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1. TNTR~DUCTION 

When attempting to describe the propagation of small-amplitude long 
waves in nonlinear dispersive media, it is frequently necessary to take 
account of dissipative mechanisms to accurately reflect real situations. 
Oftentimes the mechanisms leading to the degradation of the wave are 
quite complex and not well understood. In such cases one may be forced 
to rely upon ad hoc models of dissipation (cf. Bona et al. [9]). Two equa- 
tions that have gained some currency when the need to append dissipation 
to nonlinearity and dispersion arises in modelling unidirectional propagation 
of planar waves are 
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and 

24, + u, + uu, - vu,, - u,,, = 0, (1.2) 

where v is a fixed, positive constant. Here u = u(x, t) is a real-valued func- 
tion of the two real variables x and t, which, in applications, are typically 
proportional to distance in the direction of propagation and to elapsed 
time, respectively. The dependent variable may represent a displacement 
of the underlying medium or a velocity, for example. Equation (1.1) is 
sometimes referred to as the Korteweg-de Vries-Burgers equation (KdVB 
equation) since it represents a marriage of the Korteweg-de Vries equation 
(KdV) equation (see Korteweg and de Vries [ 19]), 

u, + u, + uu, + uxrx = 0 (1.3) 

and the Burgers equation, 

u, + uu, = vu,. (1.4) 

Equation (1.2) is the so-called regularized long-wave equation (RLW 
equation; cf. Benjamin et al. [4]), 

u,+u,+uu,-uu,,,=o, (1.5) 

with a Burgers-type dissipative term appended. Equations (1.3) and (1.5), 
and their dissipative counterparts (1.1) and ( 1.2), respectively, have been 
the subject of numerous investigations. The review articles of Benjamin 
[3], Bona [7], Jeffrey and Kakutani [14], Miura [23], Scott et al. [28], 
or the texts of Ablowitz and Segur [l], Lamb [20], or Whitham [29] can 
help the interested reader into the literature. 

The pure initial-value problem for any of the above equations is to ask 
for a solution u defined for (x, t) in Iw x IR +, having a specified initial 
configuration 

4x7 0) =f(xh (1.6) 

for x in Iw. In case U(X, t) represents the displacement of the medium from 
its equilibrium position at the location labelled by x at time t, then one 
thinks off as representing a known initial displacement of the medium. A 
typical situation arises wherein the initial-disturbance has sensibly finite 
extent, so corresponding to a datum f being drawn from some class of 
functions having limits at f co. The pure initial-value problem for either of 
Eqs. (1.1) or (1.2) is well-posed in Hadamard’s classical sense. That is, 
corresponding to suitable functions f, there are unique functions u(x, t) 
defined for (x, t) E [w x Iw + satisfying the differential equation there, and for 
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which (1.6) holds. Moreover, if f is perturbed slightly within its function 
class, then the solution u changes only slightly in response. Precise 
statements of these results are provided in Section 2. 

The present paper is concerned with the large-time behaviour of solu- 
tions to either (1.1) or (1.2). Experience with equations that incorporate 
dissipation, for example, the Burgers equation (1.4), leads one to conjecture 
that solutions of (1.1) or (1.2) should approach zero as t approaches 
infinity. Roughly speaking, the energy is continually degraded, and there is 
no mechanism to replenish this lost energy. Hence if 1) . // is some norm for 
real-valued functions of a real variable, then it is expected that 

IM *> t)ll -+ 0 (1.7) 

as t -+ co. Our concern herein will be to determine, for various natural 
choices of norm, if (1.7) is valid, and if so what can be said about the rate 
at which Ilu( ., t)ll approaches zero. 

It will be shown that (1.7) is valid for many choices of the norm, and in 
certain, important circumstances sharp rates of decay will be established. 
For example, we shall show that solutions u of (1.1) and (1.2) have the 
property that 

as t -+ 00 and that this result cannot in general be improved. (In fact, in 
Theorem 5.5 we establish explicitly the limit as t -+ co of t’12 s u’(x, t) dx in 
terms of the initial data f.) It is worth contrasting this theorem with the 
analogous result for the equation 

u, + u, + uu, f vu + u,,, = 0, (1.9) 

which features the KdV equation with a different dissipative term appended 
(cf. Knickerbocker and Newell [18]). Whilst the result (1.8) appears to be 
somewhat subtle, the decay rate for the .&-norm of solutions of (1.9) is 
very easily derived. Assume that the solution u of (1.9) is smooth, and that 
u, u,, and u,, tend rapidly to zero as 1x1 + co. Then if (1.9) is multiplied 
by u and the result integrated over [I?p we obtain, by formal calculations that 
can be rigorously justified, the relationship 

Id 0~ cc 
-- 

s 2dt -cc 
u2(x, t) dx -i- v 

s 
u2(x, t) dx = 0. 

-cc 

From this there follows at once the exact formula 

I 

cc 

u2(x, 1) dx = e--2y* 
- cc c 
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where, as before, f(x) = u(x, 0). Thus in this case, 

s 00 
u*(x, r) dx = O(ee2”‘), 

--ir 
(1.10) 

a result considerably different from that expressed in (1.8). One concludes 
from this that the rate of decay of a given norm is very much dependent 
on the particular dissipative term featured in the equation. 

If a certain norm of a solution u of (1.1) or (1.2) tends to zero at a 
particular rate, then heuristic considerations would lead one to expect that 
the norm of the derivatives of u will tend to zero even faster. Thus it will 
be demonstrated that solutions u of (1.1) or (1.2) satisfy 

s Oc uf(x, t) dx = O(t-3’2), 
--cc 

and that this result is also sharp in general. Again, by contrast, it is readily 
established that a smooth solution u of (1.9) with appropriate spatial decay 
still has only the property 

s 
cc 

u;(x, t) dx = O(~T-~“~) 
--a, 

as t + co. Thus no enhanced decay for derivatives appears to obtain for 
solutions of (1.12). 

It is worth noting that not all norms of solution of (1.1) or (1.2) tend to 
zero in the limit of unboundedly large time. Again assuming appropriate 
smoothness and spatial decay of a solution u of (II) or (1.2), one derives 
easily a conservation of mass result stating that 

jua 4x, t) dx = la: f(x) dx, 
-m -a 

(1.12) 

for all t 2 0. It follows that if the right-hand side of (1.12) is nonzero, then 

s m I+, t)l dx --m 
does not tend to zero as t -+ co. 

The paper is organized as follows. In Section 2 we set the notation and 
present the aforementioned theory pertaining to the well-posedness of the 
initial-value problem for Eqs. (1.1) and (1.2). In Sections 3, 4, and 5 the 
large-time asymptotics of the solutions of (1.2) are considered in detail. 
Section 3 contains elementary results of boundedness and decay while 
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Section 4 focusses on solutions of the linear version of (1.2). The results for 
the linearized problem are interesting in their own right, suggestive of the 
situation that obtains for the nonlinear problem, and technically useful in 
Section 5 where more subtle results like (1.8) and (1.11) for the nonlinear 
equation are obtained. Section 6 is devoted to remarks concerning 
Eq. (1.1). It is indicated there that for the most part the same theorems 
hold for Eqs. (1.1) and (1.2). In the main, the proofs of the theorem are 
quite similar for both equations. Section 7 is a short conclusion summarizing 
the paper’s accomplishments and indicating future lines of inquiry. 

2. NOTATION AND PRELIMINARY RESULTS 

The notation in force throughout is briefly reviewed here, along with 
some prior results that bear on the subsequent theory. 

If X is any Banach space its norm will generally be denoted 11 Ilx, except 
for the special abbreviations mentioned below. The symbol R is reserved 
for the real line, and RN is N-dimensional Euclidean space. If 0 c RN is a 
Lebesgue measurable set, L,(Q) is the Banach space of the pth-power 
integrable functions normed by 

u I 

llP 
Ifl &T(Q) = If(x dx n 

If Q is understood from the context, we shall write L, for L,(Q) and Ifl, 
for the norm off E L,(Q). This will very often be the case when Q = R. The 
usual modification will be presumed if p = co. 

If f E L,(Q) and its distributional derivatives up to order k also lie in 
L,(Q), we write f E W%(O). This class of functions is a Banach space with 
norm 

(2.1) 

where the usual multi-index notation is being employed. The case p = 2 will 
appear often and so deserves the special notation P(Q). If Q is under- 
stood, then Hk will stand for Hk(Q), and the norm off in Hk(Q) will be 
abbreviated to 

lif ilk = IlfiIHk(Q). 

Again, this shorthand will frequently be used in case $2 = R. We let 
H”(Q) = ok Hk(Q), but do not bother to topologize this collection of 
functions. It is useful to remember that H”(R) is dense in Hk(R), for any 
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k. Note that there are two shortened notations for L,, namely Ifl2 and 
llfjjo. We will systematically prefer the second notation, and will usually 
drop the subscript 0 if no confusion results thereby. Thus an unadorned 
norm (1 11 is the norm in L,. 

