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NONLINEAR DISPERSIVE WAVES ON TREES

JERRY L. BONA AND RADU C. CASCAVAL

ABSTRACT. We investigate the well-posedness of a class
of nonlinear dispersive waves on trees, in connection with the
mathematical modeling of the human cardiovascular system.
Specifically, we study the Benjamin-Bona-Mahony (BBM) equa-
tion, also known as the regularized long wave equation, posed
on finite trees, together with standard junction and terminal
boundary conditions. We prove that the Cauchy problem for
the BBM equation is well-posed in an appropriate space on
arbitrary finite trees.

1 Introduction In the theory of shallow-water waves, long wave
approximations lead to classical nonlinear dispersive wave equations such
as the Benjamin-Bona-Mahony (BBM) equation

(BBM): ut + ux + uux − uxxt = 0.

where u = u(x, t) represents the displacement at location x and time t.
This is related to the well-known Korteweg-de Vries equation, which is a
completely integrable system and supports soliton solutions. When mod-
eling wave propagation over finite distances, the BBM equation seems
more suitable, since the number of boundary conditions which need to
be imposed for its well-posedness over finite intervals [3], is two, whereas
KdV requires three boundary conditions [8]. Moreover, comparison be-
tween the two models presented in [4] indicates that solutions of the two
models stay ‘close’ to each other over relatively long time intervals.

In this paper we show that the BBM equation is well suited for mod-
eling wave propagation on trees, by proving it is well-posed subject to
standard junction conditions, motivated by several 1D models of the ar-
terial system. In Section 2 we introduce the notation of the trees and of
certain differential operators on trees. Section 3 contains the treatment
of the BBM equation on various tree structures, where we state and
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prove the main well-posedness result. Section 4 contains some observa-
tions based on numerical simulations. We conclude with some remarks
and comments about future directions of research.

2 Differential operators on trees In what follows T will repre-
sent a (finite or infinite) metric tree. Denote the collection of vertices of
T by V = {vi, i ∈ I} and the collection of edges E , which is identified
with a subset of V×V . In short, we may write T = {V , E}. v0 will denote
the (unique) root vertex (or origin vertex) of the tree. A boundary (or
terminal) vertex vb is a vertex (different from the root vertex, which may
have several outgoing edges) which is adjacent to only one edge in the
tree (such an edge is also called a leaf edge). The collection of boundary
vertices will be denoted B and the collection of boundary edges (leaves)
by EB. Each edge in E , say e = {vi, vj}, has a length l = lij and a pos-
itive orientation, from the vertex that is closest to the root, say vi, to
the one farthest from the root, say vj . We write e = [vi, vj ] to indicate
its orientation and, when necessary, identify it with the interval [0, lij ].

FIGURE 1: A schematic representation of the major (46) arteries in the
human arterial system

Linear differential operators on trees have been considered in the lit-
erature in the context of the theory of quantum graphs [10, 11, 12] and,
more recently, in connection with biological trees [13]. Throughout the
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paper, we will employ the 1D Laplacian on the tree T , associated with
the differential expression

(2.1) D = −
d2

dx2
, x ∈ T .

We assume the standard junction conditions at each interior vertex v ∈
int(T ):

{
f(v−) = f(v+) (continuity at the vertex)

fx(v−) =
∑

fx(v+) (flux-balance condition).

Here v− represents the vertex v treated as the boundary of the incoming
edge and v+ represents the same vertex v as a boundary of an outgoing
edge. The summation in the flux-balance condition is over all outgoing
edges adjacent to the vertex v. The positive direction of the edges in
the tree is considered starting from the root vertex towards the terminal
vertices.

3 BBM equation posed on a tree The Benjamin-Bona-Mahony
(BBM) equation is considered here (rather than the KdV equation),
as a 1D model for the unidirectional propagation of waves in shallow-
water channels (see [1]). The initial-value problem of BBM posed on the
real axis, on the half-line (quarter-plane) and on a finite interval have
previously been discussed in [1, 6, 9]. Here we extend the treatment
of the BBM equation given in [3] from intervals to trees of finite and
infinite length.

