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Summary. After a review of the existing state of affairs, an improvement is made in 
the stability theory for solitary-wave solutions of evolution equations of Korteweg- 
de Vries-type modelling the propagation of small-amplitude long waves. It is shown 
that the bulk of the solution emerging from initial data that is a small perturbation 
of an exact solitary wave travels at a speed close to that of the unperturbed soli- 
tary wave. This not unexpected result lends credibility to the presumption that the 
solution emanating from a perturbed solitary wave consists mainly of a nearby soli- 
tary wave. The result makes use of the existing stability theory together with certain 
small refinements, coupled with a new expression for the speed of propagation of the 
disturbance. The idea behind our ~:esult is also shown to be effective in the context 
of one-dimensional regularized long-wave equations and multidimensional nonlinear 
Schr6dinger equations. 
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1. Introduction 

This paper is concerned with the stability theory of solitary-wave solutions of nonlin- 
ear, dispersive evolution equations and aims to point out an interesting consequence 
that has apparently gone unnoticed heretofore. Our remarks have a broad range of 
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validity including to one-dimensional equations of the form 

ut + f ( u ) x  - Lu~ = 0, (1.1) 

which have generalized Korteweg-de Vries-type, to one-dimensional equations of the 
form 

ut + f (u ) x  + Lut = 0, (1.2) 

which have generalized regularized long-wave-type, and to multidimensional evolu- 
tion equations 

iZg t "~ A l l  "4- lUI2a U -~- 0 (1.3) 

of nonlinear Schr6dinger type. In (1.1) and (1.2), u = u(x, t) is a real-valued function 
of the real spatial and temporal variables x and t, f is a smooth, real-valued function 
of a real variable, and L is a Fourier-multiplier operator defined by 

L%(~) = ~(#)~(~), 

where the circumflexes connote Fourier transforms and ot is a measurable, even, 
real-valued function. In (1.3), u is a complex-valued function of the spatial variable 
x = (xa . . . . .  xn) ~ R n and the temporal variable t, and cr is a positive constant. 

A solitary-wave solution of (1.1) or (1.2) is a traveling wave u(x, t) = ~oc(x - ct), 
where c > 0, say. Such solutions are usually like the archetypical sech 2 solitary-wave 
solution of the Korteweg-de Vries equation, positive with a single maximum, 
being symmetric about this maximum and monotonically decreasing to zero as the 
independent variable becomes unboundedly large (cf. Benjamin et al. 1990 and 
Weinstein 1987), but these attributes will not play a crucial role here. The 
traveling-wave solutions of (1.3) to be considered here are solutions u of the form 
u(x , t )  = e i~° t~ow,o(x -  Ot), where o) is a scalar, 0 ~ R n, and ~0,o.0 is spherically 
symmetric about a single maximum, and decreasing monotonically to zero at infinity. 
Of special concern in applications are the ground states which are standing waves 
having 0 = (0 . . . . .  0). 

Traveling-wave solutions of evolution equations have an intrinsic interest as 
simple--and sometimes explicit--solutions of evolution equations. Solitary-wave 
solutions are of special importance because of the distinguished role they sometimes 
play in the solution of the initial-value problem for the evolution equation in 
question. This is perhaps best known for completely integrable equations like the 
Korteweg-de Vries equation or the one-dimensional cubic Schr6dinger equation, 
where inverse-scattering theories give precision to their special role. However, 
numerical experiments have shown that even without the presence of an inverse- 
scattering theory, solitary-wave solutions continue to play a dominant part in large 
classes of solutions (cf. Bona et al. 1986, 1991, 1993, 1994). While exact theory 
attesting to the special role of solitary waves is not generally available, partial 
indication is provided by the stability theory for such waves to small perturbations of 
the initial data. This latter theory, which is interesting in its own right, thus takes on 
more importance as our understanding of nonlinear dispersive evolution equations 
deepens. 
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The mathematically exact theory for the stability of solitary waves for equations 
like (1.1) or (1.2) was begun by Benjamin (1972) in a paper devoted to the Korteweg- 
de Vries equation 

ut + ux + UUx + Ux~x = 0 (1.4) 

and to the regularized long-wave equation 

ut + uz + uux - uxxt = O. (1.5) 

Benjamin's theory was refined and improved by Bona (1975). The outcome of these 
two papers was a mathematically exact theory of the stability of the shape of solitary- 
wave solutions of the above-mentioned equations. The theory is concerned with the 
persistence of these traveling waves under small perturbations of initial data. Thus 
one imagines a given initial wave form u(x ,  0) = ~p(x) specified for all values of x, and 
attention is given to the solution u of (1.4) or (1.5) emanating from 7s. In the case of 
either (1.4) or (1.5), the specification of u(x ,  0) = ~k(x) for all x is sufficient auxiliary 
data to determine a unique solution provided 7~ is selected from an appropriate class 
of functions with some smoothness and evanescence at infinity. The theory states that 
if 7t is near to one of the solitary-wave profiles 

21"cl/2z" ~ 2 [" c l /2z  "~ 
~o~(z)=3csech \ | T  ] or ~o~(z)=3csech / - - -  / (1.6) 

\2(1 + c)1/2 } / 

of (1.4) or (1.5), respectively, then the solution u emanating from the initial data 
will always resemble ~oe in shape. More precisely, it is concluded 

inf Ilu(., t) - ~o~(. + y)[[ (1.7) 
yE~ 

is small for all time provided it is at t = 0. Here the norm is H 1 (see Section 2). 
Thus, by suitably translating the solitary-wave profile ~oc, one can nearly match it to 
the solution u and the assertion that the solitary wave is orbitally stable, or stable in 
shape is a consequence. 

For several years after these initial forays there were no new developments. This is 
owing, in part, to the overall complexity of the Benjamin-Bona theory and, in part, to 
the difficulty of establishing certain, crucial information about the self-adjoint linear 
operator L + c - ~o¢ associated with a Liapunov functional for (1.4) and (1.5) (again 
see Section 2). 