If fe L,(R), its Fourier transform is defined as 

f(y) = (pf)(y) = & jyrn f(x)e-‘“’ dx. (2.2) 

If f E L,(R), then Pf E L2( R) and 9 extends by continuity to a Hilbert- 
space isomorphism of L,(R) onto itself. If k is a positive integer, and 
f~ Hk( R), then 

lifll:=j= (I+ y*+ -.. +~‘~)lft~)l’d~. 
-cc 

(2.3) 

These elementary facts may be found, for example, in Yosida’s text [30]. 
If Z is a closed interval in R, say Z= [a, b] where a = - co or b = + co 

is allowed, and X is a Banach space, let C,(a, b; X) = C,(I; X) denote the 
bounded continuous mappings U: Z + X. This is again a Banach space with 
the norm 

If Z is bounded, the subscript b, for bounded, will be dropped. Similarly, if 
1 <p < 00 and Z and X are as above, L,(I; X) is the collection of 
measurable functions U: I+ X such that 

UP 

j, llWl~~~} < ~0. 

Logically prior to the developments in this paper are general results of 
existence, uniqueness, regularity, and continuous dependence for the initial- 
value problems under study. Fortunately there is an adequate theory of 
well-posedness for both the initial-value problems to be considered here. 
With a few minor extensions, this theory will serve our purposes very 
nicely. 

THEOREM 2.1. Let f E H” where s > 2. Then there exists a unique function 
u~C~(0,oo;H”) such that u(.,O)=f(.) and which solves (1.1) in RxR+. 
For each T>O, u(., T) lies in H” and the mapping that associates to f in 
H” the solution u of (1.1) with initial value f is cotitinuous from H” to 
C(0, T; H”). Moreover, if f E Wf , then u E C(0, T; Wf) for any T> 0, and 
u(., T)E W; for any r>O. 
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Remark. This result of existence, uniqueness, continuous dependence 
and smoothing is established in Bona and Smith [lo]. The hypothesis 
s > 2 can be weakened to s > 0, but the corresponding conclusions are more 
complicated to state and are not needed herein. The H” results do not 
depend on v, and remain in the limit as v tends to 0. The smoothing and 
the L, results need v > 0 and are not true in general in the limit as v tends 
to zero. 

THEOREM 2.2. Let f E H”, where s > 1. Then there exists a unique func- 
tion in C,(O, co; H’) which also lies in the class C(0, T; H”) for each T>O 
and is such that u solves (1.2) in R x II2 + with u( ., 0) =f( .). For each k > 0, 
a$ also lies in C(0, T, H”) for each T > 0. The mapping that associates to 
f in H” the solution u of (1.2) with initial value f is continuous from H” to 
Ck(O, T; H”), for k 2 0. If f E Wf then u and all of its temporal derivatives 
lie in C(0, T; W:), for all T > 0. 

Remark. Except for the L, theory this theorem is proved in Benjamin 
et al. [4]. The L,-results may be obtained using the sort of argument 
favoured in the last-quoted reference, as we show presently. It is worth 
noting that despite the dissipation, there is no smoothing effect in the 
spatial variable. All the above results carry over in the limit as v tends to 
zero, but with v = 0, a$ E C(0, T, HS+ ‘) for k > 0 and T > 0. 

Proof As mentioned above, only the L, results are new. Let u be a 
solution of (1.2) and let the Green’s function ~e-l’l for 1 - 8: on the whole 
line be denoted by K(z). Evaluate Eq. (1.2) for u at the point (y, t), 
multiply the result by K(x - y), and then integrate with respect to y over 
R. After a little manipulation, there appears 

u,(x, t) = - vu(x, t) + v j- K(x - y) u(y, t) dy 
-m 

s 

m 
- K’(x - Y) U(Y, t) +,,; u2(y, t) 1 4, (2.4) 

-cc 

where K’(z) = - isgn(z)e- “I. Equation (2.4) may be viewed as an ordinary 
differential equation of the form 

ti= -vu+g, 

where the dot connotes differentiation with respect to the temporal 
variable. This interpretation of (2.4) allows one to deduce readily the 
equivalence of (2.4) and the formula 
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u(x, t) =cVff(x) + j; e”(s-r) {v jm K(x - Y) U(Y9 s) 4 -30 
s 

cc 
- K’(x-y) 

~ m 
u(y,s)+;u2(y,s) 1 1 dy ds 

=fo(x, f) + A(u)(x, t) = B(u)(x, f) (2.5) 

for functions u which are reasonably smooth. It is easy to see that if T is 
sufficiently small, then B is a contraction mapping of a ball centered at zero 
in C(0, r; H ’ ). Hence (2.5) possesses a solution in C(0, p, H’ ), at least 
for T small. It is immediate from (2.5) that if f~ H” for s> 1, then 
u E C(0, T, H”). Moreover, the time interval T for which B is known to be 
contractive depends inversely on llfll,. It follows that if IIu( ., t)ll i is shown 
to be bounded on finite time intervals, then this contraction-mapping argu- 
ment may be successfully iterated to produce a solution of (2.5) defined for 
all t 2 0. More precisely, suppose u to be defined in C(0, T,; H’) as a solu- 
tion of (2.5). Then one can imagine using u( ., T,) as initial data and using 
the corresponding reduction of (1.2) to (2.5) to extend u as a solution of 
(1.2) over the interval [0, T, + AT]. The positive quantity AT depends 
inversely on Ilu( ., T1)ll i. One continues this procedure inductively and 
makes use of the a priori information about IIu( ., t)ll I to conclude that u 
may be extended to any finite interval in a finite number of such steps. 

It turns out (see formula (3.2)) that the H’-norm of a solution of (1.2) 
is actually bounded for all time, and hence that the above argument is 
effective in producing global solutions of the initial-value problem for (1.2). 

One way to establish the L, results in the statement of the theorem is to 
mimic the argument just outlined relative to the function class H’. It turns 
out that using both the L, and H1 norms simultaneously is effective. To 
this end, define 

X,=C(O, T;H’)nC(O, T;L,) 

with the norm 

III~III 7-= I/4/ C(O,T;H’) + II4.(0,,.,). 

If U, u E X,, then 

I A(u)( .? t) - A(u)( .7 f)lI 

~t{(lKIl+Iw‘)+ sup c1+I~(.,~)I,+I~(.,~)I,l} 
OGS?Gf 

x sup 14.3 t)-4.3 l)ll 
0<3<t 

G au - VII C(O,t;L,)’ 
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Hence, for any T > 0, 

IMU) - Nu)ll c(o,T;L~) G TClIu - 4Ic(o,m,), (2.6) 

where 

c= C(Il4.(O,.;ff~)? Il4lC(O,i-;&)I. (2.7) 

Exactly the same estimate as (2.6) holds in C(0, r, H’), and the constant 
has the dependence depicted in (2.7). It follows that 

Ill A(u) - A(u) rd TClIlu - 4 T, (2.8) 

where C = C( IIIu(I1 T, IIIuI1 T), say. The argument in Benjamin ef al. [4, 
Sect. 31 may now be seen to carry over intact to X,. We conclude that B 
is contractive in a ball of radius R centered at zero in X, provided R is 
large enough and T is small enough. The result will therefore be in hand 
if it can be shown that, for a solution u of (2.5), lllulll T is uniformly 
bounded as T ranges over any bounded interval. Since 

II4 C(0. T;H’) f IISII 1 (2.9) 

for all T>O (see again (3.2)), it suffices to bound the L,-norm of u on 
bounded time intervals. But from (2.5), 

I~(~.t)l,~lj~+JbrCl~(-,~)I~dS. (2.10) 

where C is as in (2.7), except that in light of (2.9), C is now known to be 
bounded independently of t. Gronwall’s lemma applies to (2.10) and gives 
the desired result. 

The further spatial and temporal regularity of u is now considered. 
Notice that the mapping A defined in (2.5) carries C(0, T; H”) n 
C(0, T, W”,) into C(0, P, H”+‘)n C(0, T; Ws+‘) for any ~20. This fact 
follows easily from the properties of the kernel K and formula (2.5). A 
simple induction based on (2.5) shows that u is as smooth spatially as the 
initial datum f. From this and (2.4) it is then adduced that U, lies in 
C(0, T, H”) n C(0, T; W;). For m > 1, another easy induction demonstrates 
that 

ayu=vaylu-v a s Hx-- Y) ay-l4y, t) dy -co 

- 
I m K'(x-y)ay-I 4~ t) +; u2b, t) dy, -cc 1 
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and consequently the final result in the statement of the theorem is seen to 
be valid. 

Remark. We shall see later that if u is a solution of (1.1) or (1.2), then 
iu( ., t)l i is in fact bounded independently of t. 

3. ELEMENTARY ESTIMATES FOR THE RLW-BURGERS EQUATION 

In this section and the two sections following, interest will be focussed on 
the initial-value problem 

24, + u, + uu, - vu,, - u,,r = 0, (3.la) 

with 

4-G 0) = f(x), (3.lb) 

for x E R and t z 0, where v is a fixed, positive constant. 
If Eq. (3.la) is multiplied by U, and the result integrated over IR and over 

[0, T], there appears after appropriate integrations by parts, 

s O” [u’(x, t) + uf(x, t)] dx 
--co 

= jx [f(x)’ +f’(x)‘] dx - 2v j’ j” u;(x) s) dx ds. (3.2) 
-cc 0 -m 

It follows that Ilu( ., t)ll i is a monotone nonincreasing function of t, and 
that U, E L2( R x R + ). In particular, for all t B 0, 

II4 .? t)ll 1 G llfll 1 (3.3) 

and 
m cc 

s s 0 --m 
u:(x, s) dx ds < +v llfll:. (3.4) 

LEMMA 3.1. Let u be the solution of (3.1) corresponding to initial data 
f~ H’(IW). Then, 

(a) inequalities (3.3) and (3.4) hold, 

(b) ux, EL,(Rx R’), IIu,(., t)ll, II~,,(~, t)ll +O, as t+ 00, and 
(c) lu(., t)l, +O, as t+ 00. 