In this paper we will restrict ourselves to well-posedness results in the
Sobolev space H1 = {f ∈ L2, f ′ ∈ L2}. We note that well-posedness for
less regular initial data exists in the literature (see [5]). Our choice for
the H1-regularity stems from an interesting result for the BBM on the
entire axis [21], where the existence and stability of N -solitary waves in
the H1-norm have been announced.

3.1 BBM on half-line We recall [7, 9] that the initial-boundary value
problem for the BBM equation on the half-line is well-posed in H1(R+):

ut − α2uxxt + βux + γuux = 0, x ∈ R+, t ≥ 0,

(BBM)HL u(0, t) = h(t), u(∞, t) = 0, t ≥ 0

u(x, 0) = ϕ(x), x ≥ 0.
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We remark that the solution u is in distributional sense, but for ϕ ∈
H1(R+) ∪ C2

b (R+) and h ∈ C1(0, T ) for some T > 0, the solution u =
u(x, t) is classical, that is, u ∈ C1(0, T ; C2

b (R+)). This can be seen by
rewriting BBM in the (formally equivalent) form

(3.1) ut = h′(t)φα − (I − α2∂2
x)−1(βux + γuux),

where φα(x) = e−x/α and (I − α2∂2
x)−1 is the inverse of the operator

I − α2∂2
x acting on the space H2(R+) with domain

H2
0 (R+) = {w ∈ H2(R+), w(0) = 0}.

For notational simplicity, we will rescale the spatial variable x to
x̃ = x/α, so that ∂x = ∂x̃/α. We also introduce ũ(x̃, t) = u(x, t),
β̃ = β/α and γ̃ = γ/α. In what follows we will use these rescaled
variables and omit the˜notation.

Using the normalization α = 1, the initial-boundary value prob-
lem (BBM)HL can be written in the integral form (see, e.g., [2])

(3.2) ut(x, t) = h′(t)e−x +

∫ ∞

0

P (x, y)[βuy + γuuy](y, t) dy

where P (x, y) = 1
2 (e−(x+y) − e|x−y|). Integrating by parts, we further

obtain

(3.3) ut(x, t) = h′(t)e−x +

∫ ∞

0

K(x, y)[βu + γu2/2](y, t) dy

where K(x, y) = 1
2 (e−(x+y) + sgn(x − y)e−|x−y|), and, after integrating

in time,

u(x, t) = ϕ(x) + (h(t) − h(0))e−x

+

∫ t

0

∫ ∞

0

K(x, y)[βu + γu2/2](y, s) dy ds.

(3.4)

For convenience, we present here a well-posedness result for the initial-
boundary value problem on the half-line.

Theorem 3.1. ([7]) Let ϕ ∈ H1(R+) ∩ C2
b (R+) and h ∈ C1(0, T ) with

h(0) = ϕ(0). Then, the IBVP on the half-line has a unique (classical)
solution u ∈ C(0, T ; H1(R+)) with ∂2

x ∂tu ∈ C(0, T ; Cb(R+)). Moreover,
if h ∈ C1(R+) ∩ H1(R+), then u ∈ Cb(R+; H1(R+)).
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Note that the regularity of the solution u(·, t) for any t > 0 is the
same as that of the initial condition, since v(x, t) = u(x, t) − ϕ(x) is
differentiable and

vx(x, t) = −(h(t) − h(0))e−x +

∫ t

0

[βu + γu2/2](x, s) ds

−
1

2

∫ t

0

∫ ∞

0

M(x, y)[βu + γu2/2](y, s)dy ds

(3.5)

with M(x, y) = 1
2 (e−(x+y) + e−|x−y|).

3.2 BBM on a Y-junction We first formulate the initial-value prob-
lem for BBM for an Y-junction with infinite edges, i.e., the incoming
(parent) edge and outgoing (children) edges are half-lines as in the fig-
ure below

(3.6) Y = e1 ∪ e2 ∪ e3 = (−∞1, 0] ∪ [0,∞2) ∪ [0,∞3).

Here the notation ∞i indicates the edge (i = 1, 2, 3) where ∞ is consid-
ered.

