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The interaction of solitary-wave solutions of a model equation for long waves in dispersive media is
examined numerically. It is found that the waves do not emerge from the interaction unscathed. Instead,
two new solitary waves, having slightly different amplitudes from the original waves, together with a

small dispersive tail are generated as a result of the interaction.

I. INTRODUCTION

The Korteweg-de Vries equation
U+ Ug + U, + ey =0 (1)

was originally derived as a model for the unidirectional
propagation of certain kinds of water waves. In this
context, u=u(l,x) represents the wave amplitude and

¢ and x are, respectively, proportional to time and dis-
tance, with x increasing in the direction of propagation
of the waves. The equation admits a family of solitary-
wave solutions having the property that the result cf the
nonlinear interaction of a pair of unequal solitary waves
leaves the waves unaltered, except for a phase shift.
This so-called soliton property was first observed in
numerical studies made by Zabusky and Kruskal* and
the proof of it was one of the triumphs of the inverse-
scattering method for solving partial-differential equa-
tions (see Miura® for a summary of results). For water
waves, an alternative model has been proposed by
Peregrine® and by Benjamin e/ al.,* namely

ut+ux+(uz)x —“'xxt:O M (2)

Equation (2) has solitary-wave solutions, similar to
those for (1), of the form

1/2

u(l,x)=A sechz{ (4AA+6) [x -<l +—:23~A> /J}, (3)

where A >0 is a parameter specifying the amplitude
(and speed) of the wave.

Since (1) and (2) purport to model the same physical
situation, it might be expected that the solutions to the
two equations display similar properties. Indeed, it
has been shown by the authors® that the solutions of
Egs. (1) and (2), corresponding to the same small-
amplitude, long-wavelength, initial data, remain with-
in order a® of each other on a time scale of order
a~%'?, Here, « is the maximum amplitude of the initial
profile and, in keeping with the assumptions under-
lying the derivation of these models, the wavelength
is of order a~2, Thus, in the regime where the equa-

2) present address: Department of Mathematics, University of
Michigan, Ann Arbor, Mich. 48109,

438 Phys. Fluids 23(3), March 1980

0031-9171/80/030438-04$00.90

tions are expected to model surface water waves, this
theorem shows that either (1) or (2) can be used, with
similar accuracy, to describe the wave field.

Although these models usually arise when trying to
describe a physical situation in which the wave ampli-
tudes are small, the soliton property for (1) is not a
small-amplitude phenomenon and is of interest in its
own right. There is, however, no analog of inverse-
scattering theory for (2). Indeed, recent results of
Olver® and McLeod and Olver’ suggest that no such
theory can exist for (2), at least in the way we cur-
rently understand the inverse-scattering procedure.
Consequently, there are no techniques to analytically
study the interaction of solitary waves for (2), but such
interactions have been investigated numerically by
Eilbeck and McGuire® and by Abdulloev et af.® The
former study suggested that the solitary waves emerged
with a phase shift, but were unaltered in shape, to
within the accuracy of their computations. On the other
hand, the latter study reports that a very small “rare-
faction” wave is also produced as a result of the inter-
action.

The results of our own numerical computations,
broadly speaking, confirm those of Abdulloev ef al.’ in
showing that a third wave emerges from the interaction
of two solitary waves for Eq. (2). Our purpose here is
to describe a particular interaction and show the de-
tails of the evolution of the “dispersive tail” that ap-
pears behind, and eventually separates from, the
smaller solitary wave. First, we give a brief outline
of the numerical scheme used to integrate Eq. (2).

Il. THE NUMERICAL SCHEME

As shown in Benjamin et al.* the solution to (2) satis-
fies
u, = K*w+u?), (4)
where K(x)=; sgn(x) exp(~|x|). The numerical scheme
used to integrate (2) consists of discretizing Eq. (4).
The spatial discretization approximates the convolution

integral in (4) using the trapezoidal rule with deriva-
tive end correction,’ the derivative being computed via
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an appropriate difference quotient. (The derivative
correction is made only at the point corresponding to
the discontinuity in K.) The time discretization is
simply a fourth-order Runge—Kutta method. The result
is a scheme for which one can prove fourth-order ac-
curacy in both space and time. Utilizing the exact soli-
tary-wave solution of the equation, we have checked
this property in a detailed convergence study. Although
there are no stability limitations on the convergence of
the scheme, the choice Af=Ax appears to be close to
optimal in terms of accuracy achieved for a given
amount of work. Because of special properties of K,
the work estimate per time step for the scheme is re-
duced to O(n), where n is the number of spatial points.