The next advance appears to have been made by Bennett et al. (1983) in their study 
of the stability of the Benjamin-Ono equation's solitary waves. While their theory still 
required a complete spectral analysis of L + c - ~oc, they did observe an interesting 
simplification of the general outline of the theory. Weinstein (1986) made an impor- 
tant observation that simplified substantially what was needed of the spectral analy- 
sis in order that the theory yield results. There followed a spate of papers--Albert 
(1992), Albert et al. (1987), Bona and Sachs (1988), Bona et al. (t987), Gritlakis et 
al. (1987), Maddocks and Sachs (1992), Pego and Weinstein (1992, 1993), Weinstein 
(1987)--that further simplified the overall argument demonstrating stability, clarified 
and sharpened what was required from the spectral analysis, and very considerably 
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broadened the range of the theory's applicability. In large part, the enhanced collec- 
tion of cases that fall within the theory's purview owes to the development of sharper 
sufficient conditions for the needed spectral information (Albert 1992, Albert et al. 
1987, Bona et at. 1987, Weinstein 1987) In addition, instability results were derived 
(Bona et al. 1987 and Strauss and Souganidis 1990) that showed the stability theory to 
be sharp in its applicability. That is, in the presence of the right spectral information, 
solitary waves that are not proved to be stable by the theory are in fact unstable. 

For the one-dimensional equations (I.1) and (1.2), the general outcome of the 
most recent stability theory takes the following form. Respective of some norm 11 • 11 x 
on a reflexive Banach space X taken with regard to the spatial variable x, it is con- 
cluded that if ~0c is a solitary-wave solution of the equation in question and ~p is initial 
data that lies close to (pc in the norm under consideration, then 

inf [lu(., t) - ~0c(. + r)llx 
r~R 

remains small, uniformly in t, where u is the solution with initial data ~p. Since the 
collection of all translates {~0c(x + r)}r~r comprises exactly the orbit {~0c(x - cO}taR 

of the solitary wave in question, this is a result of orbital stability. Alternatively, the 
conclusion reached by the stability theory is that for all time, u resembles in shape the 
original traveling wave from whose perturbation it developed. A similar, but slightly 
more complicated remark to be explained in Section 5 applies to traveling-wave 
solutions of (1.3). 

While the theorems just informally stated are very attractive, they leave aside 
the question of the speed and, in the case of the SchrSdinger-type equation, phase 
with which the solution u propagates. In certain special situations, namely, for the 
completely integrable Korteweg--de Vries-type equations, it is known that the bulk of 
the disturbance flowing out of the perturbation ~ travels at a speed near to the speed 
c of the unperturbed solitary wave. Indeed, one can infer using the inverse-scattering 
theory that the solution u is comprised exactly of a solitary wave ~od(x - d t  + xo) 

whose speed of propagation d is close to'c, plus a remainder which is uniformly small 
in time and which separates spatially from the bulk of the solution provided by ¢pd 
(cf. Eckhaus and Schuur 1983). We are not able to establish this latter result for the 
general class of equations in view, but it will be shown that the disturbance u does 
have an approximate speed of propagation and that this approximate speed is close 
to c. While such a result is to be expected, it is here established unequivocally. In 
his analysis of two-solitary-wave solutions of the Klein--Gordon equation, Warchall 
(1986) assumed the stability of individual solitary waves and determined bounds on 
the phase and translation using computations reminiscent of those that come to fore 
in Section 5. His ultimate goal was the existence of a wave operator for this class 
of equations that takes account of the solitary waves that are assumed to emanate 
from general classes of initial data. A more precise result, along the lines of what 
one would expect from the inverse-scattering theory, has recently been established 
by Pego and Weinstein (1992, 1993) in a very substantial contribution that applies to 
a limited range of KdV-type equations and restricted classes of initial data. 

We plan to concentrate on the theory for the Korteweg-de Vries-type equations 
in Sections 2 and 3. Section 2 contains a concise technical review of the existing 
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stability theory for KdV-type equations, concentrating especially on the aspects that 
come to the fore in our analysis. A couple of new points are raised and settled in this 
recapitulation. Section 3 presents the calculation leading to the main result, while 
Section 4 outlines the changes needed to adapt the preceding results to regularized 
long-wave-type equations of the form (1.2). The nonlinear Schr6dinger equations are 
treated in Section 5, whilst interpretation, extensions, and some ad hoc commentary 
about open questions is saved for the last section. 

2. Review of Existing Theory 

As already mentioned, the stability theory for solitary-wave solutions is quite advanced 
in certain respects. Indeed, under hypotheses that encompass most of the interesting 
physical examples, there are sufficient conditions for stability that appear to be close 
to necessary. It will not be required here to recount in a detailed way the conditions 
that are known to lead to stability. Rather, the point of view taken is that in the 
presence of the usual conclusions of the stability theory, extra information is available 
regarding the speed at which the main portion of the solution corresponding to the 
perturbed solitary wave propagates. 

In the present section the theory relating to the models (1.1) is recounted. In the 
next section, the conclusions reviewed here are shown to yield our principal results 
about Korteweg-de Vries (KdV henceforth)-type equations. 

As discussed in the Introduction, the outcome of the stability analysis will refer 
to a Banach space X. Throughout our discussion, it will be supposed that the initial 
data ~ belong to a function class g which, like X, is a reflexive Banach space, and 
for which the initial-value problem under discussion is globally well posed. By this 
we shall mean that corresponding to each 7r 6 Y there is a unique solution u of 
the differential equation that lies at least in the class C(IR; Y) of functions v of (x, t) 
such that v(., t) ~ Y for each t and such that the correspondence t ~-~ v(., t) is 
continuous from [~ to Y. It is supposed additionally that the distributional derivative 
of u with respect to t, Otu, ties in C(R; X) defined analogously to C(R; Y). Moreover, 
we assume that the correspondence lP ~'+ (u, Otu) is, for each finite T, continuous 
from r to C([ -T ,  T]; g ) x C ( [ - r ,  r] ;  X), where the spaces appearing in the Cartesian 
product carry the Banach-space structure given by the norms 

[iullc([~,b];~'~ = max Ilu(.,t)l[g and []v[tC([a,bJ;AO = max Ilv(.,t)l]x, 
a<_t<b a<t<b 

respectively. Of course, if Y C X with a continuous embedding, then u 6 CI(N; X). 
Such will be the case for the KdV-type equations and we will assume it to be provided 
in this and the next section. 

