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Abstract. The evolution equation

ut − uxxt + ux − uut + ux

∫ +∞

x

utdx′ = 0, (1)

was developed by Hirota and Satsuma as an approximate model for unidi-
rectional propagation of long-crested water waves. It possesses solitary-wave
solutions just as do the related Korteweg-de Vries and Benjamin-Bona-Mahony
equations. Using the recently developed theory for the initial-value problem
for (1) and an analysis of an associated Liapunov functional, nonlinear stability
of these solitary waves is established.

1. Introduction. Considered here is the evolution equation

ut − uxxt + ux − uut + ux

∫ +∞

x

utdx
′ = 0, x ∈ R, t ∈ R+, (2)

derived by Hirota and Satsuma in [14] (see also [18] and [19]). The dependent
variable u = u(x, t) is a real-valued function of the two real variables x and t.
This equation was developed as a model for the unidirectional propagation of small
amplitude, long waves on the surface of an ideal fluid in a channel of constant
depth. The variable x corresponds to distance in the direction of propagation,
t > 0 is proportional to elapsed time and u(x, t) is the deviation of the free surface
from its rest position at the point x along the channel at time t. It has the same
formal status as an approximation of the full, two-dimensional Euler equations as
do the well-known Korteweg-de Vries equation (KdV-equation)

ut + uxxx + ux + 2uux = 0 (3)

and the Benjamin-Bona-Mahony equation (BBM-equation)

ut − utxx + ux + 2uux = 0. (4)
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In [15], Iorio and Pilod proved that, provided s > 1
2 , the initial-value problem

associated to (2) is locally well-posed for initial data in the open subset

Ωs = {φ ∈ Hs(R) | − 1 /∈ σ(−∂2
x − φ)}, (5)

where σ(−∂2
x − φ) denotes the spectrum of the unbounded operator −∂2

x − φ in the
L2-based Sobolev space Hs(R). An important initial step in their analysis was to
rewrite the differential equation as an integral equation, viz.

ut = −∂x(1 − ∂2
x − u)−1u, (6)

provided u ∈ Ωs. One then applies a fixed-point theorem to the integral equation
(6). It was also proved, taking advantage of the quantity

E(v) =

∫

R

(
1

2
v(x)2 +

1

2
v′(x)2 −

1

6
v(x)3

)
dx, (7)

which is conserved by H1-solutions of (2), that if the initial data u0 lies in H1(R),
then the local H1-solution corresponding to u0 may be extended globally in time
provided the initial data satisfies the additional conditions

‖u0‖H1 < ‖ϕ⋆‖H1 and E(u0) < E(ϕ⋆). (8)

Here, ϕ⋆ denotes the unique, non-trivial solution of the nonlinear elliptic differential
equation

− ϕ⋆′′

+ ϕ⋆ − ϕ⋆2 = 0 (9)

that is bounded on all of R. Of course, uniqueness in this context is modulo the
translation-group in the underlying spatial domain.

The solitary waves of the Hirota-Satsuma equation are traveling-wave solutions
of (2) of the form

u(x, t) = φ(x − (1 + c)t), with c > 0 and lim
|x|→+∞

φ(x) = 0.

It is readily seen that φ must satisfy the ordinary differential equation

− φ′′ + µφ− φ2 = 0, with µ =
c

1 + c
∈ (0, 1) (10)

if u is to solve (2). Moreover, as was observed already in [15], the family of functions

φµ(x) =
3

2
µsech2

(µ 1

2

2
x
)
, µ ∈ (0, 1), (11)

all satisfy (10) and the additional conditions (8), so that initial data near in H1(R)
to φµ, for some µ ∈ (0, 1), evolve into solutions which are global in time. This fact
does not mean the φµ are stable (see e.g. [9] for an example of solitary waves that are
unstable, but whose perturbations nevertheless lead to globally defined solutions).
In light of the well known stability theory for (3) and (4), it is nevertheless natural
to expect these traveling-wave solutions are in fact stable.

The stability theory for the solitary waves associated to the KdV- and BBM-
equations has been extensively studied in the last decades. The first rigorous sta-
bility result for KdV was proved by Benjamin [4] and Bona [6]. A principal part
of the analysis, whose roots lie in the work of Boussinesq [11] in the 1870’s, is to
observe that the solitary waves are local minimizers of an H1-functional over the set
of all admissible functions having fixed L2-norm, and that the H1-functional and
the L2-norm are both conserved by the flow of the equation. The original theory of
Benjamin and Bona required a full understanding of the spectrum of a linearized
differential operator associated to the solitary wave.
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A later method for proving stability of solitary waves, which does not rely on
local analysis, was developed by Cazenave and Lions [12], [13], using Lions’ method
of concentration compactness (in this context, see also the results of Weinstein
[21], Albert [1] and Lopes [17] and the references in these articles). The main idea
is to show that the set of minimizers for a variational problem associated to the
Euler-Lagrange equation satisfied by the solitary wave is not empty. One takes
a minimizing sequence and uses the concentration compactness criteria to prove
that, up to translations, it is precompact. A subsequence is thereby adduced which
converges to a minimizer. When the method works, it implies directly the stability
of the set of minimizers for the flow of the evolution equation. In general, a stability
result obtained in this way is weaker than one deduced using local analysis, since
one does not necessarily know if the solitary waves belong to the set of minimizers,
nor do we know if the set consists of only one element, up to translations. However,
in the case of the KdV-equation, it is straightforward to verify that the set of
minimizers corresponding to a fixed value of the L2-norm is exactly a solitary wave
and its set of translates, so that both methods give equivalent, orbital stability
results.