Proof: Part (a) has already been established using formula (3.2). A 
corollary of (3.3) is the following inequality: for any x E R’ and t 2 0, 
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G IIu(., t)l12+ II4(., f,ll:~ llfll:. (3.5) 

In particular, u is bounded and 

14.3 a”, <2ll4., t)ll IIu,(., t)ll G llfll:. (3.6) 

To prove part (b), multiply Eq. (3.la) by u,, and integrate over [w to 
obtain 

f j”, (u: + UT;,) dx = 2 jlT, ( -vu:, + uu,u,,) dx. (3.7) 

Bounding above the right-hand side of this last equation gives a revealing 
inequality, namely 

2 Oc 
s 

( -vu;, + uu,u,,) dx 
~ cc 

i 

cc 

< -2v u;,dx+v jm us,dx+i j” (u’u;) dx 
-00 -cc 5 

s 
cc < -v 
-cc 

utx dx + 9 llu,( ., t)ll*. 

Rearranging and integrating over [0, t] gives 

Since u, E L,((w x [w + ), from (3.4), the right-hand side of (3.8) is bounded, 
independently of t 2 0. Thus u,, E L,( IF&! x [w + ). As a consequence, 

lies in L,([w+ ). Hence, from (3.7), the integral 
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approaches a limit as t -+ co. Since this integral lies in L, (R + ) as a function 
of t, its limit at cc must be zero. 

Part (c) follows immediately upon noting, as in (3.5) that 

lu(., t,l’, 62llu(., t)ll II&(., t)ll d2llfllI Ilux(., t)ll, 

and remarking that the right-hand side of this inequality tends to zero 
as t-+co. 

Since Ilu( ., t)lll is monotone decreasing, it has a limit as t -+ co. 
Moreover, IIu,( ., t)ll tends to zero as t + co. Hence jlu( ., t)ll has a limit as 
t -+ co. Whether or not this limit is zero turns out to be important in 
understanding several aspects of the large-time asymptotics of U. The 
following lemma suggests, but does not establish, that this limit is zero. (In 
Section 5 it will be proved that this limit is always zero, and the optimal 
decay rate delineated.) 

LEMMA 3.2. Let u be the solution of (3.1) corresponding to initial data 
fe H2( R). Then, 

(4 u,, U,rEL2(~ x R’), 

(b) for every real number a 

s 
a 

u2 dx + 0, as t-co, 
--5 

and 

(c) if Q is a bounded open set in R, then u E Lz(sZ x R + ). 

ProojI If Eq. (3.la) is multiplied by U, and then integrated over R, and 
integration by parts is performed, we obtain 

vd 0~ 
--I 2dt p-5 

uz,dx+ s m (u:+uf,,dx 
-SC 

1 O” 
<- s 2 -00 

u;dx+- ;s” (1 +u)‘u2,dx 
cc 

1 io 
<- s 2 -m 

u*dx+u+IlfIIl)2 m 
r 2 s 

u; dx. 
-a 

Since u, E L2( R x IF?), part (a) follows. 
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For part (b), let E > 0 be given and choose T = T(E) such that 

30 cc 
f s (v”u”, + u;,) dx dt Q -!- 

12’ 
(3.9) 

T -DC 

for ail t 2 T. Then choose N= N(E) < 0 such that 

s 
&+I 

[2(x, T) + z&x, T)] dx < ;. (3.10) 
-cc 

~uitiply (3.la) by u as before, but integrate only over (-a, M) to obtain 
that 

O=$jv (u2+u;)dx+2vjM 
113 -cc 

u:dxfu2(M, t)+;u’(M, t) 

- 2vu(M, t) u,(M, t) - 2u(M, t) M,,(M, t). 

If we take t >, T in the last formula, so that /uI < $, and use Young’s 
inequality, we may derive that 

f j_“- (u2+u;)dx+2v j” u;dx+$&W, t) 
-cc 

G 6Cv2u3M, t) + Z&M, t)], (3.11) 

and this holds for any ME R and t 3 T. Integrate (3.11) over the t-interval 
(T, S) to obtain 

j” 
-i*j 

[~~(x,S)+u:(x,S)]dx+; j;u’(M, t)dt+2v j; j;$dxdt 

Q 5 M [u2(x, T) + t&x, T)] dx 
--r 

+6j) v2~~Wf, t)+ u:,(M, t)] dt, (3.12a) 

for any ME R. Using (3.10), it is easily adduced that the right-hand side of 
(3.12a) is bounded above by 

v2&K t) + u:,(M, 01 dt, (3.12b) 
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provided M < N+ 1. Finally, integrate (3.12) with respect to M over the 
interval (N, N+ 1 ), and use (3.9) to obtain 

5 N [u*(x, S) + u”,(x, S)] dx 
-cc 

+i 
5 cc 

s I 
[v”u’,(x, t) + z&(x, t)] dx dt < 8, 

T --5;. 

for any SB 7: Since )]a,(., t)l] 40, as t + 00, it is concluded from the last 
inequality that 

s 
N 

Iim sup u*(x, t) dx < E. 
I--r= -cc 

Moreover, ju( ‘, t)l a? --f 0 as t -+ co. Hence, for any a E R, 

” lim sup I u*(x, r) d.x < E. 
I-s -= 

As E > 0 was arbitrary, part (b) is established. 
If (3.12a) is integrated with respect to M over the set Sz and the result 

considered in the limit as S -+ co, then part (c) is readily deduced. This 
completes the proof of the lemma. 

It is a corollary of the methods appearing in the last proof that for any 
ao(O, 1) and any /Io(l, co), 

j”’ 
-co 

u’(x, t) dx + jfl; u*(x, t) dx -+ 0, (3.13) 

as t + co. If the initial data f is such that 

I u l-4 Cf2(x) + f’,(x)1 dx < ~0, -cc 

for some a E IR (and so for all a E BB), then an argument like the one given 
in the last proof (multiply equation (3.la) by xu and then integrate) 
ensures that 

j” 
-02 

IXI(U~(X, t) -t u:(x, t)) dx + j-i 11, I.4 &~, sl dx ds 
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is bounded, with a bound depending upon a but not on t. This in turn 
implies that 

a 

i i 
M [u*(x, t) + u;(x, r)] dx dM 

--m -cc 

has a bound which depends upon a, but not on t. Hence, for such data, the 
expression on the right-hand side of (3.12a) may be integrated with respect 
to M over (- co, a), and the resulting quantity is seen to be bounded, 
independently of T and S. A consequence of these observations is that both 
u and 1x1 i’*u, lie in L2(( - co, a) x R’), for any a E R. It will appear later 
(Theorem 5.5 and the remark thereafter) that if u E L,(R x R+), then 
necessarily u has zero mass. That is, 

ja u(x,t)dx= jm f(x)dx=O. 
-cc -cc 

Hence if f does not happen to have zero mass, then u 4 L2( R x [w + ) and so 
the fact that u E L2(( - co, a) x Rf ) is a reflection of the expectation that 
most of the mass of the wave moves to the right as t increases. 

In any case, U, E L2( IR! x R + ), and so one expects that 11 u,( ., t)ll tends to 
zero at least at the rate t- ‘I* The following intermediate result verifies this . 
presumption. The optimal rate tP3j4 will be proved in Section 5, at the cost 
of some minor additional restrictions onf. 

PROPOSITION 3.3. Let u be the solution of (3.1) corresponding to initial 
data f E H*(R). Then, 

lim t”* I, [uz(x, t) + u4(x, r)] dx = 0 
,-Co i 

and 

lim t1/2 5 5 s OZ z&(x, s) dx ds = 0. 
t-m f -cc 

ProoJ Multiply (3.la) by U, + u, and integrate the result over [w to 
reach the expression 

j”, (u,+u,)‘dx+ j* uu,(u,+u,)dx+;; jl u5;dx 
-cc cc 

+sw s 

3c 
u,.x u.xr dx + ufr dx = 0. 

-7c -J: 

505/81,1-Z 
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On the other hand, if (3.la) is multiplied by u,, and then integrated over 
R, there appears 

Id 00 00 m 
-- 

s 2dt -cc 
uf.dx+ I uu, uxt dx - v 

pm I u,, uxt dx = 0. 
-02 

These latter two relations are combined to give 

;(v+;>% j;‘u;dx+ j”, (u,+u,?dx 

+ jm uu,(uI+u,)dx+ jm u;,dx 
-cc -m 

+:rm uu, u,, dx = 0. (3.14) 

Finally, (3.la) is multiplied by u3 and integrated over R: the result is the 
relationship 

Id 

-- s 

m 30 00 

4dt --m 
u4 dx + 3v 

I 
u’u; dx + 3 

s 
u’u, u,, dx = 0. (3.15) 

-cc -cc 

Equation (3.15) is multiplied by a suitably large positive constant b and 
added to (3.14). Then Young’s inequality yields 

;(v+;); j”_ u:dx+$$ j_“, u4dx 

=- j_:, cut + uJ dx - j_“, uu,(u~ + ux) dx 

-3bv ja x u2u2 dx - 36 
--co 

jm u2u,u,,dx 
-02 

First choose b so large that 

-F+;+$<o, 

(3.16) 

(3.17a) 



NONLINEAR WAVE EQUATIONS 17 

and then, choose T so that for t 3 T, 

$u(., +<o. 
For such a choice of b, and for t 2 T, it is assured that 

$t)<O, 

(3.17b) 