In addition to the notation introduced above, we shall also use other more or less 
standard notation. For 1 <_ p < ~ ,  Lp = Lp(N N) is the class of pth-power integrable 
functions with its standard norm. If f ~ Lp, the norm of f will be written Iflp. For 
s > 0, the L2-based Sobolev space H s = Hs([R N) is the Hilbert space of L2-functions 
whose derivatives up to order s also lie in L2. The norm of a function f ~ H s will 
be denoted llfIIs. It will be supposed throughout that X ~-+ L2. 
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We will say that a solitary-wave solution us(x,  t) = ~oc(x - ct) is orbitally stable in 
X if given E > 0 there exists 8 > 0 such that for any ¢ 6 Y with IlaP - ~oc II x < 8, the 
solution u emanating from the initial data ~ has the property that 

inf Ilu(., t) - ~oc(- + r) l lx _< E (2.1a) 
rER 

for all t. Another,  technical stipulation will be added to the definition of  stability, 
namely, the requirement that there is a constant Coo depending only on a finite 
upper  bound for ~ and II~P l[ r such that 

sup lu(., t)loo < Coo < + ~ .  (2.1b) 
tE• 

According to the theory in Bona et al. (1987), which gives necessary and sufficient 
conditions for stability of  a broad class of  equations of the type in (1.1), condition 
(2.1b) is always provided when the solitary wave is stable. The term "orbitally stable" 
will often be abbreviated to simply "stable" or "stable in X" if X is not understood 
f rom the context. 

In the proof  of  the validity of  (2.1), it is actually demonstrated that there is a 
choice y = y( t )  for which 

Ilu(-, t) - ~Oc(. + ¥(t)) l lx  < E (2.2) 

for all t. Naturally, condition (2.2) implies that of (2.1). Interest will focus on the 
function y ( t ) ,  and it is our aim to understand this function better  than heretofore.  
Because the equations determining ~oc and u are invariant under the translation group, 
and supposing the norm on X has the same property, it may be assumed without loss 
of  generality that y (0) = 0. That  is, we might as well suppose the initial data ~p has 
been translated to achieve the best X-comparison with ~0~. 

In the case of KdV-type equations (1.1), X is L2(•), Y is { f  ~ L2 : L f '  ~ L2} 
with the graph norm, and a choice of ), for which (2.2) holds is determined by the 
orthogonality condition 

f_ ~° u(x ,  t)~o~(x + d x  = o, (2 .3)  Y) 
oo 

a specification that had already arisen in Benjamin's (1972) initial paper  on the sub- 
ject. Indeed, (2.3) results f rom appreciating that if (2.1) holds for X = L2 and the 
infimum is achieved at some finite va lue  r0, say, then 

d r)12 ~ l u ( . ,  t) - ~o~(. + = 0. 
r=r0 

A straightforward, implicit-function argument  (see Bona et al. I987, L e m m a  4.1) 
shows that as long as u satisfies (2.1), there is a locally unique choice of  y that  
achieves (2.3). Condition (2.3) appears  as a crucial ingredient in the proof  of  stability. 
The  proof  centers around the two functionals 

F V(U)  = I U2(X, t ) d x  
oo 

and (2.4) 

F ts ] x 
oo 
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where F' = f and F(0) = 0. When evaluated on sufficiently smooth solutions of (1.1), 
these functionats are independent of t, being therefore determined by the initial data 
7r of u. If the linear combination A = E + c V  is formed, then the mapping M: Y --+ 
given by 

MOP) = A(u) - A(~0c), (2.5) 

where u is the solution starting at ~p, comprises a Lyapunov function, the analysis of 
which leads to verification of the property in (2.1a). Indeed, using Taylor's theorem, 
the functional M(Tt) may be written as 

M(gr) = A'(~oc)(h) + ½A"(goc)(h, h) + O(][h 113), (2.6) 

roughly speaking. Here h(x ,  t) = u(x ,  t) - ~oc(x + y ( t ) )  with y still to be determined. 
The functional A has been chosen so that A'(~Oc) = 0, and the heart of the analysis 
is then centered on the quadratic form A'(~oc), which may be written as 

A"(~oc)(h, h) = (~h, h), (2.7) 

where the inner product is that of L2 and ~ is the linear operator highlighted earlier, 
defined by 

~ v  = L v  + cv  - f'(~pc)V. (2.8) 

Upper and lower bounds on the quadratic term on the right-hand side of (2.6) are the 
key ingredients to the use of M in establishing stability. Upper bounds are straight- 
forward in typical cases that arise in practice, and the crux of the matter is effective 
lower bounds. One obvious problem is that .Y may have a nontrivial kernel, and in 
fact ~(~0'c) = 0. Thus the orthogonality condition (2.3) is seen to assert that y = ?'(t) 
is chosen so that u is orthogonal to the kernel of ~.  [The fact that ker(~) = span{~0~} 
is a point that the theory must provide; see Albert (t992) for the best result about 
this aspect.] Another point is that ~ necessarily has negative discrete eigenvalues. 
Again, this is an aspect with which the existing theory contends and we need say 
no more about it here. The point of view taken henceforth is that if y(t) is chosen 
according to the rule in (2.3), then under certain additional hypotheses, (2.1a) is valid 
and it is our aim to investigate further what can be said in these circumstances. Note, 
incidentally, that in principle there might be more than one choice of y that satisfies 
(2.3) for a particular value of t. The theory shows that any such value satisfies (2.1a) 
with r = ?' provided II# -~0cllx _< ~. We shall show in a moment that in fact, y is 
uniquely defined if e is sufficiently small. 

A prototypical example of the just outlined theory is provided by Benjamin's 
original object of study--the Korteweg--de Vries equation 

Ut + UUx -b Uxxx = O, 

whose solitary-wave solutions ~oc are displayed in (1.6). Here f ( z )  = ½z 2 and ct(~) = 
~2 in the notation of the Introduction. It is worth interpreting the theory in this 
particular context so the reader can easily appreciate the issues. As stated above, 
X = Lz in this case and one is then forced to take Y = H a because of the third 
derivative in the dispersion term. In this case, the functionals V and E in (2.4) are 

1 2 V(u)  = ½ u 2 ( x , t )  dx  and E(u)  = ~ u ~ ( x , t ) -  ~ u 3 ( x , t )  dx .  
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The functional M is given by 

M(~) = A(u) -- A(~oc) 

°° 1 ~h 3 1 2 l h 9 2 + 2 h 2  c h g ] d x  

f?E = h -gcxx - "~9c + C9c dx 
OQ 

+ 2  h[-hxx  + ch - ~oc]dx - g dx, (2.9) 
o o  

where h(x, t) = u(x, t) - 9c(x + ×(t)) as before. The first term on the right-hand side 
of (2.9) is zero since the solitary wave ~o~ is easily confirmed to satisfy the equation 

- c 9  + ½92 + ~Oxx = O. 