FIGURE 2: Y-junction with infinite edges

On each edge ei, i = 1, 2, 3, define u = ui to satisfy the BBM equation

(3.7) (BBM)i : ui,t − ui,xxt + ui,x + uiui,x = 0, x ∈ ei, t ≥ 0

and impose the following continuity and flux-balance junction conditions

(3.8)
u1(0, t) = u2(0, t) = u3(0, t),

u1,x(0, t) = u2,x(0, t) + u3,x(0, t)
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where ai > 0, i = 1, 2, 3. Making the change of variable x → x = −x
for u1, we obtain the initial-value problem with three BBM equations
for ui = ui(x, t)[= ui(x, t)] on R+ (i = 1, 2, 3)

ui,t − ui,xxt + σiui,x + σiuiui,x = 0, x ∈ R+, t ≥ 0,

(BBM)Y u1 = u2 = u3, u1,x + u2,x + u3,x = 0, x = 0, t ≥ 0

ui(+∞, t) = 0, t ≥ 0

ui(x, 0) = ϕi(x), x ∈ R+,

where σ1 = −1, σ2 = σ3 = +1. We will assume that the initial condition
(at t = 0) satisfies the compatibility conditions

(3.9) ϕ1 = ϕ2 = ϕ3, ϕ1,x + ϕ2,x + ϕ3,x = 0 at x = 0.

From (3.4) we obtain the integral formulation (i = 1, 2, 3)

ui(x, t) = ϕi(x) + (h(t) − h(0))e−x

+ σi

∫ t

0

∫ ∞

0

K(x, y)[ui + u2
i /2](y, s) dy ds,

(3.10)

where h(t) = u1(0, t) = u2(0, t) = u3(0, t) is unknown and h(0) = ϕ(0).
Recall that the integral kernel has the form

K(x, y) =
1

2
(e−(x+y) + sgn (x − y)e−|x−y|), x, y ≥ 0.

We now use the flux-balance condition in (3.9) to eliminate h(t)− h(0).
From (3.2) we obtain

ui,xt(0, t) = −h′(t) − σi

∫ ∞

0

e−y[ui,y + uiui,y](y, s) dy ds,

hence the flux-balance condition becomes

0 =

3∑

i=1

ui,x(0, t) = −3h′(t) −

∫ ∞

0

e−y
3∑

i=1

σi[ui,y + uiui,y](y, s)dy ds.

In other words, the unknown function h must satisfy

h(t) − h(0) =
1

3

∫ t

0

∫ ∞

0

e−y
[
(1 + u1)u1,y

− (1 + u2)u2,y − (1 + u3)u3,y

]
(y, s) dy ds.

(3.11)
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From (3.10) and (3.11) we conclude that u = [u1, u2, u3]
T must satisfy

the integral equation below, which is (formally) equivalent to (BBM)Y ,

(3.12) u(x, t) = ϕ(x) + Φ(u)(t)e−x + σ

∫ t

0

∫ ∞

0

K(x, y)P[u(y, s)]dy ds,

where Φ(u) is the right hand side in (3.11)

Φ(u)(t) =
1

3

∫ t

0

∫ ∞

0

e−y
[
(1 + u1)u1,y

− (1 + u2)u2,y − (1 + u3)u3,y

]
(y, s) dy ds,

(3.13)

and

K(x, y) = K(x, y)I3, σ = diag(−1, +1, +1),

P




u1

u2

u3


 =



u1 + u2

1/2
u2 + u2

2/2
u3 + u2

3/2


 .

Let us first introduce some notation. Denote

C(Y) = {v = [v1, v2, v3]
T ∈ C(R+)3 | v1(0) = v2(0) = v3(0)}

and, for k ≥ 1,

Ck
a (Y) =

{
v = [v1, v2, v3]

T ∈ Ck(R+)3 ∩ C(Y)

∣∣∣∣
∑

i

v′i(0) = 0

}
.

We define the usual Sobolev spaces for functions defined on the junc-
tion Y , L2(Y) = L2(R+)3, H1(Y) = H1(R+)3 ∩ C(Y) and, for k ≥ 2,
Hk

a (Y) = Hk(R+)3 ∩ Ck−1
a (Y).

Theorem 3.2. The initial value problem for BBM on the Y-junction is
well posed in H1(Y), for initial conditions ϕ ∈ H1(Y)∩C(0, T ; C2

a(Y)).