(3.18a) 

where 

r(t)++;) Irn b m 
U2,dX+- s 4 -cc 

u4 dx. (3.18b) 
-m 

On the other hand, r(t)eL*(R+). For IIu,(., t)ll is bounded and U, lies in 
L,( [w x Iw + ) whilst 

I J3 u4k t)dxd Id.> t,l’, IIu(., tNl’~2ll~,(~, t)ll II4., t)l13. --m 

Since IIu( ., t)ll is bounded and U, E L2( [w x [w + ), our assertion follows. 
Because r is eventually decreasing, it is evident that 

I 
a 

I-‘(s)ds>, ‘f2(s)ds>(t-~)r~(t), 
T s T 

for t > z, and z large enough. In consequence, 

s cc T*(s) ds > lim sup K’(t), 
7 ,--rsO 

for any z large enough. As r* E ti( IL!+ ), the left-hand side of the last 
inequality can be made as small as desired by choosing z large enough. It 
is therefore established that 

3ci lim t ‘I2 s (u; + u”) dx = 0, 
,-Cc -m 

as in the statement of the proposition. 
Return now to (3.16) and choose T so large that for t 2 T, 

$u(., t& -f 
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(see (3.17b)). For such t, (3.16) and the de~nitio~ (3.18b) of r imply that 

Integrating this relation over the temporal interval [t, co), where t & T, it 
appears that 

whence 

02 m 

I i 
z&x, t) dx = o(t-) 

f -02 

as t --t co. This concludes the proof of the proposition. 

From Proposition 3.3 one may deduce a decay rate of the L,-norm of 
the solution u as follows. For any x E R, 

luf ., t)i, =5(f-q 

as t -+ co. The optimal rate lu( ., t)j 41 = U(t - ‘I’) is adduced in Section 5, 
Corollary 5.2, where f is assumed to satisfy slightly stronger hypotheses. 

4. THE LINEARIZED RLW-BURGERS EQUATION 

Since u tends to zero in various senses as t -+ -t 03, it appears interesting 
to consider problem (3.1) linearized around the zero solution, namely 

w, + w, - wu - w,,z = 0, (4,Ia) 

w(x, 0) =f(x). (4.lb) 

Using information gleaned from problem (4.1) we hope to understand 
more precisely how u behaves for large t. Moreover, at certain points in 
what follows, the theory obtained for the linear problem will be used in the 
analysis of the solutions to the nonlinear equation (3.2). 
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As will become apparent, certain gross features of the asymptotic 
behaviour of a solution of (4.1) are determined by the number f f(x) dx, 
and it is worth noting again that solutions of (4.1), or indeed of the full 
problem (3.1), have j U(X, t) dx independent of t. 

Problem (4.1) can easily be solved by formally taking the Fourier trans- 
form (see (2.2)) of Eq. (4.la) with respect to the spatial variable x: there 
results 

-$ c;( y, t) + iyqy, f ) -t bly2k(y, t) + y* ; a( y, t) = 0 (4.2) 

for (y, t)c Rx [w+, and so 

G(y, t)=exp (-y:J@) ti(y, 0). (4.3) 

It is clear from (4.3) that if w( +, 0) = f E Hk, for some k, then the same 
is true of w( ., t), for all t > 0. Indeed, this is clear from (4.3) and formula 
(2.3) for the Hk norm. 

Throughout Section 4 it will be supposed that w is the solution of (4.1) 
corresponding to the initial data f, as given in (4.3). 

LEMMA 4.1. Iff~f?~nL,, then 

(a) lim,,, t1j2 f?= w2(x, t) dx = (~vK)-~‘~ [frm w(x, 0) dxj2, and 

(b) lim,_, t 3’2 f”= wftx, t) dx = (128~~71))~‘~ [f:, w(x, 0) dx-j2. 

Proof (a) By Parseval’s theorem, 

Let c > 0 be given and choose 6 = S(r) E (0, 1) such that 

1 b+(Y, o)12 - i’%o, o)i2i GEE, (4.5) 

for all 1 yl G 6. The continuity of G(y, 0) follows since w(x, 0) E L1. The 
integral in (4.4) may be written in the form 

(45) 
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The second term on the right side of (4.6) may be bounded in magnitude 
by 

<-jzj~‘=e-Y2dy=c (4.7) 

on account of (4.5) and the fact that 6 < 1. The final term on the right-hand 
side of (4.6) may be bounded by 

exp( - vh2t) J IG(y, ON’ dy<exp(-vc52t)llw(., 0)ll’. (4.8) 
lYl>5 

The use of (4.7) and (4.8) in (4.6) leads to the conclusion 

lim t”’ 
I-cc 

‘_‘_ w2 dx = O(E) + ,‘i; t1’21q0, 0)12 j”, exp (3) dY 

=0(e)+ ; 
0 

l/2 
IW, ON2> 

as 6 JO. Upon letting E tend to zero, result (a) follows. 
(b) Parseval’s theorem gives 

I 
m 

s 
cc 

w?;dx= Y~IG(Y> t)12 dy -02 -cc 

If we argue as in the proof of part (a) from (4.9), we readily obtain that 

lim t”’ 
t-co 

I”, wz dx = O(E) + ,lirna t3’21G(0, 0)12 jf, y2 

- 2vy2t 
xexp 1+y2 ( > - 4 

=wE)+ jf-$ ( > 
L/2 

IW, OH’> 

as 6 JO. The result stated in part (b) now follows and the proof of the 
lemma is complete. 
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In view of the last results, one is naturally led to inquire what happens 
in case the total mass, 

of the disturbance is zero. If it is presumed that 

s 02 /XI lw(x, 0)l dx < 00, (4.10) 
-La 

then d$(y, O)/dy is the Fourier transform of an L, function, and therefore 
is a uniformly continuous function of y. Because 6 is C’ in its first variable 
and since G(O, 0) = 0, Taylor’s theorem implies that 

as y --+ 0. In consequence, if one computes as in (4.6~(4.8), there appears 

(4.11) 

Similarly, it is found that 

m lim tsf2 w.f. dx 
t-m J -cc 

exists, and is a constant depending on v times the square of the first 
moment about the origin of the initial data, as in (4.11). The generalization 
of this result to the case where the total mass of the disturbance is zero and 
the first few moments about the origin of the initial data are also zero is 
straightforward; we content ourselves with a statement covering the general 
situation. 

LEMMA 4.2. Let f~ H’, where r 3 0 and let k be a nonnegative integer 
such that 

i m lxlj If( dx < ~0, --co 
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for 0 < j d k. Suppose in addition that 

5 

cc 
x’f(x) dx = 0, 

-32 

for 06 j<k- 1. Then, 

3c *im tk+i+l/2 

f 
[a; w(x, t)]* dx 

t-m --co 

1.3.5...(2(k+i)-l) = (8y71)1/2 (d,,)k+i (4.12) 

for O<i<r. 

An immediate consequence of the last lemma is the following corollary. 

COROLLARY 4.3. Let f satisfy the hypotheses of Lemma 4.2. Then, 

18; w( ., t)l~ = o(t-(k+j+ I)/*) (4.13) 

as t+a, for O<j<r. 

Proof: This follows immediately from inequality (3.5) and the results of 
the last lemma. 

Remark. The decay rates appearing in (4.13) for the maximum value of 
w or one of its spatial derivatives turn out to be sharp. For example, 
suppose k = 0 and r = 1, and that 

i m f(x)dx#O. 
-03 

Corollary 4.3 indicates that Iw( ., t)l m = o(t-“*), as t -+ CXI. Suppose in fact 
that 

lim inf t”*lw( ., t)l, =O. 
,-CC 

Then, 

O” lim inf t’j2 w*(x, t) dx 
*-cc s -* 

< (1imEf t’l*)w( ., t)l,) lim sup SE 
t--r03 -00 

Iw(x, t)l dx) 
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Borrowing a result from the later part of this section, the &-norm of w is 
bounded independently of t. Hence 

lim inf t’/* s zc w2(x, r)dx=O, 
*-cc -cc 

which contradicts Lemma 4.1. 

The last remark shows a feature of various types of evolution equations, 
that an understanding of jw( ., t)] i is crucial for establishing optimal order 
decay rates (cf. Schonbek [26, 271 and the references contained therein). 
For the linearized equation (4.1), the next result has the desired informa- 
tion. Similar issues regarding the nonlinear equation will be addressed in 
the next section. 

THEOREM 4.4. Zf f f L, n H’, then w has the following properties. 

(a) wosr<a JZa: INx, t)l dx< 03. 
(b) Zfv>l andff0, then f(x)20 (f(x)<O), for all x~flB, implies 

that w(x, t) > 0 (w(x, t) < 0) for all (x, t) with t > 0. 

(c) rf v>l and for some t 30, ~(2, t) = supX w(x, t), then 
w,(& t) < 0, and iffor some t 2 0, ~(9, t) = inf, w(y, t), then w,(y, t) > 0. 

Remffrk. Part (b) of the above result is a maximum principle rather like 
those appearing in the theory of parabolic equations. In effect, (b) states 
that if v > 1, the dissipative term -VW,, dominates the dispersive term 
W xx1. This observation appears to have been made first by Lucier [21, 221. 
A similar result holds for the nonlinear equations, as Lucier points out. 
This aspect will appear in the next section. 