The term on the right side of (2.9) that is quadratic in h has the form 

/? ! h2ghdx ,  2 
o o  

where 
SEh = -hxx  + c h - 9oh, 

and thus we see explicitly the appearance of the operator ~.  Since 9c is, up to 
scaling constants, the square of the hyperbolic secant, the spectral problem for the 
operator ~ is a Sturm-Liouville problem on the line with a standard potential. In 
consequence, its complete spectral analysis has been worked out and may be found 
in standard references like Landau and Lifshitz (1958). If the spectral theorem for 
the self-adjoint operator ~ is now applied, there appears an explicit representation 
of Q(h, h) = f_°°oo h ~ h  dx. While this quadratic form is not positive definite, careful 
consideration of the spectral representation of Q shows that with y(t)  chosen as in 
(2.3), a lower bound of the form 

Q(h) >_ allhl]t 2 - bllh[tl [hl~ 

is inferred, where a and b are positive constants. This latter inequality is an effective 
lower bound from which one may infer that IIh( ., 0111 is small for all t provided it 
is small enough at t = 0. In other words, if the perturbation of the solitary wave is 
not too large, then it is stable in shape, and, moreover, if ?'(t) is determined by (2.3), 
then (2.2) is valid where the norm in question can be taken to be that of H ~. 

The preceding cursory description will perhaps suffice to set the stage for the 
calculations in Section 3. One simple point that will arise later deserves to be made 
here, however, concerning the smoothness of y. 

Lemma 1. Suppose 9c to be an orbitaUy stable solitary-wave solution of  (1.1) and let 
• i 2 rt *0 = min{lgcl2/19c 12, ]9c12}. I f  the tolerance e in (2.2) is chosen smaller than eo, then 

there is a unique function 9: ~ --+ ~ such that ),(t) satisfies (2.3)for aa t .  Moreover, the 
function y is continuously differentiable. 
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Proof. First it is shown that for each to, there is a finite value r0 such that the function 

/? G(t, r) = u(x, t)rPc(X + r) dx (2.10) 

vanishes at (to, r0). To prove this, we follow the argument in Bona (1975, Section 4). 
Let p: R -+ R be defined by 

/? p (y) = [u(x, to) - (pc (x + y)]2 dx. 

The function p is a C~-funct ion since 9c is an H~-funct ion  (see Benjamin et al. 
1990), and 

lira p(y) = uZ(x, to) dx + ~Oc(X) dxo = Poe. 
y--~-4-~,~ c o  oo 

However,  because of the hypothesis of  stability and the restriction on E, we know that 

inf p(y) _< inf I[u(-, to) - ~c(" + Y)[I~ < 62 < P~ 
Y Y 

and so there is a y0 E N such that  p(y0) < p(y) for all y ~ N. At such a finite point, 
Y(Y0) = 0, and a simple calculation shows this to mean G(to, yo) = O. 

Next, it is shown that the point r0 corresponding to the time to is unique. Consider 
further the function G and notice that since the space Y is small enough that ut 
C(R; L2), it follows that u lies in CI(N; Lz). Since ~oc is an H~-funct ion,  it transpires 
that G is a Cl-function. Let  (t, r)  be  any finite point where G(t, r) = 0. Then according 
to the stability theory, the relation (2.2) holds with y(t)  = r, where e < e0. It is useful 
to compute OG/Or at (t, r) and make  an elementary estimate of  its size, viz. 

= u(x, t)(p2(x + r) dx 
- ~ r  ( t , r )  co 

f? I? = ~oc(x + r)~O'c'(X + r) dx + h(x, t)~P*c'(x + r) dx 
O0 --00 

, ,  
<_ - q)'c(y)2dy + [~0c 121h(., 0t2 

co 

t 2 t~ 1r 6 
----- - - ]~0c l2  + 6 l fPc  12 = - - [qgc  I2(  0 - -  E) < 0 .  (2.11) 

Now suppose there is more than one value of r satisfying G(t, r) = 0. Let  rl and 
r2 be adjacent values with this property,  say with rl < r2. Since G(t, rl) = 0 and 
OG/Or(t, rl) < 0, it follows that OG/Or(t, r2) > 0 and this contradicts (2.11) when 
applied at the point (t, r2). Thus for each t there is at most one value of  ?' satisfying 
(2.3). 

It has been established that for  each value to of the temporal  variable, there is a 
unique value ?'0 such that G(to, ?'0) = 0. To infer the correspondence to ~+ ?'0 = ?,(to) 
is a cl-function,  it suffices by the implicit-function theorem to verify the standard 
transversality condition at each point (to, ?'(to)). If  the hypotheses of  the implicit- 
function theorem are verified, it follows that there is a locally unique Cl-funct ion r(t) 
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with r(to) = )'(to) such that G(t, r(t)) = 0 for t near to. By uniqueness, y(t) = r(t) 
for t near to, and hence y is continuously differentiable near to. The transversality 
condition in this simple case is simply that OG/Or(to, )'(to)) ~ 0, and this is indeed 
provided by (2.11) because e < e0. 