Proof. Define the map B by

B[v](x, t) = ϕ(x) + Φ(u)(t)e−x

+ σ

∫ t

0

∫ ∞

0

K(x, y)P[v(y, s)]dy ds.

(3.14)

One proves that B is a contraction on a ball of radius R centered at the
origin in the space C(0, T ; H1(Y)), for sufficiently small T .
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To prove global well posedness of (BBM)Y we now proceed in the
standard fashion: we rely on the local existence of solutions and use
a priori bounds to show that solutions can be extended for all times. We
note that the functionals which are invariant under the BBM equation
on the entire line, do not remain ’exact’ invariants for BBM posed on
half-line or trees, due to the presence of the junction conditions.

3.3 BBM on finite intervals We recall [3] that the initial-boundary
value problem for BBM on the finite interval [0, 1], (α > 0)

ut − α2uxxt + βux + γuux = 0, x ∈ [0, 1], t ≥ 0,(3.15)

u(0, t) = g0(t), u(1, t) = g1(t), t ≥ 0,(3.16)

u(x, 0) = f(x), x ∈ [0, 1].(3.17)

is well posed in H1(0, 1). In the case BBM is defined on an interval of
length l 6= 1, say on [0, l], then we can reduce it to the interval [0, 1],
by making the change of spatial variables x̃ = x/l, and consequently
α̃ = α/l, β̃ = β/l and γ̃ = γ/l. Hence, the considerations below easily
extend to solutions of the BBM equation on arbitrary finite intervals.

Equation (3.15) can be (formally) rewritten as [3]

(3.18) (I − α2∂2
x)ut = −(βux + γuux),

or,

(3.19) ut = g′0(t)φ0(x) + g′1(t)φ1(x) − (I − α2∂2
x)−1(βux + γuux)

where

(3.20) φ0,α(x) =
sinh((1 − x)/α)

sinh(1/α)
and φ1,α(x) =

sinh(x/α)

sinh(1/α)

satisfy (I − α2∂2
x)φi,α = 0 and φi,α(j) = δij , for i, j = 0, 1. In (3.19),

(I − α2∂2
x)−1 is given by the resolvent R(λ; D) = (D − λI)−1, with

λ = −1/α2, of the operator D = −∂2
x on [0, 1] with Dirichlet boundary

conditions, viz.

(3.21) (I − α2∂2
x)−1f = −1/α2R(−1/α2; D)f.

Recall that

(3.22) R(λ; D)f =
1

W (α)

∫ 1

0

Pα(x, ξ)f(ξ) dξ
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with

(3.23) Pα(x, ξ) =





φ0,α(x)φ1,α(ξ), if ξ ≤ x

φ1,α(x)φ0,α(ξ), if ξ ≥ x

and

W (α) = W [φ0,α, φ1,α] = φ0,α(x)φ′
1,α(x) − φ′

0,α(x)φ1,α(x)

≡ (α sinh(1/α))−1.

Substituting back into (3.19) then leads to

ut(x, t) = g′0(t)φ0,α(x) + g′1(t)φ1,α(x)

− k(α)

∫ 1

0

Pα(x, ξ)
[
βuξ(ξ, t) + γuuξ(ξ, t)

]
dξ

(3.24)

with k(α) = (−1/α2)W (α)−1 = −1/α sinh(1/α). We now integrate by
parts (Pα(x, 0) = Pα(x, l) ≡ 0) to obtain

ut(x, t) = g′0(t)φ0,α(x) + g′1(t)φ1,α(x)

+ k(α)

∫ 1

0

Pα,ξ(x, ξ)
[
βu(ξ, t) + γu2(ξ, t)/2

]
dξ

(3.25)

and, by an integration with respect to t, we obtain the integral equation

(3.26) u(x, t) = g̃0(t)φ0(x) + g̃1(t)φ1(x) + Bα(u)(x, t)

where g̃i(t) = gi(t)− gi(0), i = 0, 1, and Bα(u) is the nonlinear operator
given by

(3.27) Bα(u)(x, t) =

∫ t

0

∫ 1

0

Kα(x, ξ)
[
βu(ξ, t) + γu2(ξ, t)/2

]
dξ.