The present essay proposes a stability analysis of the solitary-wave solutions (11)
of the Hirota-Satsuma equation. As already mentioned, one expects that these
waves will be stable. On the other hand, while Hirota-Satsuma solitary waves
(11) appear closely related to their BBM-counterparts, and, for small amplitudes,
also with the KdV-approximation of solitary waves, the non-local character of the
equation makes the question of stability less than obvious. It turns out that they
are in fact stable, as our main result attests.

Theorem 1.1. Let c > 0 be given and let µ = c
1+c

∈ (0, 1). Then the solitary-wave

solution φµ in (11) of the Hirota-Satsuma equation (2) is orbitally stable in H2(R).
More precisely, corresponding to any ǫ > 0, there is a δ > 0 such that if

‖u0 − φµ‖H2 < δ,

then for every t > 0 there is a γ = γ(t) such that

‖u(·, t) − φµ(· + γ(t))‖H2 < ǫ, (12)

where u is the solution of (2) emanating from u0.

There are several points worth mentioning about our analysis. The Hirota-
Satsuma equation does have a Hamiltonian structure. However, the invariants of
the motion, E in (7) and F , given by

F (v) =

∫

R

(
1

2
v′(x)2 +

1

2
v′′(x)2 −

1

3
v(x)3 +

1

6
v(x)4 −

3

2
v(x)v′(x)2

)
dx, (13)

that come to the fore in our analysis are naturally defined on H2(R) rather than
on H1(R) as is the case for the KdV- and BBM-equations. As a consequence, the
global well-posedness theory needs to be extended to higher-order Sobolev classes.

As first suggested in [5] in the context of the Benjamin-Ono equation, a local
approach could naturally proceed from a consideration of the composite functional
Λ := F + µE. It is not difficult to see that φµ is a critical point of Λ (see Lemma
3.2 below). However, the differential operator corresponding to the quadratic form
that is the second derivative of Λ at φµ is fourth order, and its spectral properties
are less than transparent.
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In consequence, we have elected to follow the variational method, studying the
set of minimizers for the variational problem

(Vλ)

{
Minimize F (φ) on the admissible set of functions
Iλ = {φ ∈ H2(R) | E(φ) = λ and ‖φ‖H1 < ‖ϕ⋆‖H1}.

Since neither constraint functional E nor F is homogeneous, we have used the al-
ternative ideas, developed by Lopes in [17], to prevent a minimizing sequence from
dichotomizing (see Section 4). (Dichotomy is a prospect that must be eliminated
in applying concentration compactness.) Indeed, it was proved in [17] that if di-
chotomy occurs in the minimizing sequence, then a second-order condition on the
functional Λ is violated. It is this fact that is used in our analysis.

Finally, the dependence of the translation function γ on t is examined. Employing
the ideas of Bona and Soyeur in [10], it is proved here that γ can be chosen to be a
C1-function whose derivative is uniformly close to the physical velocity 1 + c of the
wave φµ. This result implies that the solution generated by initial data near the
solitary wave φµ is “almost” a solitary wave traveling at a speed close to that of φµ.
Because the stability result is obtained via a global perspective rather than a local
analysis, recent work of Albert, Bona, and Nguyen [3] has informed the approach
to ensuring there is a choice of γ that has all the stated properties.

The rest of the paper is organized as follows. In Section 2, the H2 global well-
posedness theory is derived for the initial-value problem for (2). As already men-
tioned, this is a fundamental prerequisite for the stability result as stated in The-
orem 1.1. Section 3 is devoted to the study of the variational problem (Vλ). The
outcome of this study finds use in Section 4 to prove Theorem 1.1. Finally, the
aforementioned refinement of the basic orbital stability result is exposed in Section
5. A short, concluding section reviews what has been accomplished and points to
related lines of inquiry that would be worthwhile to pursue.

The body of the paper is followed by two appendices. The first provides details
of Lopes’ ideas which are used in Section 4 in the proof of the main result. The
second appendix presents an ill-posedness result indicating that the restriction (5)
cannot be easily discarded in the theory for (2).

2. Conservation laws and global well-posedness in higher-order Sobolev

spaces. We start with a derivation of the conservation law of the Hirota-Satsuma
equation defined in (13).

Proposition 2.1. Let u a smooth solution of (2) defined at least on the time
interval [0, T ] and suppose that u and its first few partial derivatives all lie in L2(R).
Then,

F (u(·, t)) = F (u0), for all t ∈ [0, T ], (14)

where u0 = u(·, 0) and F is defined in (13).

Proof. Denote by (·, ·)L2 the scalar product in L2, which is to say

(φ, ψ)L2 =

∫

R

φ(x)ψ(x)dx,

when φ and ψ are real-valued functions in L2(R).
Multiply (2) by u2 and integrate over R to deduce that

1

3

d

dt

∫

R

u3(x, t)dx − (uxxt, u
2)L2 − (uut, u

2)L2 + (ux

∫ +∞

x

utdx
′, u2)L2 = 0.



SOLITARY-WAVE SOLUTIONS TO THE HIROTA-SATSUMA EQUATION 1395

An integration by parts reveals that

(
ux

∫ +∞

x

utdx
′, u2

)
L2

=
1

3
(uut, u

2)L2 =
1

12

d

dt
‖u‖4

L4,

whence
1

3

d

dt

∫

R

u3(x, t)dx + 2(uxt, uux)L2 −
1

6

d

dt
‖u‖4

L4 = 0. (15)

On the other hand, differentiating (2) by x, multiplying the result by ux and then
integrating over R leads to the formula

1

2

d

dt

(
‖ux‖

2
L2 + ‖uxx‖

2
L2

)
+ (uut, uxx)L2 −

(
ux

∫ +∞

x

utdx
′, uxx

)
L2

= 0.

Integrations by parts show that

(uut, uxx)L2 = −(uutx, ux)L2 − (uxut, ux)L2 ,

and
(
ux

∫ +∞

x

utdx
′, uxx

)
L2

=
1

2
(uxut, ux)L2 .