The proof of Lemma 1 is complete, n 

Remark. Somewhat surprisingly, it transpires that the function G in (2.10) is at least 
a C2-function of (t, r), and hence the function ), is C 2. Indeed, since % is in H °°, it is 
clear that G is in fact infinitely differentiable as a function of r. As remarked before, 
G is certainly continuously differentiable with respect to t and, by use of (1.1), it is 
determined that 

OG f_~o 1 - -  = ut (x, t)Pc(x + r ) d x  
Ot oo 

I? = [ - f ( u ( x ,  t))x + Lux(x,  t)]p'c(x + r) dx 
o o  

i;" f" = f ( u ( x ,  t))P'c'(x + r) dx  - u(x, t)Lp~c'(x + r) dx.  (2.12) 

Clearly the right-hand side of (2.12) is infinitely differentiable with respect to r. 
Because f is smooth and u ~ CI(R; L2), it is also differentiable with respect to t, 
and in fact, 

0 2 G f_:o 
Ot 2 oo 

=I? 

where H ( z ) =  

S S ( u ( x ,  t))ut (x, t)ptct(x + r) dx  - ut (x, t )Lp~(x  + r) dx  

f ( u ) [ - f ( U ) x  + Lux]P~c'ax + [ f (u)x  - LUxlZPc u 
o o  

bI(.)4£d~ + uL~"dx - I(.)L~'~"dx + f .Z2¢"dx, 
O 0  OQ J_~ C 

fo[f'(r)]Zdr. 

3. The Main Result for KdV-Type Equations 

The principal contribution of the present paper as regards its application to KdV-type 
equations appears in this section. Sections 4 and 5 present other, general situations 
for which the basic idea is telling. 

The context is that already set forth in Section 2. It is supposed that there is 
in hand a particular instance of equation (1.1) for which the stability theory briefly 
outlined in Section 2 is valid. In this situation, the following result applies. 

Theorem 2. For any E > 0 there exists a = 8(e) > 0 such that if  p ~ Y and 1P-~%12 ~ & 
then there exists a CLrnapping y : R ---> • such that (i) y(0) = 0, (ii) lu(-, t) - q~c(- + 
Y(t))lz < e for all t, and for all t, (iii) Iy'(t) + cl < 0e, where 0 is a constant that 
depends only on c. 
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Proof. A consequence of the discussion in the last section is that there is a unique 
Cl-function y satisfying (i) and (ii) which is determined by the relationship 

G(t, F(t)) = 0, y(0) = 0, (3.1) 

where G is defined in (2.10). 
Differentiate the substantive relation in (3.1) with respect to t to obtain the equa- 

tion 

0 = -diG(t, y ( t )  = ~'c(x + ×(t))ut(x, t ) d x  + ×'(t) u(x, t)99'~'(x + y ( t ) )dx .  

Solving this equation for y' and using (1.1) to express ut alternatively, one comes to 

y ' ( t )  = f ~ ( f ( u ) x  - Lux)991c(X + y ( t ) ) d x  (3.2) 

f ~  u(x,  t 99~(x + y ( t ) ) d x  

Since u(x,  t) = 99~(x + y( t ) )  + h(x ,  t), the denominator in (3.2) may be written as 

F F 99c(x + y(t))~O'ct(X + y ( t ) ) d x  + h(x ,  t)99c'(X + y ( t ) ) d x  

f_ F = _ c~ qg; (z) 2dz + h (x, t)q92(x + y ( t ) )dx .  

Assuming that • is small enough that the value of e in (2.2) is smaller than the E0 of 
Lemma 1, it is seen that the denominator is nonzero, and that in fact 

F f? U(X, t)q)~(X @ y( t ) )  dx  = - ~Otc(z)2dz + A(t) ,  (3.3) 
o¢)  o o  

where A(t)  = O(E), uniformly in time. Similarly, the numerator in (3.2) may be 
analyzed as follows: 

f ?  ( f (u)~ - Lu~)99'c(x + ×(t)) clx 
¢90 

= + y( t ) )  + h(x,  t))x - L99'c(X + y ( t ) )  - Lhx]99'c(X + y ( t ) )  dx  
u 

f? = {[f(99c(x + ~,q)) + h(x, t))~ - f(~oc(x + y(t))x + c99;(x + ×(t)) - Lh,]  

x 99"(x + ×(t))Idx,  

where, in the last step use has been made of the equation 

- cop' c + f(99~)' - L~o' c = 0, (3.4) 
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which is satisfied by the solitary-wave solution ~oc. It is convenient to break the last 
integral into the portion independent of h and a remainder thusly: 

F f? (f(U)x - Lux)qJc(X + y ( t ) ) ax  = c ~Otc(z)2dz -1- B(t), (3.5) 
o o  o o  

where 

and 

£ B(t) = [ -Lhx  + ( f@c(X + y( t ))  + h(x, t))x 
o o  

-- f(gOc(X + y(t)))x]9'c(X + g ( t ) )dx  

f_ Z~ h[L~o2(x + y(t))  g(h, ¢pc)~O~(x + y( t ) ) ]dx  
Oo 

(3.6) 

f0 
1 

= f'(~Oc + sh) ds for any value of h. 

Like f ,  the function g is smooth. According to (2.1b), the solution u is bounded 
uniformly in x and t, and hence so is h. In consequence of these two observations, 
Ig(h, ~0c)I~ is bounded, independently of t. Thus the Cauchy-Schwarz inequality im- 
plies that 

IB(t)[ < CE, (3.8) 

where if attention is restricted to values of ~ < 1, say, then C depends only on ~0~ and 

IfgtllY. 
Substituting formulas (3.5) and (3.3) into (3.2) leads to the relation 

y'(t) = - c  q- D(t),  

where 
B(t) + c A(t) 

D(t)  = 
A(t) - f ~ o  ~°2c (z) dz" 

It follows readily from (3.8) and the fact that A(t) = O(e), uniformly in t, that for e 
sufficiently small, 

D(t) <_ CE, 

where C depends only on ~oc and [I~P l[ r. Part (iii) of the theorem now follows. D 

Corollary3. With the hypotheses of  Theorem 2, it follows that 

ly(t) + ctl <. OEltl 

for all t. 

Proof. This follows from (i) and (iii) in the theorem by integrating the inequality in 
(iii) with respect to t. D 

[ f(~Oc + h) - f(~Oc) h • O, 
g(h, ec) = h ' 

f'(~Pc), h = 0, (3.7) 
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4. Regularized Long-Wave Equations 

In this section it is briefly indicated how the foregoing theory for KdV-type equations 
may be adapted to equations of the regularized long-wave type (RLW-type hence- 
forth) set forth in (1.2). 