Some examples of the accuracy achieved are as fol-
lows: Using the mesh Af=Ax=0.025, the maximum
error in u that arose when computing the evolution of
a single solitary wave was less than 0.96x 107 when
A =6.0 and was less than 0.21x107® when A = 1.5, at
time £=31.35. When the waveform had evolved for a
time 62.70, the maximum errors were less than
0.34x 1072 when A =6.0 and less than 0.47x 10~® when
A=1.5. Using a fourth-order interpolation of the data
points of the computed waveform, we also determined
the amplitude and the location of the crest of the nu-
merical solution, enabling us to identify separately the
errors in the phase and the height of the wave. Con-
sequently, the “shape” of the computed waveform can
be compared with that of a theoretical solitary wave
(3) whose crest has the same height and location as
that of the numerical solution. The computed solutions
had slightly smaller amplitudes and a small phase lag
when compared with the theoretical solution. So, for
example, at {=31.35 and with At=Ax=0.025, the height
errors and phase lags were, respectively, less than
0.37x 10"* and 0.46x 107%, when A =6.0, and less than
0.30x 1077 and 0.48x 10~® when A = 1.5; the maximum
difference between the computed waveform and a soli-
tary wave of the same amplitude (the “shape error”)
was less than 0.59x 107° for A =6.0, and was less than
0.29X 1077 for A = 1.5. At £=62.70 the height and phase
errors, respectively, had degraded to 0.70x 10™* and
0.16x 1072 for A =6.0, and to 0.37x 10~7 and 0.11x 10~°
for A=1.5. For both waves the “shape error” was
nearly independent of time, after an initial settling
down period, suggesting that, although the computed
wave underwent a continual attrition, its shape re-
mained very close to that of a theoretical solitary wave
{Eq. (3)] of suitably chosen amplitude.

More complete details of the numerical scheme, to-
gether with rigorous error bounds, are to be reported
in a study by the present authors,® in which the pre-
dictions of Eq. (2) are compared with the results of
some laboratory experiments concerning the unidirec-
tional propagation of surface waves of large wavelength
in a uniform channel.

Il. NUMERICAL RESULTS

In the experiments to be described, the initial wave
profiles consisted of a pair of solitary waves, of the
form (3), disposed so that their crests were well sepa-

439 Phys. Fluids, Vol. 23, No. 3, March 1980

A 41-80
_,MJL 3135
//\\ 2090
J\L 10-45
J\ /\ t= ooo
270 360

X
FIG. 1. The interaction of solitary waves of amplitudes 1.5
and 6.0, from time £=0.0 to ¢ =41.80.

rated, with the larger wave behind the smaller one.
The separation of the crests was chosen so that the
overlap of the two waveforms was less than 10~°, The
width of the data field, which was continually adjusted
throughout the experiment, was initially chosen so that
the amplitude in the tails of the waves was less than
1079,

The evolution of such a profile, with solitary-wave
amplitudes of 6.0 and 1.5, is shown in Fig. 1. Toa
first approximation, the waves appear to have emerged
from their interaction unaltered, except for a phase
shift. However, on closer inspection, it was apparent
that, following the collision, a tail of very small amp-
litude had emerged from the trailing face of the smaller
solitary wave. This is indicated in Fig. 2, where the
amplitude scale of Fig. 1 has been magnified by a factor
of 100. (Note that the overshoot of the solitary waves
has been truncated in this figure.) As shown in Fig. 3,
this tail eventually separated from the smaller soli-
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FIG. 2. The intéraction of solitary waves of amplitudes 1.5

and 6.0, with the amplitude scale enlarged by a factor of 100,
from £=20.90 to £=62.70.
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FIG. 3. The interaction of solitary waves of amplitudes 1.5

and 6.0, with the amplitude scale enlarged by a factor of 100,
from £=73.15 to £=104. 50.

tary wave, with its maximum amplitude decreasing and
the number of oscillations increasing, as a function of
time, suggesting it was of a dispersive nature. This
conclusion was also supported by the property that the
speed ¢ of the leading crest of the tail was found to be
slightly less than the “long-wave” speed (i.e., ¢<1).
These results were obtained using the mesh Af=Ax
=0.025.

The oscillatory tail shown in Figs. 2 and 3 reached
a maximum amplitude, in the negative excursion
nearest the smaller solitary wave, of 0.0167 at the
time £=233.375. The parameters for this experiment
were chosen to allow a direct comparison with the work
of Abdulloev et al.,® who reported a “rarefaction-wave”
amplitude of 0.17x 1072, However, there is presumably
a typographical error in the exponent, since they later
refer to the amplitude of the rarefaction wave, relative
to the large solitary wave, as being 0.3%, implying an
intended amplitude of 0.17X 107, in agreement with our
results.