Thus, it follows that

1

2

d

dt

(
‖ux‖

2
L2 + ‖uxx‖

2
L2

)
−

3

2
(uxut, ux)L2 − (uutx, ux)L2 = 0. (16)

Combining (15), (16) and the fact that

d

dt
(u, u2

x)L2 = (ut, u
2
x)L2 + 2(u, uxuxt)L2

yields

d

dt

(
1

2
‖ux‖

2
L2 +

1

2
‖uxx‖

2
L2 −

1

3

∫

R

u3(x, t)dx +
1

6
‖u‖4

L4 −
3

2
(u, u2

x)L2

)
= 0,

which is equivalent to (14) for smooth solutions.

Extending this result from smooth solutions to solutions of only limited regu-
larity can be accomplished by a suitable approximation argument. Note that just
regularizing the initial data does not work in the present context since the smooth
solutions emanating from the regularized data are only known to exist, as smooth
solutions, on shorter and shorter time intervals as the regularization goes away (see
Kato [16] and Bona and Kalisch [7]).

Instead, reason as follows. Let u ∈ C(0, T ;H2(R)) be a solution as guaranteed by
the local existence theory in [15]. Because of the assumptions (8) on u0, it follows
from the integral equation obtained by inverting the operator

(
1− ∂2

x −u(·, t)
)

that

ut ∈ C(0, T ;H3(R)) (see Lemma 5.4 (i) below). Let {un}
∞
n=1 ⊂ C1(0, T ;H4(R))

converge to u in C(0, T ;H2(R)) ∩ C1(0, T ;H3(R)). Let Γn(x, t) be the residual,
which is to say,

∂tun − ∂2
x∂tun + ∂xun − un∂tun + ∂xun

∫ +∞

x

∂tundx
′ = Γn.

Then, it follows that Γn converges to zero in C(0, T ;H1(R)). Moreover, we obtain,
arguing as in the proof of Proposition 2.1, that

F (un(·, t)) − F (un(·, 0)) =

∫ t

0

[
(∂xΓn, ∂xun)L2

x
− (Γn, u

2
n)L2

x

]
dτ −→

n→+∞
0,

for all t ∈ [0, T ], and thus F (u(·, t)) is constant on [0, T ].
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Proposition 2.1 and Theorems 1 and 3 in [15] may be combined to prove that
the initial-value problem associated to the Hirota-Satsuma equation is globally well-
posed in H2(R) for initial data u0 ∈ H2(R) satisfying conditions (8).

Theorem 2.2. Let u0 ∈ H2(R) be such that ‖u0‖H1 < ‖ϕ⋆‖H1 and E(u0) < E(ϕ⋆)
as in (8). Then the local solution u to the initial-value problem

{
ut + ux − utxx − uut + ux

∫ ∞

x
utdx

′ = 0,
u(x, 0) = u0(x), for x ∈ R,

(17)

obtained in Theorem 1 of [15] extends uniquely to a solution u ∈ Cb(R;H2(R)) that
solves (2) and, additionally, has the property that

‖u(·, t)‖H1 < ‖ϕ⋆‖H1 , for all t ∈ R. (18)

Proof. Let u0 ∈ H2(R) satisfy the hypotheses, which is to say, the inequalities in
(8). The initial value u0 can be approximated in H2 by, say, H∞-functions {u0,i}

∞
i=1

that also respect (8), uniformly for i = 1, 2, · · · . It follows from Theorem 1 in [15]
that there exists positive times

Ti = T (r0(u0,i), r1(u0,i), ‖u0,i‖H2), with rj(φ) = ‖∂j
x(−∂2

x − φ+ 1)−1‖B(L2), (19)

j = 0, 1, and associated solutions ui of the Hirota-Satsuma equation such that

ui ∈ C([0, Ti);H
2(R)),

i = 0, 1, · · · . Note that T can be taken to be a continuous, positive function of
its arguments. Thus, to show the solutions ui, i = 1, 2, · · · , may be extended to
arbitrarily large time intervals, it suffices to derive a priori bounds on the quantities
r0(ui(·, t)), r1(ui(·, t)), and ‖ui(·, t)‖H2 and then reapply the local well-posedness
result an arbitrary number of times.

But the bounds on r0(u(t)) and r1(u(t)) are obtained in Theorem 3 in [15] since
u0 satisfies (8), while the bound on ‖u(t)‖H2 is a consequence of the second-order
conservation law obtained in Proposition 2.1 combined with (18) and standard
Sobolev embedding results.

3. Solitary-wave solutions and the variational problem. Consider the soli-
tary waves φµ in (11) which are solutions to (10), for 0 < µ < 1. Define e(µ) and
f(µ) by

e(µ) = E(φµ) and f(µ) = F (φµ), for 0 < µ < 1,

and set
e⋆ = E(ϕ⋆) and f⋆ = F (ϕ⋆) where ϕ⋆ = lim

µ→1
φµ.

Recall that ϕ⋆ is a solution to equation (9). The first step in the analysis is a
technical lemma which asserts that e and f are bijections.

Lemma 3.1. Let e and f be as defined above. Then,

(i) the function e is a strictly increasing bijection from (0, 1) onto (0, e⋆), and
(ii) the function f is a strictly decreasing bijection from (0, 1) onto (f⋆, 0).

Proof. First, observe that since φµ is a solution to (10), then
∫

R

(
φ′µ(x)2 + µφµ(x)2

)
dx =

∫

R

φµ(x)3dx. (20)

From the definition of E in (7), it is seen that

e(µ) = E(φµ) =
1

3
‖φ′µ‖

2
L2 +

(1

2
−
µ

6

)
‖φµ‖

2
L2 . (21)
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On the other hand, observe that ϕ⋆(x) = µ−1φµ(µ− 1

2x) does not depend on µ since
it satisfies equation (9), so that (21) becomes

e(µ) =
1

3
µ

5

2 ‖ϕ⋆′

‖2
L2 +

(1

2
−
µ

6

)
µ

3

2 ‖ϕ⋆‖2
L2.