The stability theory for equations of type (1.2) differs from that of the KdV-type 
equations in one important aspect. The primary function-space setting X for the 
theory is the Hilbert space H = HL whose elements are those L2-functions such that 

F IlgllZH = (1 + ot(~))l~(~)12d~ (4.1) 

is finite. For equations of type (1.2), differentiation with respect to t leads to a 
smoother function if the symbol oe of the dispersion operator L grows at least linearly 
at infinity. In consequence, one may take Y = X = H in the development of the 
stability results for RLW-type equations. The initial-value problem for (1.2) is always 
locally well posed in H, and under fairly weak conditions on f and ce, is globally well 
posed there. Moreover, if the initial datum ~p lies in a subspace Y of H which is a 
smoother Le-based Sobotev class, then the solution u emanating from 7* maintains 
this additional regularity in the x-variable. These results, which more than suffice to 
justify the computations to follow, are spelled out in Albert and Bona (1991). 

When it is applicable, the stability theory for a solitary wave ~Oc of an RLW-type 
equation (1.2) implies that given e > 0, there exists a a = 8(E) > 0 such that if 
I[~P - ~0cllH < S, then the solution u of (1.2) emanating from the initial data ~ has 
the property (2.1a) with X = H. Moreover, a function ?'(t) such that 

Nu(-, t) - ~oc(- + y(t))llH _< (4.2) 

for all t is provided by choosing × to satisfy the orthogonality condition 

f_ '~[u(x, t) "+ Lu(x, t)]pc(x + y ) d x  = 0 (4.3) 

(see Benjamin 1972, Bona 1975, Albert et al. 1987, Bona et aI. 1987, Strauss and 
Souganidis 1990). It is easily verified (see Strauss and Souganidis 1990) that the 
condition (4.3) specifies a unique choice of y. Moreover, as before, we may as well 
suppose y(0) = 0, which is to say that the initial data has been translated to the point 
where it most closely resembles ~Oc in the H-norm. Since the equation is invariant 
under the translation group, such a normalization is without consequence regarding 
the theory outlined below. 

Arguing as m Lemma 1, one ascertains immediately the following result. 

Lemma 4. Suppose ~oc to be an orbitally stable, solitary-wave solution of  (1.2). Then the 
function y: ~ --+ ~ that satisfies (4.3) is continuously differentiable provided the tolerance 
E in (4.2) is chosen smaller than ~o = II~O~ctl2/[([ + L)q~tcq2. 

With this preliminary result in hand, it is natural to conjecture the validity of the 
following theorem. 
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Theorem 5. Let ~Oc be an orbitally stable, solitary-wave solution o f  (1.2). For any E > 0 
there is a ~ = 8(E) > 0 such that if 7r ~ H and II~P - ~0cllH _< 8, then there exists a 
Cl-mapping y: R -+ R such that (i) y(0) = 0, (ii) Ilu(', t) - ~0c(- ÷ Y(t))IIH _< E for all 
t, and for all t, (iii) ly'(t) + el < 0e for some constant 0 that depends only on c. 

Proof Let y : R -+ R be as determined in Lemma 4. Then ?, is a CI-function and ?, 
satisfies (i) by normalization and (ii) because of the stability of ~oc. 

We show (iii) holds. Differentiate formula (4.3) with respect to t, where g = y(t)  
is the function defined in Lemma 4. There obtains the formula 

f ~  "(x 0 = ~/(t) ~o c + g(t))[u(x, t) ÷ Lu(x, t )]dx 
d ~ O 0  

I? + ~o~c(x + y(t))[u,(x,  t) + Lut(x,  t )]dx.  (4.4) 

After  integration by parts, use of (1.2) and use of the equation 

- c ( [  + r)~o' c + f(~oc)' = 0 

satisfied by ~o~, (4.4) yields the formula 

y'( t )  = - c  f-~o ~/c ( I  ÷ L)~°~c dx + A(t) ,  (4.5) 

f~oo ~°$( t + L)~'~ dx + B(t) 

where 

£ V d(t)  ~oc g(~oc, h) dx and B(t) - h ( I  + L)~o' c' dx.  

The function g is as defined in (3.7). Estimating A and B as in Section 3 and using 
(4.2), it is determined that 

A(t)  < CI~ and B(t) < C2E (4.6) 

for all t, where C1 and C2 are constants dependent  only upon ~oc and an upper bound 
for the range of E considered. Restricting e to lie in (0, 1], say, and using (4.6) in (4.5) 
results in the expression 

y'(t) = - c  + D(t) 

where, for E sufficiently small, there is a constant C3 depending only on c for which 

tD(t)[ < C3E, 

for all t. Part (iii) of the theorem is thereby established. [] 
Of  course, the analog of Corollary 3 follows immediately from Theorem 5. 
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5. Nonlinear Schr6dinger Equations 

In the final substantive section, it is shown how the foregoing remarks apply to 
standing-wave and traveling-wave solutions of nonlinear Schr6dinger equations. It 
will appear that in multidimensional situations where the orbit of a standing wave 
involves several parameters, control of all the parameters is obtained simultaneously 
by our theory. 

The ideas will be illustrated with regard to the following class of Schr6dinger 
equations with homogeneous nonlinearity, namely, 

iut  + Au + lul2~ u = O, (5.1) 

and as in Sections 3 and 4, attention is turned to the pure initial-value problem where 
u(x, O) = uo(x) is specified. As mentioned earlier, u: RAr ~ C, A is the N-dimensional 
Laplacian, and a is a positive constant. Equation (5.1) is invariant under the action 
of the N + 1-dimensional group consisting of spatial translations together with phase 
shifts. That is, if u (x, t) is a solution of (4.1), then so is ei°~u ( x -O)  for (w, O) ~ S 1 x NN. 

The local and global wett-posedness of the initial-value problem for (5.1) in NN 
has been the object of extensive study in recent years. We may safely refer the reader 
to the recent monograph of Cazenave (1989) where a comprehensive picture is pre- 
sented and an excellent set of references is collected. For the purposes here, it suffices 
to assume that the inital-value problem for (5.1) is globally well posed in H2(NN), 
a result that is known to be valid if a < 2 I N  and with no restriction on the size of 
the data, or for arbitrary cr if the data are suitably restricted in Hi-norm (cf. again 
Cazenave). 

