads to significantly different results. Not only is it impossible to recover the graph using only polynomially many votes, finding a graph whose votes' covariances are close to the observed covariances leads to having to solve a hard problem (the generalized squared adjacency problem).

This implies that these models really are very different from each other, despite their very similar definitions. This is strong evidence that much care needs to be taken when choosing voting models for network inference. Experiments on U.S. Senate roll call data support this conclusion.

7. ACKNOWLEDGEMENTS

This research was funded in part by Army Research Office grant #66497-NS under the Young Investigator Program. We thank Vincent Conitzer, Jeremy Kun, Madhu Sudan, and Avi Wigderson for helpful discussions.

We do, however, use the unbiased sample covariance instead of the biased sample covariance, as the assumption that $p = 1/2$ no longer necessarily holds, despite the analysis of the algorithm assuming it.
REFERENCES