It is therefore concluded that

e′(µ) =
5

6
µ

3

2 ‖ϕ⋆′

‖2
L2 +

(3

4
µ

1

2 −
5

12
µ

3

2

)
‖ϕ⋆‖2

L2 > 0, (22)

since µ ∈ (0, 1), which proves (i).
Attention is now given to the proof of (ii). To obtain a helpful expression for

f(µ), the following identities satisfied by φµ are useful. First, differentiate (10),
multiply the result by φ′µ and integrate by parts to reach the formula

∫

R

(
φ′′µ(x)2 + µφ′µ(x)2

)
dx = 2

∫

R

φµ(x)φ′µ(x)2dx. (23)

Second, multiply (10) by φ2
µ and integrate by parts to obtain

∫

R

(
2φµ(x)φ′µ(x)2 + µφµ(x)3

)
dx =

∫

R

φµ(x)4dx. (24)

Combining (13), (20), (23) and (24) yields

f(µ) = F (φµ) =

∫

R

(
1 − µ

2
φ′µ(x)2 −

2 − µ

6
φ3

µ −
1

6
φµ(x)φ′µ(x)2

)
dx. (25)

On the other hand, if (10) is multiplied by φ′µ and the result integrated, there
appears

− (φ′µ)2 + µφ2
µ −

2

3
φ3

µ = 0, (26)

which, together with (20), gives
∫

R

φ′µ(x)2dx =
1

6

∫

R

φµ(x)3dx. (27)

Finally, upon gathering together (25) and (27) and performing the same change of
variable as for e, it transpires that

f(µ) = −
(3

2
−
µ

2

)
µ

5

2 ‖ϕ⋆′

‖2
L2 −

1

6
µ

7

2

∫

R

ϕ⋆(x)ϕ⋆′

(x)2dx.

It is concluded that f and f ′ are strictly negative on (0, 1) since ϕ⋆ is a positive
function.

In what follows, λ connotes a fixed, but arbitrary number in the interval (0, e⋆).
Consider the variational problem

(Vλ)

{
Minimize F (φ) on the admissible set of functions
Iλ = {φ ∈ H2(R) | E(φ) = λ and ‖φ‖H1 < ‖ϕ⋆‖H1}.

(28)

For the fixed value of λ, let

Fλ = inf{F (φ) | φ ∈ Iλ }.

The next result characterizes the solutions of the Euler-Lagrange equation asso-
ciated to (Vλ).
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Lemma 3.2. Let α ∈ R and let φ ∈ H2(R) be such that ‖φ‖H1(R) < ‖ϕ⋆‖H1 . Then
φ is a solution to the Euler-Lagrange equation associated to (Vλ) for the Lagrange
multiplier α, which is to say,

F ′(φ) + αE′(φ) = 0, (29)

if and only if φ solves the elliptic differential equation

− φ′′ + αφ− φ2 = 0. (30)

Proof. Let α ∈ R and φ ∈ H2(R). Define

Λ(φ) := F (φ) + αE(φ)

=

∫

R

(
1

2
(φ′′)2 +

1

2
(1 + α)(φ′)2 +

α

2
φ2 −

2 + α

6
φ3 +

1

6
φ4 −

3

2
φ(φ′)2

)
dx.

A straightforward calculation reveals that

Λ′(φ)h

=

∫

R

(
φ(4) − (1 + α)φ′′ + αφ− (1 +

α

2
)φ2 +

2

3
φ3 +

3

2
(φ′)2 + 3φφ′′

)
hdx

=

∫

R

([
−

d2

dx2
+ 1 − φ

]
(−φ′′ + αφ − φ2) + (−

1

2
(φ′)2 +

α

2
φ2 −

1

3
φ3)

)
hdx.

(31)

Hence, if φ is a solution to (30), it is deduced from (26) and (31) that φ is a solution
to the Euler-Lagrange equation (29).

Reciprocally, let φ be a solution to the Euler-Lagrange equation (29). Then,
observe using (31) and integrating by parts that

− Λ′(φ)h′

=

∫

R

(
d

dx

[
−

d2

dx2
+ 1 − φ

]
(−φ′′ + αφ− φ2) +

d

dx
(−

1

2
(φ′)2 +

α

2
φ2 −

1

3
φ3)

)
hdx

=

∫

R

([
−

d2

dx2
+ 1 − φ

] d
dx

(−φ′′ + αφ− φ2)

)
hdx = 0,

for any h ∈ C∞
0 (R). Since it was proved in Lemma 6 of [15] that the differential

operator − d2

dx2 + 1− φ is invertible when ‖φ‖H1(R) < ‖ϕ⋆‖H1 , φ has therefore to be
a solution of (30).

Remark 3.3.

(i) Let φ ∈ H2(R), φ 6= 0, be a solution to the Euler-Lagrange equation (29).
Then α has to be positive, since equation (30) does not admit non-zero
bounded solutions for α ≤ 0.

(ii) If µ = e−1(λ) ∈ (0, 1), then the solitary-wave solution φµ defined in (11) is the
unique (up to translation) non-zero solution to the Euler-Lagrange equation
(29) in the admissible set Iλ.

In view of the last observation, φµ is the natural candidate to be the global
minimizer for the problem (Vλ). The next result provides some analysis of the
second derivative of Λ at the critical point φµ.