Here

(3.28) Kα(x, ξ) = k(α)Pα,ξ(x, ξ) = k(α)





φ0,α(x)φ′

1,α(ξ), if ξ ≤ x

φ1,α(x)φ′
0,α(ξ), if ξ ≥ x

and k(α) = −1/α sinh(1/α).

The results in [3] show well-posedness of the BBM on finite interval
[0, 1], due to the fact that the right-hand side of (3.26) defines a con-
traction mapping on a suitable space of continuous functions. We now
extend these ideas to the case of a finite tree.
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3.4 BBM on finite trees Let T be a tree with finite number of ver-
tices (hence edges). On each edge ei, i = I , define the BBM equation
for u = ui

(3.29) (BBM)i : ut − α2
i uxxt + βiux + γiuux = 0, x ∈ ei, t ≥ 0.

We say that a function u = u(x, t), x ∈ T , t ≥ 0 solves the initial-
boundary value problem for BBM on the tree T if the restriction of u to
each edge ei satisfies the corresponding (BBM)i equation and u satisfies
the interior boundary conditions

u(vi−, t) = u(vi+, t)(3.30)

ux(vi−, t) =
∑

ux(vi+, t) for vi ∈ int (T ),(3.31)

the boundary conditons

(3.32) u(ve, t) = g(ve, t) for ve ∈ ∂T

and the initial condition

(3.33) u(x, 0) = f(x), x ∈ T .

By a remark made above, we can rescale all lengths of the edges to
unit length, this way modifying only the coefficients ci, γi and αi in the
formulas above. Since in this section we only consider a finite number of
edges, we can simply rename these coefficients and hence, without loss
of generality, we can assume all li = 1.

For the sake of clarity, we start with a simple tree, a Y-junction, which
consists of 4 vertices V = {v0, v1, v2, v3} and three edges E = {e1, e2, e3},
where e1 = [v0, v1] is the root edge and e2 = [v1, v2] and e3 = [v1, v3] are
its children edges.

Then ui = ui(x, t), the restrictions of u to ei, must satisfy (x ∈
[0, 1], t ≥ 0)

u1t − α2
1u1xxt + β1u1x + γ1u1u1x = 0,

u2t − α2
2u1xxt + β2u2x + γ2u2u2x = 0,

u3t − α2
3u1xxt + β3u3x + γ3u3u3x = 0,

the junction conditions at v1

u1(1, t) = u2(0, t) = u3(0, t), u1x(1, t) = u2x(0, t) + u3x(0, t)
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FIGURE 3: Y-junction with finite edges

and the boundary conditions (at v0, v2 and v3)

u1(0, t) = g0(t), u2(1, t) = g2(t) and u3(1, t) = g3(t).

In addition, we impose the initial conditions

ui(x, 0) = fi(x), x ∈ ei, (i = 1, 2, 3).

We apply formula (3.26) obtained in the finite interval case to con-
clude that ui, i = 1, 2, 3, must satisfy the system






u1(x, t) = g0(t)φ0,α1
(x) + g1(t)φ1,α1

(x) + Bα1
(u1)(x, t)

u2(x, t) = g1(t)φ0,α2
(x) + g2(t)φ1,α2

(x) + Bα2
(u2)(x, t)

u3(x, t) = g1(t)φ0,α3
(x) + g3(t)φ1,α3

(x) + Bα3
(u3)(x, t)

of nonlinear integral equations, where

φ0,α(x) =
sinh((1 − x)/α)

sinh(1/α)
and φ1,α(x) =

sinh(x/α)

sinh(1/α)

(α = αi, i = 1, 2, 3) are as in (3.20) and

(3.34) Bαi
(u)(x, t) =

∫ t

0

∫ 1

0

Kαi
(x, ξ)

[
ciu(ξ, t) + γiu

2(ξ, t)/2
]
dξ
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with Kα given in (3.28), α = αi, i = 1, 2, 3..
Since g1 = g1(t) is not determined a priori as a vertex or boundary

condition, it must be considered as an additional unknown in the system
above. Using the flux-balance condition at the junction vertex v1, we
seek an expression for the unknown g1(t) in terms of u = (u1, u2, u3)

0 = u1,xt(1, t) − u2,xt(0, t) − u3,xt(0, t)

= g′0(t)φ
′
0,α1

(1) + g′
1(t)φ

′
1,α(1) + Bα1

(u1)x(1, t)

− g′
1(t)[φ

′
0,α2

(0) + φ′
0(0, α3)]

+ g′2(t)φ
′
1,α2

(0) + g′3(t)φ
′
1,α3

(0) + Bα2
(u2)x(0, t) + Bα3

(u3)x(0, t).