Proo$ The proof of (a) follows by calculation. For (b), multiply (4.la) 
by K(x - y), where K(z) = ie-I” . IS the Green’s function for 1 - 8:. After 
integration with respect to y over R, there results 

w,(x,t)= -vw(x,~)+~(v-~)~~E~~~w(~, t)dy 
.x 

e-y-xw(y, t) dy. (4.14) 

If for some t > 0, w(x, t) 2 0 for all x, and w(xO, t) = 0 for some x0, then 
(4.14) makes clear that wl(xO, t) > 0 since v > 1 and W( ., t) $0 (cf. (4.3)). 
As w and w, are continuous functions of (x, t), it follows that w(x, t) > 0 if 
t > 0, provided only that f> 0 and f is not identically zero. Similar con- 
siderations apply if f < 0. (For v = 1, the same argument shows only that 
w(x, t)>O, for t>O.) 
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For part (c), suppose that for some t 2 0, there is an 2 = Z(t) such that 
~(2, t) =sup, w(x, t). Then since w f ~(2, t) and v > 1, if (4.14) is 
evaluated at x = 1. there follows 

w,(& t) < - vw(.f, t) +; (v- 1) jza &YW(.?, t) dy 

+i(v+l) ji ey-“w(Z, t) dy 
-02 

= -vw(I,t)+~(v-1)W(~,t) 

+i(v+ 1) w(2, t)=O. 

Similary, w,( j, t) > 0 if w( j, t) = inf, w( y, t). The theorem is established. 

Since solutions of (4.1) have 

s 
oc 

w(x, t) dx = 
-cc s -mm f(x) dx, 

it follows that if v 2 1 and f 2 0, then 

) dx, I”, Iw(x, t)] dx= j* w(x, t) dx= jm f(x 
-cc --m 

for all t 2 0. In general, if we write f = f + -f- I where f+,f- 20, 
f+,f-•ELlnH’, and let w, w,, and w _ be the solution of (3.1) 
corresponding to f, f + , and f _ , respectively, then w + , w ~ 2 0 and 
w=w+-w-. Hence, 

j”, IW(X, t)l dx= j% w+(x, t) dx+ j”, w-(x, t)dx 

= jm f+(x) dx+ jm f-(x) dx, 
-co -co 

and so for v 2 1, the conclusion of part (a) in Theorem 4.4 follows easily. 

5. FURTHER RESULTS FOR THE RLW-BURGERS EQUATION 

It is our goal here to demonstrate that solutions u of the nonlinear 
problem (3.1) have many of the same gross asymptotic properties as solu- 
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tions w of the linearized problem (4.1). The following theorem shows that 
various properties of u are equivalent; in particular, a time-independent 
bound for 1 u( ., t)l 1 is equivalent to one for 11’41( u( ., t)l\. We shall prove in 
Theorem 5.5 that condition (c) below holds for any v>O. The proof 
depends on a transformation of Cole-Hopf type which allows us to replace 
(3.1) by an equation similar to the heat equation. A much simpler proof of 
the equivalent condition (a) is possible when v > 1, and this is given in 
Theorem 5.4. The proof depends on maximum principles and is analogous 
to that for Theorem 4.4. 

THEOREM 5.1. Let f E L, n Hz and u the solution of (3.1) corresponding 
to the initial data f. Then the following properties of u are equivalent: 

(a) SwoG,<m l4., t)ll< a, 
(b) suPo<t<au I~(., tN,< 003 
(c) SUPO<l< 5 F2 & u2(x, t) dx < 00. 

Proof. (a) =s. (b). This is clear since 

(b) S. (c). The use of (3.2) and Parseval’s theorem gives 

its” (u*+u;)dx 03 

= jm (u2+u;)dx-2vt j= u;dx 
-cc -m 

I 

m 
= -~ lti(y, t)l’dy-2vt jm y*lti(y, t)l’dy+ jiL ufdx 

- cc -cc 

< s ,,,, <(2vr)-‘iz I fib, [)I2 do + jm ui dx -02 

<Ct-‘I’+ j” u;dx, 
-‘x 

where C is a constant provided by (b). This inequality, when integrated 
with respect to t over [0, T], yields (c) since U,E L,(R x R’). 

(c) =s. (a). Applying the Fourier transform in the spatial variable x to 
(3.la) gives the relation 

(I+ y’)$ti(y, t)+(vy’+iy)ti(y, t)= -;$(y, t), 



26 AMICK, BONA, AND SCHONBEK 

for (y,r)ERxR+. Viewing this as an ordinary differential equation for 8, 
we obtain ti implicitly in the form 

-2(1~y~)~~enp[(~)(s-t)]~(Y,s)ds, (5.1) 

The first term on the right-hand side of (5.1) is just the Fourier transform 
6~ of the solution w of the linearized problem (4.1) with initial data 
f= u( ., 0). Part (a) of Theorem 4.4 implies that lw( ‘, t)[ I is bounded, 
independently of t 2 0. The elementary theory of the Fourier transform 
allows us to represent the second term on the right-hand side of (5.1) as the 
Fourier transform of the function 

T(.X - y, s - I) u*(y, s) dy ds, 

where 

t(Y$ r)= 1 + y2 -...Le,p[(~)~]. 

To establish (a) it thus suffices to show that Ig(., t)l I is bounded inde- 
pendently of t, and this will follow if it can be shown that 

w=/; lt(-, s- t>lt lb4.i s)l12 ds (5.2) 

is bounded. A calculation shows that 

[r( ., -r)l, G constant y-‘j2, (5.3) 

for Y > 0, where the constant is independent of r. Using this bound and (c) 
leads to 

where C connotes a constant. The theorem is proved. 

The following corollary improves upon Proposition 3.3, bringing the 
rates of decay for certain norms into line with those obtained for the linear 
problem in Lemma 4.1. 
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COROLLARY 5.2. Let u be as in Theorem 5.1 and suppose u satisfies one 
of the equivalent conditions (a), (b), or (c) appearing in the statement of that 
theorem. Then it follows that 

(4 suposr<3C t1’21u( ., t)l~ < CO, and 

(b) s.~p~~,<~ t3’2J:m (u4+u;)dx<co. 

Proof. (a) Suppose (b) holds. Then, 

d 3lu(., t,l: IIu,(., t)ll = ow3”), 

as t + CO. Hence (a) holds. 
(b) Multiply Eq. (3.la) by u,, and integrate over R to obtain 

Id m -- 2dtj_ 
5 

b:+&W= -vjm 
--m 

& dx + j m uu, u,, dx 
-cc 

< -1 
s 

m 1 cz 
2 --cc u;,dx+- s 2v -m 

u’u; dx. (5.4) 

If (5.4) is added to formula (3.16), there appears 

dH m x 
dtd -A 5 

I& dx - B 
s u’uf dx, 

-m v-5 
(5.5) 

for t > T, where 

H(t)=;(v+d+l) jx_u:dx 

b = 
+z pm s 

1 00 
u4dx+- 

s 2 -Lx 
uzx dx 

and A, B, b, and T are suitably chosen positive constants. It follows from 
(5.5) that 

$(t2H(t))<t(v+t+l) j:mu:dx+;jymu4dx 

At2 00 
-1 

m 
2 -cc 

ut\- dx - Bt* 
I 

u*u; dx, 
-cc 

(5.6) 
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provided 12 T= max( T, 2/A). Now use Parseval’s theorem and part (b) of 
Theorem 5.1 to conclude that 

constant 
G p ) (5.7) 

where a2 = 2(v + v-l + 1)/A. If we set v = u2, then 

bt = 
s I 

00 

T P-5 
u4 dx - Bt2 u2u2 dx x -m 

bt 0~ 
s 

Bt2 0~ 
=2 -rn 

v2dx-- 
s 4 -cc 

v; dx 

(5.8) 

with b’ = 26/B, where Parseval’s theorem and part (c) of Theorem 5.1 have 
been used. (Since v = u2, 

u2(x, r) dx < 
constant 

p .) 

Using (5.7) and (5.8) in (5.6) gives 

g ( t2H(t)) < Co/sj2yt, 

whence H(t) < Ct -3/2, as desired. The corollary is thus proved. 

Inequality (3.5), Corollary 5.2(b), and the arguments after Corollary 4.3 
ensure that 

lim inf t1’21a( ., t)l m = 0 
t-cc 

if and only if 

lim inf t”4~jz4( ., t)ll = 0. 
,-rCX 
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We shall show in Theorem 5.5(b) that the latter relation holds if and only 
if the initial data S has zero mass 

s 
cc -mf(x)dx=o. 

Theorems 5.1 and 5.2 yield the estimate 

sup t.i+ 112 
I 

Co liT$.l(x, ty* dx < cc 
l&O - cc 

for j = 0 and I, and it is natural to expect similar estimates for j= 2,3, . . . . 
This is shown in the following coroilary which is stated without proof. (The 
proof follows lines that are by now familiar.) 

COROLLARY 5.3. Let f E L, A H k + I, k > 1, and let u denote the solution 
of (3.1) corresponding to the initial data f. suppose u sa~is~es the ~and~t~ons 
of Theorem 5.1. Then 

and 

sup t 
jt l/2 

5 O3 [i3i,~(x,t)J'dxcco for O<j<k 
120 -a: 

sup f”‘l”2/di,U( *, t)l r*, < Go for O<j<k- 1. 
t>0 

The rest of this section is devoted to showing that one of the conditions 
(and therefore all of them) in Theorem 5.1 does in fact hold. First, we 
present an easy proof based on the work of Lucier 121, 221 that condition 
(a) of Theorem 5.1 holds in case v > 1. We also show that solutions of (3.1) 
eventually satisfy maximum and minimum principles, just as for the linear 
problem (see Theorem 4.4). Afterwards, the main result of this section is 
stated and proved, namely that condition (c) of Theorem 5.1 obtains 
for solutions of (3.1) provided only that the data is suitably restricted 
and v >O. In fact, even more precise information about the temporal 
asymptotics is obtained, as will be apparent presently. 