Proposition 3.4. Let µ ∈ (0, 1). Consider φµ defined in (11), the unique (up to
translation) solution to the Euler-Lagrange equation (29) with Lagrange multiplier
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µ. Then, if Λ = F + µE, it follows that

Λ′′(φµ)

(
dφµ

dµ
,
dφµ

dµ

)
< 0. (32)

Proof. Let φ ∈ H2(R). Straightforward calculation reveals that

Λ′′(φ)(h1, h2)

=

∫

R

(
−(−φ′′ + µφ− φ2) +

[
−

d2

dx2
+ 1 − φ

]
(−

d2

dx2
+ µ− 2φ)

)
h1h2dx

+

∫

R

(−φ′h′1h2 + µφh1h2 − φ2h1h2)dx.

Since φµ is a solution to (30), it transpires that

Λ′′(φµ)(h1, h2) = (Mµh1, h2)L2 , where Mµ = HµLµ + Cµ,

Hµ = −
d2

dx2
+ 1 − φµ, Lµ = −

d2

dx2
+ µ− 2φµ and Cµ := −φ′µ

d

dx
+ φ′′µ.

It is worth noting that Hµ and Lµ are both well-understood, self-adjoint operators.
Indeed, Hµ is an invertible operator since µ ∈ (0, 1) (see [15]) and Lµ is the dif-
ferential operator of (10), linearized around φµ. If (10) and (26) are differentiated
with respect to µ, the identities

Lµ

dφµ

dµ
= −φµ and − φ′µ(

dφµ

dµ
)′ + µφµ

dφµ

dµ
− φ2

µ

dφµ

dµ
= −

1

2
φ2

µ (33)

appear.
Now, define d(µ) = Λ(φµ) = F (φµ) + µE(φµ). Then, since φµ is a critical point

of Λ, one observes that

d′(µ) = e(µ) = E(φµ) (34)

and

d′′(µ) = E′(φµ)
dφµ

dµ
=

∫

R

(
− φ′′µ + φµ −

1

2
φ2

µ

)dφµ

dµ
dx. (35)

Gathering together (10), (33), and (35), gives the result

d′′(µ) =

∫

R

(Hµφµ +
1

2
φ2

µ)
dφµ

dµ
dx

= −(HµLµ

dφµ

dµ
,
dφµ

dµ
)L2 +

∫

R

(
φ′µ(

dφµ

dµ
)′
dφµ

dµ
− (µφµ − φ2

µ)(
dφµ

dµ
)2

)
dx

= −(HµLµ

dφµ

dµ
,
dφµ

dµ
)L2 +

∫

R

(
φ′µ(

dφµ

dµ
)′ − φ′′µ

dφµ

dµ

)
dφµ

dµ
dx

= −(Mµ

dφµ

dµ
,
dφµ

dµ
)L2 = −Λ′′(φµ)

(
dφµ

dµ
,
dφµ

dµ

)
.

On the other hand, it is already known from (22) and (34) that d′′(µ) > 0, which
concludes the proof of Proposition 3.4.

Remark 3.5. We will see that Proposition 3.4 allows us to use the upcoming
Theorem 4.6, which in turn prevents minimizing sequences from dichotomizing.
Moreover, the proof of this latter fact will reveal that Proposition 3.4 is equivalent
to d′′ > 0, a condition which is generally associated with stability.
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4. Existence of global minimizers and stability theory. The main result of
this section establishes the existence of global minimizers for the variational problem
(Vλ). Throughout this section, λ ∈ (0, e⋆) and µ = e−1(λ) ∈ (0, 1) are fixed, where
e is as in Lemma 3.1. A sequence of functions {φn} will be called a minimizing
sequence for the variational problem (Vλ) in (28) when {φn} satisfies the conditions

{φn} ⊂ H2(R), E(φn) = λ, ‖φn‖H1 < ‖ϕ⋆‖H1 , and F (φn) →
n→∞

Fλ. (36)

Theorem 4.1. If {φn} is a minimizing sequence for the variational problem (Vλ)
defined in (28), then there exists a real sequence {cn} and a real number τ such
that the sequence of translates {φn(· + cn)} has a subsequence converging strongly
in H2(R) to φµ(·+ τ), where φµ is the solitary-wave solution of the Hirota-Satsuma
equation defined in (11).

Before starting with the proof of Theorem 4.1, preliminary results are enunciated
and proved. The first one asserts that minimizing sequences for (Vλ) are bounded
in H2(R).

Lemma 4.2. Let {φn} be a minimizing sequence for (Vλ). Then, there exists a
constant C such that

‖φn‖H2 ≤ C, for all n ∈ N. (37)

Proof. We already know that ‖φn‖H1 < ‖ϕ⋆‖H1 , n = 1, 2, · · · . It remains to bound
‖φ′′n‖L2. But, Sobolev embedding and the definition of F in (13) imply that

1

2
‖φ′′n‖L2 ≤ 2 sup

n
F (φn) + c(‖φn‖H1) ≤ C.

We will need the following result, proved as Lemma 7 in [15]. (Note that our
version of the Hirota-Satsuma equation differs from that in [15] by not having a
factor 2 adorning the nonlinear terms.)

Lemma 4.3. Let 0 < δ0 < 1. Assume that ‖φ‖H1 < ‖ϕ⋆‖H1 and E(φ) ≤ (1 −
δ0)E(ϕ⋆). Then, there exists a δ with 0 < δ = δ(δ0) < 1 such that

‖φ‖H1 ≤ (1 − δ)‖ϕ⋆‖H1 and E(φ) ≥ 0. (38)

Corollary 4.4. If {φn} is a minimizing sequence for (Vλ) such that φn ⇀ φ in
H1(R), then ‖φ‖H1 < ‖ϕ⋆‖H1 .