As for KdV- and RLW-type equations, the traveling-wave solutions of (4.t) are 
known in some instances to play a distinguished role in the long-term evolution 
of general classes of initial data. In consequence, just as for KdV- and RLW-type 
equations, the stability theory of such waves has interest beyond just the fact of 
persistance of their individual identity under small perturbations. 

The traveling-wave solutions of  (5.1) of interest here have the form 

u(x, t) = ei°)t qto),o(x - O t ) ,  (5.2) 

where (w, 0) e 51 x A N, say co ~ [0, 2Jr) and 0 = (01 . . . . .  ON) with Oj e N, 1 <_ j < N. 
The function ~o,0 must satisfy the equation 

(5.3) 

for the u in (5.2) to be a solution of (5.1). An important special case arises when 
0 = 0 and co = ~ > 0. These are standing-wave solutions u(x, t) = e~atq~a(x) often 
referred to as bound states. They satisfy the specialization 

- S2~o + A~o + l~olZ~o = 0 (5.4) 

of (5.3). Bound-state solutions of (5.4) have been studied intensively in the last sev- 
eral years (cf. Berestycki et al. 1981, Cazenave 1989, and Strauss 1977). Of special 
interest in many physical situations governed approximately by nonlinear Schr6dinger 
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equations (NLS equations henceforth) are the so-called ground states that minimize 
energy subject to fixed charge. These waveforrns ~o~, which are analogous to solitary 
waves for KdV and RLW equations, are positive, real-valued, radially symmetric, and 
rapidly decreasing to zero at infinity. Provided o" < 2 /N ,  the ground states are known 
to be orbitally stable in the following precise sense (cf. Cazenave 1989, Cazenave and 
Lions 1982, Weinstein 1986). For any E > 0, there is a 8 = 8(e) > 0 such that if 
u0 E HI(R N) and I lu0-  ~o~lla < 8, then there are maps Iz:R ~ R and y : R  --+ R N 
such that if u is the solution of (5.1) with initial data u0, then 

llu(-, t) - e i t ~ ( t ) q p ~ 2 ( x  - y(t))[Iz ~ E (5.5) 

for all t. 
This result is now broadened to include traveling waves and improved by providing 

a more detailed view of the functions/~ and y. First, a relation between bound states 
and traveling waves is exhibited. For 0 ~ R N, define the operator  To : H 1 (R N) -+ 
Hl(g~ N) by 

1 
(Tou)(x) = exp ( i -~O.x )u (x )  

for u ~ HI(RN), where the dot product is the standard one on ~u .  Notice that for 
any 0 ~ R u, 

(1 + 101)-lllulh _< llToulh <_ (1 + t01)llulh. (5.6) 

The following lemma may be established by a straightforward computation which 
is omitted here. 

Lemma 6. Let (co, 0) ~ S 1 x R N be such that f2 = w -  ¼1012 > 0. If~o~ is a boundstate 
o f  (5.1), then ~ , o  = To~o~ is a traveling-wave solution o f  (5.1). 

The next theorem is the main result concerning traveling-wave solutions of the 
NLS equation (5.1). 

Theorem 7. Let cr < 2 / N  and let ~of2 be a ground-state solution o f  (5.1). For any (co, O) 
~1 × ~N such that w -  11012 = ~, define the traveling wave ~o~.o = To~o~. The traveling- 
wave solution v(x,  t) = ei°~t~po~,o(x -Or)  is orbitally stable in the sense that for any ¢ > 0 
there exists a 8 = 8(E) > 0 such that if  Ilu0 - ~o,,0111 < &, then there are C l mappings 
p: • --+ R and q: g~ -+ R g  for which the solution u of(5.1)  emanating from the initial 

data uo satisfies 
Ilu(-, t) - e i p ( t ) ~ c o , o ( . -  q(t))lli _< E (5.7) 

for all t. Moreover, p and q are close to co and 0 in the sense that 

tO(t) = co + O(E), 

q'(t) = 0 + O(E) 
(5.8) 

as E ~ O, uniformly in t. 

Proof The  proof  is made in two steps. First, the stability assertion is verified and 
then a study of the maps p and q is undertaken. 
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The stability of  the traveling wave follows from the stability of  the associated 
ground state. Indeed, a short calculation reveals the following relationship. 

Lemma8.  Let u be a solution of an initiaLvatue problem for equation (5.1) with initial 
data uo. Then the function 

v(x, t) = exp(i ( lO-x - 41Ol2t) )u(x - Ot, t) 

is a solution of the initial-value problem 

il) t q- AV 4;" IVl2~rV = O, 

v(x, O) = Touo. 

Consider initial data vo which lies close to a traveling wave ~P,o,0 in H 1 and de- 
fine u0 = T-ovo. Let u and v be the solution of (5.1) with initial data u0 and v0, 
respectively. Notice that because of  (5.6), 

IIU0 --~0attl = [IT-ouo - T-o~w,Oll l  <_ (1 + t01)llv0 - ~o,01h- 

Let E > 0 be fixed, let ~' = E/(1 + 101), and let 3 be such that (5.5) holds relative 
to E' for the ground state ~0~ provided [lu0 -~onl]l is less than 3. Then according to 
the last inequality, Ilu0 - cpa[h < 3 provided 11v0 - ~P~o,0[h < 3/(1 + [0IL Because of  
Lemma 8, it transpires that 

u(x, t) = exp - i  + [Ol2t v(x q- Or, t). 

Hence (5.5) can be rewritten as 

exp(i 20"x)[exp(- i  4 lOlZt)v('+Ot, t) 

- exp( i  (lz(t) + lo.y( t ))  )~,o( .  - g(t))][ 1 < E' 

for all t >_ 0, and thus it is adduced from (5.6) that 

v(', t) - exp(i (lz(t) + ~ tOt2t + ~O. 7(t)) )~ko~,o(. - y(t) - Ot) [1 

< (1 + ]01)E' = ~ (5.9) 

for all t >__ 0. Thus gt~,,0 is seen to be orbitally stable in the sense specified in the 
statement of  the theorem if one chooses 

p(t) = lz(t) + llot2t ~- l o - y ( t ) ,  

q(t) = y(t) + Ot. 
(5.10) 
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Attention is now turned to the functions p and q. Because of the formulas in 
(5.10), it suffices to understand the functions/z and ~, that appear in the definition 
of stability of the ground state ~0a. 