THEOREM 5.4. Ler v > 1, f E L, n H’, and u the solution of (3.1) corre- 
sponding to the initial data f. Then, 

(4 suposrCm Id-, t)ll < 00, and 
(b) Z~T~ssuch that lu(.,t)l~~2(v-l)~ura~~t~T, lu(*,t)ll isnon- 

increasing for t > T. If u(x, s) 2 0 ( ~0) for all x and same s > T, then 
ufx, t) & 0 ( GO) for all x and for all I 2 s. moreover, if for some t & 1; 
u(x, t) takes its maximum value at .Z, then uI(.f, t) < 0, and lyu(x, t) takes its 
minimum value at 9, then u,(j?, t) > 0. 
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Proof Theorem 2.1 assures that [u(., t)li is bounded on bounded tem- 
poral intervals. Since iu( -, r)/ m --, 0 as r + co, the hypothesis of part (b) 
above is satisfied for T large enough. If (b) holds, then for t 2 T, luf ., t)l i 
is nonincreasing, and so (a) holds. 

Following the calculations that led to (4.14), but applied to (3.1) instead 
of the linearized equation (4.1) leads to the formula 

24x, t)= -vu(x,t)+~jme’~Y[vu(y,t)-u(y,t)-~~2(y,t)]~~~ 
x 

vu(y, t)+u(y, t)+iu2(y, t) dy, 1 (5.9) 

which holds for any (x, t) in IfI x R +. Since v > 1, Lemma 3.1 assures there 
is a T>O such that /u( -, t)/ o3 G 2(v - l), for t 2 T. Equation (5.9) implies 
that 

$[e%(x, t)]=ie”[ jmei~y(vu-u-~u2)dy 
x 

+ j= eY--x 
( 

1 
vu+u+-22 dy , 

-EC 2 1 1 
and so, if t>s>, T, 

ey%4x7 t)l < e%(x, s)l + j' e”A(x, r) dr. 
s 

IIere, we have impli~tly defined 

A change in the order of integration shows that 

1 a, 

=2 i -m ux7s 
I( )I[1 v-1-iu(x,s) 

+ v+l+$4(x,s) 
II 

dx. 

(5.10a) 

(510b) 
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Since lu(x, s)l < 2(v - l), 

Iv - 1 - $4(x, s)l + Iv + 1 + $(x, S)l = 2v. 

Hence if (S.lOa) is integrated with respect to x over R, there obtains 

e Yf js 
--m 

(u(x, t)[ & < evs ?;% lU(X, S)l dx + v J’ evr {ym Iu(x’ r)l dx dr’ 
s 

(5.11) 

holding whenever t 2 s 2 T. If we set 

H(t)=S’e’“Jm lu(x, r)l dxdr, 
s -m 

then (5.11) may be written compactly as 

H’(t) d H’(s) + VI-q(t), (5.12) 

for t >, s 2 T. Inequality (5.12) yields immediately that 

ve-“‘~(f) < jf’(s)(e-“” -em”‘) = [ 1 _ e’-‘ttes) 1 j-” I@, 311 dx. - m 

If the last inequality is used in (5.1 l), we find that 

5 m lu(x, t)l dx < e-v(t-si i”; ju(x, s)l dx+ [ 1 - e--y(f--s)] jx lu(x, s)l dx 
-- cc i-cc -02 

for any t B T. Thus the L,-norm of u is nonincreasing for t 2 T. 
The rest of part (b) follows just as in the proof of Theorem 4.4, once the 

restriction lu(x, r)l <2(v- l), holding for t 2 T, is taken into account. 
Accepting this remark as valid, the theorem is established. 

THEOREM 5.5. Let v > 0, f E L, n H2, and u the solution of (3.1) corre- 
spending to the inifi~~ dafa f. Then if follows thaf 

(a) ;;j: t’/* Se u2(x, t) d.u< 00, 
-a 
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and in fact 

s 
co 

(b) lim t”* u*(x, t) dx 
r-U2 -‘x 

4v2(u+ - l)* 

= 2nd I 
Oz e - 2u2 

du, 
-a (1+ [(u, -1)/&c] ju” e-s2ds)2 

where v + =exp(-(1/2v)S”“,f(x)dx). 

The proof of Theorem 5.5 will depend on an initial lemma which shall 
appear shortly. It will be assumed throughout the remainder of this section 
that the hypotheses of Theorem 5.5 hold. 

Set fi(x, t) = $(x + t, t) so that 

ii, + ziz, - vii,, + ii,,, - z7x,, = 0. (5.13) 

Since f ELi, it follows from Theorem 2.2 that ii,, Z?E C(0, T; L,) for each 
T > 0. We define 

U(x, t) = jx ii(y, t) dy. 
--co 

Then because of Theorem 2.2, U is uniformly bounded on R! x [0, T], for 
any T > 0, and satisfies 

U,(X, t) + (UJX, t))* - vU,(x, t) - $4,t(x + t, t) = 0. (5.14) 

Following the classical Cole-Hopf idea, set U = - v log v so that 

v, - vu,, = Fv, (5.15) 

where F(x, t) = -u,,(x+ t, t)/2v. Note that, for any t 20, v(x, t) = 
exp( -v-‘U(x, t)), and so 

lim u(x, t) = 1, (5.16a) 
.x+--m 

=exp( -(2v)-‘SI;, u(~,O)dy), (5.16b) 
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since the total mass is independent of time. Note also that since U is 
uniformly bounded on R x [0, T] for any T > 0, it follows that 

0-c fff, u(x, t) G sup u(x, t) < co. 
O<r< T xeR 

O<(<T 

(5.17) 

Our first task will be to demonstrate that the last-displayed inequalities 
hold uniformly in T. 

LEMMA 5.6. Let u(x, t)=exp(-v-‘U(x, t)), where 

qx, t) =; j” u(y+t, t)dy. a! 

Then 

0 < inf inf u(x, t) < sup sup U(X, t) < 00. 120 xcR r>o xoR 

Proof: Let 

G(z, z) = (4n~z)-‘/~ exp 
i > 

--& (5.18) 

be the Green’s function for the heat equation. Then if 0 < TG t, the 
solution u of (5.15) satisfies the integral equation 

u(x, ~=j:s_“, G(x- y, t-s) U(Y, 3) F(Y, s)dyds 

+sm G(x - Y, t - 7-1 u(y, T) dy 
-cc 

= fqx, t) + s-(x, t), (5.19a) 

say. Fix t > T and observe that 

IW, t)l< SUP b(.,s)lm j' jr IF(y,s)l Gb-y, t-s)dyds 
T<s<t T --SJ 

G SUP b(., s)lm 1’ II1;‘(.,s)ll IlG(., t-s)11 ds. 
T<SCf T 

One determines readily that 

llG(-, r-s)/\ dC(t-s)-14, 
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where C is a constant. By absorbing v-’ into the constant C, we have 

IW .? t)l ,<c sup ,v(.,s),, j;“;I,-‘;);/y’ds. (5.19b) 
T<s<r 

We also have 

ISt.7 t)l, d IGt.3 t- VI, lot., TN, = Iu(., T)I,. 

It thus follows from (5.19a) that 

SUP w, 41~ G 14., 271, + c SUP w, 41, SUP ~6, 7-1, (5.20) 
T,cs<t Tss<r T<s<t 

where 

(5.21) 

The rest of the proof of Lemma 5.6 is broken into two parts, (a) and (b). 

(a) Our first goal is to show the final inequality in the statement of 
the lemma, and this will necessitate consideration of the term involving K 
in (5.20). In estimating K(s, T), first consider the case where s E [T, 2T]. 
Then, it transpires that 

j;~s_:)l'id~]1'2 {j; Ilu,,(., d12d~}"2 

112 
< fi (s - T)“4 m I/u,,( ., ~)ll* dr 

T 

(5.22) 

and this tends to zero as T -+ co by Proposition 3.3. 
We now consider the case that S> 2T. Using the inequality in (5.22) 

yields 

K(s, 7’) = j 

G i 
; ‘:“s’l’;,$ d7 + {2s112 jm IIu,,( ., 7)112 dT}“* (5.23) 

s 
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The second term on the right-hand side of the last inequality tends to zero 
as T+ co, since s > T, as already remarked. The other term on the right 
can be bounded above as follows: 

Formulae (3.16) and (3.17) derived in the proof of Proposition 3.3 give 

for certain positive constants A and B. Using the latter relation in (5.24) 
leads to the inequality 

s 
s T3~4/lu,,( -, t)ll’ dz 
T 

<-- 
I 

’ 23/4 -$ [Allu,( -, z)lj2 + Blu( -, T)\:] dz 
T 

G T3’4C4/~,~f~, T)//*+%4-, TN:1 

3 
+i j;$ CAIIu,(.> ~)ll’+ Blu(., #I dT 

< T3’4[AIIU,(*, T)l1*+Blu(., T#] 

+ cP4 ; llu,( ., s)l12 df”, (5.26) 

where C denotes various positive constants. To achieve the last inequality 
we used the fact that Il(u( ., z)ll and Ilu,( ., r)lj are bounded and the elemen- 
tary inequality 

Q4llut.s T)l16 IIU,J~, 2)112GC~lU,(~, r)l[Z. (5.27) 
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The use of (5.26) with (5.23) and (5.24) gives, for sa2T, 

K(s, T)< 2s”’ ja 1Iu.J ., z)ll’dt 
1 

“* 
3 

+ C j+; IIu,( ., T)ll’ mi’” 

+ C{ T”*/lux(., T)ll*+ T1’*lu(., T)l:}“*. (5.28) 

The use of Proposition 3.3 and the fact that U, E L,(Iw x [w+) coupled with 
(5.28) show that 

lim sup K(t, T) = 0. 
T-cc f,T 

(5.29) 

Reference to (5.20) shows therefore that for T sufficiently large, and any 
t> T, 

sup Iv(., ~11, < lo(., T)I, +I sup I4., s)lm, 
T<SSf TSSLI 

or equivalently, 

SUP lot., ~11, G2ld., T)I,. 
T<SCf 

It follows that 

sup 14.7 t)lm < 0. 
130 

(5.30) 

Thus the right-hand inequality in (5.17) is seen to hold if T is taken to 
be co. 