To verify that the discrete solution has converged to
the correct values in the region of the oscillatory tail,
we compared the wave profiles computed using different
values of At and Ax with those determined when Af=Ax
=0.0125. At t=41.80, the greatest difference in the
region of the oscillatory tail was less than 0.56X 10~*
with Af =Ax =0.05 and less than 0.30 X 10°° with
Al=Ax=0.025, in accordance with the fourth-order
convergence rate of the scheme.

Just as for the Korteweg—de Vries equation, the in-
teraction affected the phases of the two solitary waves
in the present case. Thus, with Af=Ax=0.025, the
phase of the larger solitary wave was found to have
been advanced by 1.76 at £ =31.35 and the phase of the
smaller solitary wave was retarded by 2.85 at time
t=62.7. Note that these phase adjustments, relative
to the positions the original solitary waves would have
had in the absence of an interaction, continued to
change very slowly, owing to the fact that the ampli-
tude and speed of the waves had been slightly modified.
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Therefore, we have given the phase adjustments as
soon as the solitary waves had effectively established
their “equilibrium” configurations following the inter-
action: as shown in Fig. 2, the larger solitary wave
had separated from the interaction zone much sooner
than the smaller solitary wave had separated from the
tail. To determine, at these times, how closely the
waves conformed to theoretical solitary waves, we
compared their shapes (inthe manner already indicated)
and speeds with waves of the form (3) having the same
amplitude as the computed waveforms. At the time
t=31.35 the leading wave differed in shape and speed
from a solitary wave (3) of the same amplitude by less
than 0.9%x 107° and 0.1x 1075, respectively; the second
wave, at {=62.70, differed in shape by less than 0.4

%X 107° and in speed by less than 0.1X 10™° when com-
pared with a wave of the form (3). Between these two
leading waves and, after separation, between the
smaller solitary wave and the dispersive tail, the wave
amplitude was less than 0.2x 1075,

These comparisons suggest that, following the inter-
action, two solitary waves had emerged, so that itis
interesting to examine the amplitude of these new
waves. At t=31.35 the leading wave had an amplitude
of approximately 0.17Xx 107 greater than that of the
original solitary wave. This amplitude change was de-
termined with the mesh A¢=Ax=0.0125 and, for com-
parison, the numerical scheme under the same con-
ditions would have diminished the height of a single
solitary wave of amplitude 6.0 by only 0.12x 107%, So,
although we cannot be sure from the present results,
it would appear that the amplitude of the larger solitary
wave is increased by the interaction. By contrast, the
smaller wave, at {=62.70, was found to have been re-
duced from its initial height by approximately 0.24
x 1072, This amplitude change was determined with the
mesh Af{=Ax=0.025, but computations with the finer
mesh, carried out to t=41.80, gave a height for this
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FIG. 4. The amplitude of the dispersive tail as a function of
the amplitude of the smaller solitary wave, with the amplitude
of the larger solitary wave fixed at 6. 0.
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wave differing by less than 0.2X 107° from that obtained
with the coarser mesh. A single solitary wave of amp-
litude 1.5, when propagated for a time ¢=62.70 with the
mesh Af=Ax=0.025, decreased in height by less than
0.4x1077. Thus, it would appear from these results
that the majority of the energy in the dispersive tail
was generated at the expense of the smaller solitary
wave.

Since the amplitude of the dispersive tail relative to
that of the larger solitary wave was of the order of
0.1%, verifying the shape of the dispersive tail to just
three digits required a total of six meaningful digits
in the experiment. Owing to the large number of
floating-point operations involved in the experiment,
allowance for round-off error required the retention
of several more digits. The computations described
here were made on a CDC7600, which, having ap-
proximately 14 digits of accuracy, was capable of
meeting the said requirements.

Experiments with other values of the solitary-wave
amplitudes have also been carried out and in all cases
the interaction of two solitary waves produced the same
kind of results as those shown in Figs. 1-3. A series
of experiments was performed involving the interaction
of a solitary wave of fixed amplitude (A =6.0) with
various smaller solitary waves. It was found that the
number of discernible oscillations in the dispersive
tail, just after it separated from the smaller solitary
wave, decreased and the wavelengths of the individual
oscillations increased, as the amplitude of the smaller
solitary wave was increased. The graph in Fig. 4 shows
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the maximum value of # found in the dispersive tail
as a function of the amplitude of the smaller solitary
wave.
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