Hence,

g′
1(t)[φ

′
1,α1

(1) − φ′
0,α2

(0) − φ′
0,α3

(0)]

= g2(t)φ
′
1,α2

(0) + g3(t)φ
′
1,α3

(0) − g0(t)φ
′
0,α1

(1)

+ Bα2
(u2)x(0, t) + Bα3

(u3)x(0, t) − Bα1
(u1)x(1, t).

Note that, for any α > 0, φ′
1,α(1) = −φ′

0,α(0) = 1/α coth(1/α) > 0 and
φ′

1,α(0) = −φ′
0,α(1) = 1/(α sinh(1/α)) > 0. Also,

Bα(u)x(0, t)(3.35)

=

∫ t

0

∫ 1

0

Kα,x(0, ξ)[βu(ξ, t) + γu2(ξ, t)/2] dξ

= k(α)

∫ t

0

∫ 1

0

φ′
1,α(0)φ0,α(ξ)[βu(ξ, t) + γu2(ξ, t)/2] dξ(3.36)

and

Bα(u)x(1, t)(3.37)

=

∫ t

0

∫ 1

0

Kα,x(1, ξ)[βu(ξ, t) + γu2(ξ, t)/2] dξ

= k(α)

∫ t

0

∫ 1

0

φ′
0,α(1)φ1,α(ξ)[βu(ξ, t) + γu2(ξ, t)/2] dξ.(3.38)

Combining these expressions, it follows that there exist constants
cj , j = 0, . . . , 3 (depending only on α1, α2 and α3) and a 1 × 3 matrix-



NONLINEAR DISPERSIVE WAVES ON TREES 13

valued kernel K̃(ξ) = [K̃1(ξ), K̃2(ξ), K̃3(ξ)] such that g1(t) can be writ-
ten in terms of u = [u1, u2, u3]

T in the form

(3.39) c0g0(t) + c1g1(t) + c2g2(t) + c3g3(t) =

∫ t

0

∫ 1

0

K̃(ξ)F(u)(ξ, t) dξ.

where F(u) = [c1u1 +γ1u
2
1/2, c2u2 +γ2u

2
2/2, c3u3 +γ3u

2
3/2]T . Substitut-

ing back g1(t) into the system of BBM equations, we obtain an integral
system for u = [u1, u2, u3]

T , which is equivalent to the initial-boundary
value problem posed on T .




u1(x, t)
u2(x, t)
u3(x, t)



 = C




g0(t)
g2(t)
g3(t)





+

∫ t

0

∫ 1

0

K(x, ξ)




β1u1 + γ1u

2
1/2

β2u2 + γ2u
2
2/2

β3u3 + γ3u
2
3/2



 dξ

(3.40)

where C is a 3 × 3 constant matrix determined by α1, α2 and α3 only
and K(x, ξ) is a 3 × 3 matrix valued kernel whose entries are rational
expressions of φ0,α, φ1,α, φ′

0,α and φ′
1,α.

We are now ready to state a result for a general finite tree. As before,
let T be a finite tree with the set of vertices V = {vj | j = 0 . . . n} and
set of edges E = {ej | j = 1 . . . n} such that ej is the edge whose terminal
vertex is vj . Each edge e ∈ E is identified with the interval [0, le], where
le is the length of the interval. The edges are then rescaled to length 1 as
before. Without loss of generality, we can assume that J = {1, . . . k} is
the set of indices corresponding to the boundary vertices (hence terminal
edges) B = {vj}j∈J and EB = {ej}j∈J .