(b) We now prove the first inequality in the statement of the lemma. 
From Eq. (519a), u(x, t)-S(x, t)= R(x, t), so that 

IN.9 t)-S(., t)l, = Ia.7 [)I,. 

Hence (5.19b) and the definition (5.21) of K imply that 

sup I4.~~)--s(~,~)I, 
TGSQI 

dC sup Iu(., s)l, sup K(s, T) < C, sup K(s, T), 
T<S<l T<SCl T<S<I 

since u is uniformly bounded by (a). It follows from (5.29) that 

lim sup Ju(.,s)-S(.,s)j,=O, 
T-tcosTT 

(5.31) 
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whence 

By its definition in (519a), one discerns that 

S(X, t) = [47~v(t- T)]-‘/* [_S 0, T) exp (_:;J_y~)) 4~. (5.33) 

Define k by 

k=min{u(-co, T), u(co, T)} = min{l,exp(-&[ymu(x,O)dx)). 

(5.34) 

Let E > 0 be given and choose A4 = M(E) so large that u(y, T) 2 k -E 
provided I yl 2 44. Then, since u is uniformly bounded and A4 is fixed, 

S(x, t)= [4nv(t- T)]-‘j2jm [u(y, T)-k+E] 
--to 

xexp( -:~(~~~))dy+k-n 

ak--E-- [4nv(t- 7-)]-‘.‘jM Iu(y, q-k+&1 dy 
--M 

>,k-e-C(t-T)-I’*. 

Hence, it follows that 

lim inf inf S(x, t) 2 k - E, 

and because E > 0 was arbitrary, it is concluded that 

lim inf inf S(x, t) > k. 
t-cc XER 

(In fact, the reverse inequality also holds since S(x, t) + u( + co, T) as 
x -+ + co.) The use of this estimate with (5.31) implies that 

lim inf inf u(x, t) 2 k. 
r-m xsR 

(5.35) 

This concludes the proof of the lemma. 
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VAX, t) u.x(x, t) = qx, t) = - v ~ 
44 t) . 

Because v is bounded away from zero according to Lemma 5.6, questions 
concerning evanescence of IIu( ., t)ll = 2/lfi( ., t)ll, as t -+ co, are equivalent to 
the same questions posed about Ilv,( ., t)ll, as t + co. Advantage will be 
taken of this observation in the next stage of the proof. 

Proof of Theorem 5.5. Part (a). For the moment, the right-hand side of 
(5.15) is renamed g, so that 

v, = vu,, + g, (5.36) 

where g(x, t) = - v(x, t) u,,(x + t, t)/2v. Let T> 0 be fixed and, as in 
(5.19a), define S to be the bounded solution of 

s, = vs,, 3 (x, t)ERx(T, a), 
S(x, T) = v(x, T), XER. 

(5.37) 

Let x = S,, so that 

XI = VX,,~ (x,t)~Rx(T, co), 

x(x, 0 = V.&T TL XE R. 
(5138) 

Arguing exactly as in the proof of Lemma 4.1, part (a), it is inferred that 

s m m 
2 

lim t”’ S;(x, t) dx= (Bwc-“* S,(x, T) dx 1 # (5.39) 
t-cc -cc -* 

Thus in particular t1’4JlSx( ., t)ll is bounded as t + co. 
We examine now the dependent variable y = u, - S, = R, (see (5.19a)); 

our intention is to show that 

t”411Y( ., t)ll + 0 as t+co. (5.40) 

The use of (5.40) with (5.39) will then prove part (a) of the theorem. We 
break the proof of (5.40) into two pieces: (i) t”)ly( ., t)ll -0 as t -+ co for 
any ,D in (0, a), and then (ii) the proof of (5.40). 

(i) A short computation shows that 

Yt = VY,, +g*, (x, t)ERx(T, m), 

Y(X, T) = 0, XER. 
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In Fourier transformed variables, this equation has the form 

f P(C, f) + vt*m t) = a, 

9(5, n = 0. 

The latter initial-value problem may be solved to obtain 

y( 5, t) = it j’ e@(‘- “g( 5, s) ds, 
r 

whence 

ily(., t)ll = IIj(~, f)ll 61: l14ev52~s~r)~(5, s)ll ds 

I co 

j (s 

l/2 
= ~2e2y’2’“--1)(~(~, s)12 d< ds. 

T --x 

Elementary considerations show that max,, O xeeax = l/cte, and it is there- 
fore concluded that 

pe*v5%- I) < 1 
2ve(t-s)’ 

Thus we arrive at the estimate 

IIY(., t)ll QC, j;(f-~)-~‘~ Ilg(.,s)ll ds 

d c* I )W”’ lI~,,(~,~)Il ds, (5.41) 

where C, and C2 are constants. This estimate is extended as follows: 

s +-1’2 IId., s)ll ds 

d jr (f--s)-“’ II~.rA~,s)II ds+j,;, (t-~s)-“~ Ib,z(~,.s)II ds 

’ + s (t--s)-“* I(u,~,(., s)ll ds. 
rj2 

(5.42) 
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As in (5.24) and (5.26), 

0 J 
2 1’4 l’* IM.~ s)ll ds 
f T (t-sp4 

y$$ ~1’2CIl~xL N2+ Id.3 n:1 1 
112 I/2 

+ 
( 
j: II%(., s)l12 q } 9 

where C denotes an absolute constant. The use of Proposition 3.3 then 
gives 

lim sup tlr4 
r-m 

/I~,A ., s)ll ds = 0. 1 (5.43) 

We now turn to the second term on the right-hand side of (5.42). By 
Young’s inequality, for any s > 0, 

s ’ t/2 
(t-~)-“~ IIu,,(.,s)I( ds<6j,;2 (t-ss-p’2s-crpdx 

+ f I,:, fW,r( ., s)llq 4 (5.44) 

where p - ’ +q-‘=l anda>O.HerepE(1,2)andinduecourseitwillbe 
taken to be near 2. If the constant a is chosen as 

5-2~ P 5 
a=~, so z+ap=;, 

then 

E 
s 

’ (~-s)-~~2s-mQ’+-+,j1 (1 -x)-Pi2x-‘J’dx+. (5.45) 
f/2 112 

Since q > 2, lIu,,( ., s)/lq < CIIuJ ., s)ll’ because /Iu,~( ., s)ll is a bounded 
function of s. Indeed, the Schwartz inequality applied to (3.14) ensures that 
(IuJ ., s)ll = o(s-“~), as s 4 + co. As for the second term on the right-hand 
side of (5.44), proceed as follows: 

1 ’ 
s 

CP ’ 
; ~,2~OLqll~~,(~~~)IIqd~~- 

E s IId., s)ll* ds 
112 

C 
<-- pq 

s O” IId., s)l12 ds. (5.46a) 
E f/2 
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As shown in Proposition 3.3, the last integral is o(t-“‘), as t -+ co, and so 
it transpires that 

and that p can be made as close as desired to t by taking p near 2. 
Combining (5.41)-( 5.46), it is demonstrated that 

lim sup t”l(Y( a, t)ll = 0, (5.48) 
,-+CC 

where p = i- aq = (4~ - 7~/4(~ - 1) and p is arbitrary in (1,2). Putting 
(5.39) and (5.48) together gives 

lim tPI/u,(., t)l] ==O, (5.49) 
2-m 

and so by our earlier remarks, 

(ii) We now use (5.50) to prove (5.40). To begin, note that because 
of (3.5) 

for all t 2 0, where p is as above. Since l/u,J I) 2)/I lies in L,(BB f 1, it follows 
that if j$<p<Z, then ~~(~,t)~~~F”~(ilZ~). Returning to the proof of 
Proposition 3.3, if 

as before, then we still have from (3.18a) that 
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for sufficiently large t. However, now it is known that r~ L,(R+). In 
consequence, it is deduced that 

r(t)=o(tr’), 

as t + cc. Thus, 

I 
33 

crz uf(x, t) dx, u4(x, t)dx=o(t-‘), 
-33 I -m 

as t -+ co. With this improved estimate it is deduced as in the proof of 
Proposition 3.3 that 

cc a 
s 5 t&(x, s) dx ds = o( t ~ ‘), 
f --3c 

as t + co. The last relation, when used in the inequality (5.46a) gives 

1 ’ - E ii2SZVllIl~r(.,S),lqdS~Ctaq-1. 5 E 

But orq - 1 = (9 - 6p)/4(p - l), and if p > $ this means that crq - 1 < - a. It 
follows from (5.41~(5.45) and the last remark that 

lim t1’411y( ., t)ll = lim t1’411R,( ., t)ll = 0. (5.51) 
f-C.2 ,--rcU 

Now u,= y+S,, and so to study the asymptotic behaviour of 
t1’411u,( ., t)ll, it suflices to consider the behaviour of t1/411Sx(., t)ll. In (5.39) 
we saw that 