Proof. Indeed, if {φn} is a minimizing sequence for (Vλ), it follows that

φn ∈ B(0, ‖ϕ⋆‖H1) and E(φn) = λ < e⋆ = E(ϕ⋆).

Hence, it is deduced from Lemma 4.3 that there exists a δ > 0 depending only on
λ such that

‖φ‖H1 ≤ lim inf ‖φn‖H1 ≤ (1 − δ)‖ϕ⋆‖H1 .

The next lemma will be useful in proving the existence of a non-vanishing mini-
mizing sequence.

Lemma 4.5. Let {φn} a bounded sequence in H2(R). If for all real sequences {cn},
the sequence {φn(· + cn)} converges to zero weakly in H2(R), then {φn} converges
to zero strongly in W 1,p(R), for any p with 2 < p ≤ ∞.
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Proof. Fix R > 0 and ǫ > 0. Denote by IR the open interval (−R,R). Then, for all
n ∈ N, there exists cn ∈ R such that

‖φn‖L∞ = sup
y∈R

‖φn‖L∞(y+IR) ≤ ‖φn‖L∞(cn+IR) + ǫ. (39)

Define the translated function ψn(z) = φn(z + cn). By hypothesis, the sequence
{ψn} converges to zero weakly in H2(R) and hence in H1(R). From (39) and the
fact that H1(IR) is compactly embedded in L∞(IR), it is deduced that

lim sup
n→+∞

‖φn‖L∞ ≤ lim
n→+∞

‖ψn‖L∞(IR) + ǫ = ǫ,

where ǫ > 0 was arbitrary. Straightforward interpolation thus yields that for any p
with 2 < p ≤ ∞,

‖φn‖Lp ≤ ‖φn‖
2

p

L2‖φn‖
1− 2

p

L∞ ≤ C‖φn‖
1− 2

p

L∞ −→
n→+∞

0.

The same argument proves that {φ′n} converges to zero strongly in Lp(R), for any
p with 2 < p ≤ ∞.

Here is a fundamental technical result of Lopes [17] which gives sufficient condi-
tions preventing dichotomy to occur for minimizing sequences.

Theorem 4.6. Assume that

(H) if φ 6= 0 is the weak limit in H2(R) of a minimizing sequence for (Vλ) and φ
satisfies the Euler-Lagrange equation Λ′(φ) = F ′(φ) + αE′(φ) = 0, then there
exists an element h ∈ H2(R) such that Λ′′(φ)(h, h) < 0.

If {φn} ⊂ H2(R) is a minimizing sequence for the variational problem (Vλ) converg-
ing weakly in H2(R) to some φ 6= 0, then by extracting a subsequence if necessary,
it follows that {φn} converges strongly to φ in W 1,p(R) for any p with 2 < p ≤ ∞,
and there exists an α ∈ R such that φ satisfies the Euler-Lagrange equation

F ′(φ) + αE′(φ) = 0. (40)

The proof of Theorem 4.6 is similar to the one given by Lopes in his proof of
Theorem 2.1 in [17]. However, a function φ in our admissible set Iλ must satisfy
the condition ‖φ‖H1 < ‖ϕ⋆‖H1 (a side condition that does not appear in Lopes’
theorem). Also, hypothesis (H1) of Theorem 2.1 in [17] is not satisfied in our case,
which is another cause of difficulty. For these reasons and also for the sake of
completeness, we provide a sketch of the proof of Theorem 4.6 in the appendix.

A proof of Theorem 4.1 is now in sight.

Proof of Theorem 4.1. Let {φn} be a minimizing sequence for (Vλ). From Lemma
4.2, it is known that {φn} is bounded in H2(R).

Now, if for all real sequences {cn}, the associated sequence {φn(·+ cn)} of func-
tions were to converge to zero weakly in H2(R), then Lemma 4.5 would imply that
{φn} must converge to zero strongly in W 1,p(R), for any p in the range 2 < p ≤ ∞.
Thus, it would follow that

Fλ = lim
n→∞

F (φn) = lim
n→∞

∫

R

(
1

2
φ′2n +

1

2
φ′′2n −

1

3
φ3

n +
1

6
φ4

n −
3

2
φnφ

′2
n

)
dx ≥ 0,

which is not possible since, in view of Lemma 3.1, φµ is an admissible function and
f(µ) = F (φµ) < 0 (here µ = e−1(λ) ∈ (0, 1)).
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Hence, there exists a real sequence {cn}, a subsequence of {φn} (still denoted
{φn}), and a φ ∈ H2(R), φ 6= 0 such that

ψn = φn(· + cn) ⇀
n→+∞

φ, in H2(R). (41)

Because the functionals E and F are translation invariant, {ψn} is still a minimizing
sequence for (Vλ).

To verify the assumption (H) of Theorem 4.6, suppose that φ ∈ H2(R), φ 6= 0
is the weak limit of a minimizing sequence {φn}, and that φ satisfies the Euler-
Lagrange equation

F ′(φ) + αE′(φ) = 0, for some α ∈ R.

Then, we deduce from Lemma 3.2 and Remark 3.3 (i) that φ has to be a solution
to the differential equation (30) with α > 0. Moreover, since Corollary 4.4 implies
that ‖φ‖H1 < ‖ϕ⋆‖H1 , Lemma 3.1 (i) implies that α ∈ (0, 1), and (H) then follows
from Proposition 3.4.