In analogy with the conditions (2.3) and (4.3), and following Weinstein (1986) the 
functions o~ and y are chosen to satisfy the orthogonality relations 

} = 0  (5.11) 

(5.12) 

for j = 1 . . . . .  N, obtained from the first-order conditions corresponding to minimiz- 
ing the function G(w, O) defined as 

G(co, O)=ff21e-i°~u(.+O,t)-~on(.)l~ +le-i°~Vu(.+O,t)-Vrpa(.)l~ (5.13) 

by using equation (5.4) satisfied by the ground state ~0a. Applying the implicit-function 
theorem as in Section 2 allows the conclusion that the relations (5.11) and (5.12) 
define Cl-functions /z and y. Differentiating (5.11) with respect to t leads to the 
equation 

Im ~oa ~+l(x)  -ilz'(t)e-iU(t)u(x -b ×(t), t) + y~ y[(t)e-iU(')Ox~it(x + y(t), t) 
k=l  

+e-i•(t)Otu(x+g(t),t)]dx} = 0 ,  (5.14) 

where ?,(t) = (yl(t) . . . . .  ?'N(t)). Let h = hi + i h2 denote the difference 

h(x ,  t) -= eitZ(t)u(x -b y ( t ) ,  t )  - q)~2(x). 

Equation (5.14) can be expressed in terms of h rather than u as 

" t"  f I" 2~r+2(x, dx z~r+l t)] dx 

f. [ ] +~_,yk(t) uOxk ~ofZ (x) hz(x,t)dx= ~ ' a  t ~  ~oa(x)+~oa~+l(x) dx 
k= l  

fR _2~+t (x)-I -2~+l(x)[Ahi(x,t)+lu(x + y(t),t)12a (ga(x)+hl(x,t))-u/a jdx + u2n 

by using (5.1) and the fact that ~oa is positive-valued. Applying equation (5.4) to the 
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right-hand side of the last equations gives 

" 2~+2(x) ~o2¢+l(x)hl(x,t))dx I~' ( t )  ~ (~ofz + 

N 

k = l  N 

= f2 ~02~+2(x)dx + A(~o a )hi(x, t)dx 
N N 

_ 2~+1(x)1 + u q92a+l [ lu[2" (~°~(x) + hi(x, t)) -- ~o a j dx. (5.15) 

Similarly, differentiating the equations in (5.12) with respect to t leads to the following 
N relationships: 

tz'(t) f ~o2~ (x)Oxfloa(X)hl(X, t )dx 
dR~¢ 

+ ~_, y~(t) ~o2a°(x)Oxjpa(x)O~dpa(x) dx 
k = l  kJWV 

= £ n  A @2~(x)axfiora(x))h2(x,t)dx 

- -  £N (Pra(x)axfl°a(x)lu(x' t)12a h2(x' t)dx (5.16) 

for j = 1, 2 . . . . .  N. Because the ground state is stable, the inequality (5.5) holds 
provided tlu0 -~oalh _< 8, where 8 is as chosen in the first part of the proof. For such 
values of 8, it follows that lhj(., t)[2 < 6 for all t, for j = 1, 2. The N + I equations 
in (5.15) and (5.16) can therefore be written in the form 

l r aoo 0 

aN1 

X 

where 

. . .  0 ~ 60o(0 

"'" alN I ~ lO( t )  

... aNN 6NO(t) 

×~,(t) 

601(t) 

6t l  (t) 

E N I ( t )  . . .  

\ZN(t) 

• .. 6ON(t) 
. . .  E1N(t) 

6NN(t) 

2o-+2 ao0 = ~Pa (x ) dx , 
N 

(5.t7) 
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for 1 < k , j  < N and 

ekj(t) = O(E), ~j(t) = O(~), 

as E $ 0, uniformly in t, for 0 
symmetric, it follows that akj = 

k and j .  It is concluded at once 

< k, j < N. Since the ground state is spherically 
0 for 1 < k, j _5< N, k • j ,  and that akk = a j j  for all 
from (5.17) that 

/z'(t) = ~ + O(E), 

y[( t )  = o (E) ,  
(5.18) 

as E $ 0 for e sufficiently small, uniformly in t. 
When recourse is made to formula (5.10), it is seen that the functions p and q 

defined there satisfy both (5.7) and (5.8) on account of (5.9), (5.18), and the definition 
of f2 in terms of ~o and 0 as in Lemma 6. The proof of the theorem is complete. [] 

6. Conclusion 

The results contained in the body of this paper require little more knowledge about 
the stability of solitary waves than was known previously. The essential observation 
is just that the standard Lyapunov stability theory for such waves has inherent within 
its structure refined estimates of the speed at which the perturbation must propa- 
gate [equations (3.2), (4.5), and (5.17)]. It is likely that because the basic idea is so 
simple, there will be further classes of equations to which it will apply. For example, 
the recent theory of Maddocks and Sachs (1992) for the stability of the n-soliton 
solution of the Korteweg--de Vries equation can probably be improved by proceeding 
along a generalization of the line of argument employed here. In any case, while 
our theorems are not difficult to prove" once the formulas (3.2), (4.5), and (5.17) 
are derived, they leave the theory in a considerably more satisfactory state than 
before. 

It seems a good conjecture that a small perturbation of a stable, solitary-wave 
solution of the classes of equations studied here will resolve itself into a solitary wave 
whose speed is very nearly that of the unperturbed wave plus a small residual that 
separates from the bulk of the wave and is left behind. Decisive evidence in favor of 
this scenario is available only in very special situations at the moment, though there is 
a fair amount of numerically generated data supporting such a conjecture. A start is 
available in the very recent work of Pego and Weinstein (1992, 1993), but much is left 
to be done. Looking beyond the narrow confines of perturbations of solitary waves, 
there lies the very interesting question of why certain general classes of disturbances 
break up into solitary waves. This property of resolution into solitary waves is known 
to be valid for certain equations solvable via an inverse-scattering transform, but 
numerical evidence indicates it is a pl'opert)" of many equations. Understanding this 
phenomenon is an outstanding problem in the area of nonlinear, dispersive wave 
propagation. 
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