* lim t “* s S:(x, t) dx= (~vE)-~‘* 
I--r00 -02 

But S,( ‘, T)= a,( ., T), and so 

Oc lim t112 Ss(x, t) dx 
c-cc s -a 

O” SJx, T) dx 
-02 

00 
> 

2 

= (~vTc-~‘~ uxb, T) dx 
-02 

= (8~n)-“~ [0(x, T),““J2 

= (8~7r~“~ [eXP(-~f~~~(x,O)dx)-l]‘, 

I 2. (5.52) 

because of (5.16). 
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We are now in sight of our objective. Recall that ii = - VV~/D, so 

J 

s3 
lim sup t’/* C2(x, t) dx 

t-+53 -cc 

J 
Cc = lim sup t1”v2 ox% f)& 

I-+cu -m v2c% tl 

where k is defined in (5.34). It follows from the definition of G that 

J 
Cc 

lim sup tiiz 2(x, t) dx 
,-CC -- 5% 

In particular, 

as t -+ co. The proof of (a) is complete. 
Part (b). We return to the formula 

cc tc lim flP J u2(x, t) dx= lim 4t”’ J ii2(x, t) dx 
I-+X -cc I+* -cc 

= lim 4t”2v2 J 
m $k t) & 

,-CC - 3c 2(x, t) * 
Recall from (5.19a) that u=R+S, while (5.35) gives 

lim inf i$ Y(X, t) 2 k > 0 
I--iic 

and (5.51) gives 

m lim t112 R: dx = 0. 
I-rcc J --cc 

It follows from these estimates that 

lim t’/’ J a3 u* dx = Iim 4t’%* J * P 
I--r‘33 -$dx. 

.-- x I ̂ -. cc - WV 
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Equation (5.31) implies that IR(., t)l, +O as t -+ co, and so 

lim 
t-^cc I 

03 p u2 dx = lim 4t’r2v2 I 
cc s2 

$ dx. (5.53) 
-cc I--r02 --a 

Recall from (5.19a) that 

and 

where 

Set 

s* = vs,, for (x, t) E Iw x (T, oo), 

S(x, T) = 4% n 

zT(y, T) dy . 
m 

and define 

Z(x) = 
1 for x<O, and 

0, for x>O. 

Set S(x, t) = A(x, t) + C(x, t) + 1, where 

A, = VA,, for (t,x)~(T, co)xlQ, 

A(x, T) = u(x, T) - Z(x), 

and 

c, = vc,, for (x, t)ERx(T, co), 

C(x, T) = Z(x) - 1. 

Note that 

and that 

1 + C(x, t) 2 min(u+, 1) (5.54a) 

(5.54b) 
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Since A( + co, T) = 0, it follows easily that 

and 
14.7 t)l, -+ 0 as t+o~ 

p 
s m A;dx-+O as t-+o~. 
--cc 

A bit of algebra shows that 

(5.55a) 

(5.55b) 

Manipulation of Eqs. (5.53)-( 5.56) yields 

a) lim Pi2 5 Og u* dx = lim 4vZt’” J’ 
c2 

f-m --Co (1dxdx. (5.57) 
-02 r-em2 

The f~ndamenta1 solution for the heat equation allows us to write an 
explicit formula for C, namely 

or, equivalently, 

and consequently 

The use of these formuIae and a change of variables gives 

vq’lz m s c2 -,(1dx 
(I+((D+--L)iv/;;)I~e-‘2dr)zdu’ 

If we use this formula in (5.57), then the proof of (b) is complete. 
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Remarks. If jz”, f = 0, xf (x) E L, , and f E H2, then one can show 
(cf. Lemma 4.2) that 

s 
cc 

lim sup t312 u2(x, I) dx < co. 
1-5 -cc 

It is interesting to compare the estimate from Theorem 5,5(b) for the 
asymptotic behaviour of t”2//u( ., r)/’ with that for the linear equation in 
Lemma 4.1. The ratio J of the “nonlinear rate” to the “linear rate” is given 
explicitly by 

’ (I + ((e”- I)/&) f: eps2ds)2 du’ 

where X= - (1/2v) ST, f(x) dx. Note that J(0) = 1 and that J is an even 
function of A’. One can easily prove the following two results: 

(i ) J(X) < 1 for small X > 0; more precisely 

J(X)2i 1+ 
( 

&--~tandl--$ 
J-1 

X2* 1-0.0044X2 

and 
(ii) J(X) +O as X-t co. 

The obvious conjecture is that 

J(X) < 1 for all X> 0, (5.58) 

but we have not pursued this point. If such a result held (and we know it 
does for small and large X by (i), (ii)), then the presence of the nonlinear 
term UU,~ has the effect of making the solution smaller (as measured by 
t*‘411u( ., t)ll ) than the corresponding solution to the linear equation. 

It follows from Theorem 5.5(b) and the first remark above that 
u~L,(RxR+)ifand only iff”, f(x)dx=O. 

6. PROPERTIES OF SOLUTIONS OF THE KDV-BURGERS EQUATION 

In this section consideration is given to the initial-value problem 

u, + zf, + uu, - vu,,x + u,, = 0, (6.la) 

4x9 0) = f(x), (6.lb) 
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for t > 0, x E R. The detailed regularity properties of solutions of the KdV 
equation and the RLW equation differ somewhat (see Section 2 and 
the references mentioned there). Nonetheless, the theory developed in 
Sections 3, 4, and 5 for solutions of Eq. (3.1) goes over to solutions of (6.1) 
with only two reservations. One difference is that the estimates for u,, (cf. 
Lemmas 3.1, 3.2, and Proposition 3.3) must be replaced by analogous ones 
for u,,-this is expected since (3.1) has a term u,,, while (6.1) has uXxX. 
The other difference is the absence of an analogue to Theorem 4.4(b)-(c). 
Such a result is unlikely to hold. 

The proofs are largely similar to those presented in the context of (3.1), 
and consequently are not presented here. 

7. DISCUSSION 

The foregoing theory provides sharp rates of decay for solutions of the 
KdV-Burgers equation and the RLW-Burgers equation. There are several 
important conclusions emerging from our analysis. First, the considerable 
difference in linearized dispersion relations evidenced in the two equations 
in view here does not change the algebraic rate of temporal decay of the 
standard norms of solutions corresponding to initial data that is smooth 
and tends to zero appropriately as the spatial variable becomes un- 
bounded. Indeed, we observe in both cases that the asymptotic rates of 
decay are the same as those exhibited by solutions of the one-dimensional 
heat equation posed on the infinite line with similar initial data. However, 
while the decay rates exhibit the same algebraic power of t, the nonlinear 
term is seen to play a role in the value of the constant of proportionality 
that appears in the sharp asymptotics of norms of solutions. We attribute 
this phenomenon to the nonlinearity’s propensity to cascade energy into 
higher wavenumbers, which are damped more rapidly than smaller wave- 
numbers by the Burgers-type dissipative term that we have considered. 

More general equations than those in view here arise in modelling 
unidirectional wave motion in nonlinear, dispersive, dissipative media. A 
couple of classes of models that have been suggested in a number of con- 
texts (cf. Albert et al. [2], Benjamin et af. [4], Biler [S. 61, Bona [7, 81, 
Dix [ 111, Felland [12], Kakutani and Matsuuchi [17], Saut [25]) are 
the following, 

u,+F(u),+Mu-Lu,=O, (7.la) 

or 

505/81/l-4 

u,+F(u),+Mu+Lu,=O, (7.lb) 
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where U= u(x, t) is as before a real-valued function of the two real 
variables x and t, F is a smooth, real-valued function of a real variable 
which may be supposed to have F(0) = 0 without loss of generality, and the 
operators L and A4 are Fourier multiplier operators given by the formulae 

G(k) = a(k) B(k) 

and 
h(k) = /t&k) O(k), 

where a and p are nonnegative functions that model the effects of disper- 
sion and dissipation, respectively. Some preliminary decay results are 
available for this class of equations (cf. Biler [S, 61, Dix [ 111, Felland 
[12]). However, detailed results such as those obtained here for the 
relatively simple, local, KdV-Burgers and RLW-Burgers equations have so 
far proved to be elusive. Certainly the analysis that comes to the fore in 
Sections 5 and 6 is not applicable because of the lack of the analogue of the 
Cole-Hopf transformation. 

We conjecture that similar results do obtain in the context of the class 
of Eqs. (7.1), and that one will again observe that the optimal decay rate 
is that of the linearized equation corresponding to (7.1) in which the non- 
linear term is simply dropped. Moreover, we also expect that the analogue 
of (5.58) will obtain, pointing to the conclusion that nonlinear effects will 
generally result in a cascade of energy into higher wavenumbers. Informa- 
tion concerning such systems would surely enhance our understanding of 
the interaction between nonlinearity, dispersion, and dissipation in wave 
motion. 
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