Applying Theorem 4.6 to the minimizing sequence {ψn}, and extracting a sub-
sequence if necessary, it transpires that

ψn −→
n→+∞

φ in W 1,p(R) for 2 < p ≤ ∞, (42)

and φ is a solution to the Euler-Lagrange equation (29) with α ∈ (0, 1). Because of
Lemma 3.2, it must be the case that φ = φα solves (30). From (41) and (42), it is
concluded that

F (φ) ≤ lim inf(F (ψn)) = Fλ and E(φ) ≤ lim inf(E(ψn)) = λ. (43)

Hence, Lemma 3.1 implies that 0 < α ≤ µ, since µ = e−1(λ).
If it is supposed that 0 < α < µ, then Lemma 3.1 (ii) would imply that f(α) =

F (φ) > Fλ which contradicts (43). Thus, we must have α = µ, whence φ is an
admissible function and

F (φ) = Fλ, E(φ) = λ, and ‖ψn‖H2 −→
n→+∞

‖φ‖H2 . (44)

Finally, it is concluded from (41) and (44) that {ψn} converge strongly to φ in
H2(R).

The set of global minimizers for (Vλ) may now be characterized.

Corollary 4.7. Let λ ∈ (0, e⋆) and let Gλ denote the set of global minimizers for
(Vλ). Then,

Gλ = {φµ(· + τ) | τ ∈ R},

where µ = e−1(λ) and φµ is the solitary wave defined in (11).

All the elements are now in place to mount a proof of the stability result in
Theorem 1.1. The proof follows the line of reasoning laid down in Lemma 2.13 in
[17].

Proof of Theorem 1.1. Suppose the theorem to be false. Then, there exists a num-
ber ǫ > 0, a sequence of functions {ψn} ⊂ H2(R) and a sequence of times {tn} such
that

‖ψn‖H1 < ‖ϕ⋆‖H1 , ψn −→
n→+∞

φµ in H2(R), (45)

and

inf
τ∈R

‖un(·, tn) − φµ(· + τ)‖H2 ≥ ǫ, (46)
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where un is the global H2-solution to (2) satisfying un(·, 0) = ψn. Observe, since
the functionals E and F are continuous in H2(R), that

E(ψn) −→
n→+∞

E(φµ) = λ and F (ψn) −→
n→+∞

F (φµ) = Fλ. (47)

Thus, if fn = un(·, tn), it is deduced from (47), Theorem 2.2 and the fact that E
and F are conserved quantities for (2), that the sequence {fn} has the properties

‖fn‖H1 < ‖ϕ⋆‖H1 , E(fn) −→
n→+∞

λ, and F (fn) −→
n→+∞

Fλ. (48)

Suppose now that for all real sequences {cn}, the associated sequence of functions
{fn(· + cn)} converges to zero weakly in H2(R). Then, it follows from Lemma
4.5 that {fn} converges to zero strongly in W 1,p(R) for any p with 2 < p < ∞.
Consequently, Fλ has to be non-negative, which is a contradiction in view of Lemma
3.1 and Corollary 4.7. Thus, it is deduced, after making suitable spatial translations
and extracting a subsequence, that

∃ f ∈ H2(R) such that f 6= 0 and fn ⇀
n→+∞

f in H2(R). (49)

Moreover, since Lemma 4.3 implies that ‖f‖H1 < ‖ϕ⋆‖H1 , and the only non-zero
critical points of E are 2ϕ⋆ and its spatial translates, f is not a critical point of E,
so there is a function h ∈ C∞

c (R) satisfying

E′(f)h 6= 0. (50)

Consider the polynomial

Pn(t) = E(fn + th) = an + bnt+ cnt
2 + dt3, (51)

where
an = E(fn), bn = E′(fn)h, (52)

cn =
1

2
E′′(fn)(h, h) =

∫

R

(
1

2
h2 +

1

2
h′2 −

1

2
fnh

2

)
dx, (53)

and

d = −
1

6

∫

R

h3dx. (54)

Reference to (48) assures that

an −→
n→∞

λ ∈ (0, e⋆). (55)

If R > 0 is chosen large enough that supph ⊂ (−R,R), then since H1(−R,R)
is compactly embedded in L∞(−R,R), it follows that, after passing to a further
subsequence if necessary,

bn = E′(fn)h =

∫

R

(
fnh+ f ′

nh
′ −

1

2
f2

nh

)
dx −→

n→+∞
E′(f)h 6= 0. (56)

Similar considerations assure that

cn −→
n→+∞

1

2
E′′(f)(h, h), (57)

so that, in particular, the {cn} are bounded. It follows readily that for all n large
enough, there exists tn ∈ R such that

Pn(tn) = λ and tn −→
n→+∞

0. (58)

Combining (48), (49) and (58) leads to the conclusion

E(fn + tnh) = λ and lim
n→∞

F (fn + tnh) = lim
n→∞

F (fn) = Fλ, (59)
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which is to say that the sequence {hn}, defined by hn = fn + tnh, is a minimizing
sequence for the variational problem (Vλ). Therefore, it follows from Theorem 4.1
that there is a real number τ ∈ R, a real sequence {cn} and a subsequence {hnk

}
of {hn} satisfying

lim
n→+∞

fnk
(· + cnk

) = lim
n→+∞

hnk
(· + cnk

) = φµ(· + τ) in H2(R),

which contradicts (45)–(46).

5. Refinement of the stability theory. The outcome of the ruminations in
the present section, while not a result of asymptotic stability, nevertheless gives
strong evidence that the solution emerging from initial data that comprises a slightly
perturbed solitary wave is very nearly a solitary wave traveling at a speed close to
the speed of the unperturbed solitary wave. Here is a precise statement of the result
in view.

Theorem 5.1. Let c̃ > 1, µ = µ(c̃) = c̃−1
c̃

∈ (0, 1), and ǫ0 = ‖φ′µ‖
2
L2/‖φ′′µ‖L2 . Then

there exists a positive constant A depending only on c̃ with the following property.
For every ǫ in (0, ǫ0), there exists δ = δ(ǫ) > 0 such that if u0 ∈ H2(R) with
‖u0 − φµ‖H2 < δ, then there exists a C1-function γ : R → R satisfying

‖u(·, t) − φµ(· + γ(t))‖H2 < ǫ, and |γ′(t) + c̃| < Aǫ, (60)

for all t ∈ R, where u is the globally defined H2-solution of (2) satisfying u(·, 0) =
u0.