Theorem 3.3. Let u = u(x, t) ∈ C(T × [0, T ]) and denote ui the re-
striction of u to the edge ei. Then u = u(x, t) solves the initial-boundary
value problem if and only if u = [u1, u2, . . . , un] satisfies the integral
equation

u(x, t) = c0g0(t) +
∑

vb∈B

cbgb(t) + B(u)(x, t)(3.41)

=
∑

b∈B∪{0}

cbgb(t) +

∫ t

0

∫ 1

0

K(x, ξ)F(u)(ξ, t) dt(3.42)



14 J. L. BONA AND R. C. CASCAVAL

where cb are constants (determined by αi’s), the integral kernel K(x, ξ)
is an n × n matrix-valued operator whose entries are rational functions
of φα and φ′

α and F(u) = [βiui + γiu
2/2]i=1,n.

Proof. The proof is by induction by n, the total number of vertices
in the finite tree. For n = 1 the tree reduces to an interval, and the
statement immediate. For n = 3 the statement was proved above in the
case of an Y-junction (the other configurations of a tree with 3 edges
are treated similarly.

Assume the statement is true for any finite tree with at most n − 1
edges. Let T = {V , E} be a tree with n edges. We consider the subtree
T ′ obtained by trimming the leaf edges, say corresponding to the vertices
v ∈ B (boundary vertices). Thus, T ′ = {V ′, E ′}, where

V ′ = V \ B, E ′ = E \ EB.

The system of BBM equations posed on each edge e ∈ E

(3.43) ui,t − α2ui,xxt + βui,x + γuiui,x = 0, x ∈ [0, 1], t ≥ 0,

can be rewritten using the known boundary values and unknown junc-
tion values. These unknowns can be found from imposing the junction
conditions.

4 Numerical Simulations To study the dynamics of solutions to
BBM on a tree, we discretized the BBM equation using the following
numerical scheme: The spatial discretization is based on the Chebyshev
differentiation matrix [33], while the temporal discretization is based
on 3rd-order Milne’s predictor-corrector scheme [23]. We discretize a
Y-junction using the prescribed junction conditions. The root (inlet)
boundary conditions is Dirichlet, while the outlet (leaf) conditions are
Neumann. When applying an incoming solitary wave moving to the right
along the root edge, the resulting scattering at the bifurcation creates
a transmitted solitary wave of same shape (different velocities) and a
reflected negative wave, as indicated in the figure below (top).

Based on these numerical findings, it appears that there is a linear
dependence of the transmitted and reflected wave amplitudes to the
incoming waves. While a theoretical understanding of this phenomenon
is out of reach at this stage, it seems reasonable to expect this also in
the Korteweg-de Vries context, for instance in the presence of a shelf
(variable topography). While in the derivation of the models the angle
of the bifurcation did not play a role, it is expected that it will, once the
angle is factored into formulation of the junction conditions.
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FIGURE 4: Scattering of solitary waves at a junction. An incoming
wave modifies its speed past the junction and creates a reflected wave
(top). Dependence of reflected and transmitted wave amplitudes to the
incoming amplitude (bottom).

5 Conclusions In this paper we showed that the BBM equation
is well-posed on finite trees. This nonlinear dispersive system is well
suited to capture wave propagation phenomena in the cardiovascular
system, under several simplifying assumptions on the physical domain,
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while preserving the nonlinear characteristics of the dynamics. Trans-
mission and reflection waves are detected in numerical simulations for
this simplified model and a theoretical underpinning seems natural to
pursue. Moreover, deciding which specific assumptions work best to
capture the 1D features of the pulse wave propagation in the human
arterial system remains crucial in developing realistic models for the hu-
man cardiovascular system. Numerical results of such models must be
compared with experimental data collected during various physiological
regimes (exercise, disease). A natural extension to the theoretical results
in this paper would be to consider different boundary conditions for the
BBM equation on the finite tree, which would better model the periph-
eral circulation. From a numerical point of view, it even makes sense
to consider absorbing boundary conditions [22] which are well suited
for a truncated domain. In particular, an optimal choice of boundary
conditions for the finite trees would come from modeling the peripheral
circulation itself using nonlinear dispersive waves. More specifically, one
could consider the BBM equation on infinite trees, with a main finite
sub-tree (the root tree) and fractal trees attached to the leaves of the
root tree (see [16]). It is expected that similar well-posedness results
hold true in the infinite tree context and that dynamics of BBM equa-
tion on infinite trees is well approximated by the dynamics of truncated,
finite trees, with appropriate boundary conditions.
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