Before proving Theorem 5.1, two technical lemmas are laid out. The first one
provides a choice of γ by demanding the satisfaction of an orthogonality condition.
For β > 0, define Uβ, an H2-neighborhood of the trajectory of φµ, by

Uβ = {ψ ∈ H2(R) | inf
τ∈R

‖ψ − φµ(· + τ)‖H2 < β}. (61)

Lemma 5.2. Fix µ ∈ (0, 1). There exists β > 0 and a C1-map γ : Uβ → R such
that, ∫

R

ψ(x)φ′µ(x+ γ(ψ))dx = 0, ∀ψ ∈ Uβ, (62)

γ(ψ(· + τ)) = γ(ψ) + τ, and γ(φµ) = 0. (63)

Proof. Consider the function

G : H2(R) × R → R, (ψ, γ) 7→

∫

R

ψ(x)φ′µ(x+ γ)dx;

clearly,

G(φµ, 0) = 0 and ∂γG(φµ, 0) = −

∫

R

φ′µ(x)2dx < 0.

The implicit-function theorem implies the existence of positive numbers β, η and a
unique C1-function

γ : Bβ(φµ) = {ψ ∈ H2(R) | ‖ψ − φµ‖H2 < β} → (−η, η), (64)

such that γ(φµ) = 0 and G(ψ, γ(ψ)) = 0 for all ψ in Bβ(φµ).
To check that (63) is satisfied in Bβ(φµ), let ψ ∈ Bβ(φµ) and τ ∈ R be such that

ψ(· + τ) ∈ Bβ(φµ). Then the translation invariance of Lebesgue measure implies
that

0 = G(ψ, γ(ψ)) = G(ψ(· + τ), γ(ψ) + τ),
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and because the value of γ(ψ) is unique, it must be the case that γ(ψ(· + τ)) =
γ(ψ) + τ .

The mapping γ is easily extended to all of Uβ , where β > 0 is the radius provided
by the implicit-function theorem. If for some τ ∈ R, ‖ψ − φµ(· + τ)‖H2 < β, define
γ(ψ) = γ(ψ(·−τ))+τ . This definition makes sense. Indeed, if ‖ψ−φµ(·+τ1)‖H2 < β,
then both ψ(· − τ) and ψ(· − τ1) belong to Bβ(φµ). Since (63) holds in Bβ(φµ), it
is deduced that

γ(ψ(· − τ1)) = γ(ψ(· − τ − (τ1 − τ))) = γ(ψ(· − τ)) − τ1 + τ,

which is the same as

γ(ψ(· − τ1)) + τ1 = γ(ψ(· − τ)) + τ.

Remark 5.3. It follows directly from Lemma 5.2 and the definition of the extension
of γ to all of Uβ that for any ǫ with η > ǫ > 0, there is a δ with β > δ > 0 such
that for all ψ ∈ Bδ(φµ(· + τ)),

|γ(ψ) − τ | < ǫ. (65)

Control of the integral operator appearing in (6) is also needed, and provided in
the next lemma.

Lemma 5.4.

(i) Let u0 ∈ B(0, ‖ϕ⋆‖H1) = {ψ ∈ H1(R) | ‖ψ‖H1 < ‖ϕ⋆‖H1} be such that
E(u0) < E(ϕ⋆). Then there exists a positive constant C depending only on
u0 such that, for all t ∈ R, the global solution u of (2) emanating from u0

satisfies
‖(1 − ∂2

x − u(·, t))−1‖B(L2;H2) ≤ C. (66)

(ii) Let ψ1 and ψ2 in B(0, ‖ϕ⋆‖H1). Then there exists a constant C such that

‖(1 − ∂2
x − ψ2)

−1 − (1 − ∂2
x − ψ1)

−1‖B(L2) ≤ C‖ψ2 − ψ1‖H1 . (67)

Proof. Part (i) was established as inequality (5.16) in the proof of Theorem 3 in
[15].

For Part (ii), argue as follows. From Lemma 6 in [15], it is known that

B(0, ‖ϕ⋆‖H1) ⊂ Ω1

(see (5) for the definition of Ω1), so that the operators (1 − ∂2
x − ψj)

−1, j = 1, 2
are well defined. Then (ii) is a direct consequence of inequality (3.5) of Lemma 2
in [15], with a = 0, s = 1, and φ = 0.

The elements needed to provide a proof of Theorem 5.1 are in place.

Proof of Theorem 5.1. Fix an ǫ in the range 0 < ǫ < ǫ0. Since the mapping

τ ∈ R 7→ φµ(· + τ) ∈ H2(R)

is uniformly continuous, there exists η > 0 such that

|τ2 − τ1| < η =⇒ ‖φµ(· + τ2) − φµ(· + τ1)‖H2 <
ǫ

2
. (68)

Now, choose β > 0 as in Lemma 5.2 and Remark 5.3 corresponding to the fixed
value of ǫ. Thus, the associated translation function γ maps the ball Bβ(φmu) to
the interval (−ǫ, ǫ), and its extended version has the property that

|γ(ψ) − τ | < ǫ if ψ ∈ Bβ(φµ(· + τ)).
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By the stability result proved in Theorem 1.1, there is a δ > 0 such that when
‖u0 − φµ‖H2 < δ, then there exists a real function θ : R → R satisfying

‖u(·, t) − φµ(· + θ(t))‖H2 < min(
ǫ

2
, β), (69)

where u is the solution of (2) emanating from u0.
Since u(·, t) ∈ Uβ, the function γ is defined on u(·, t), and by abuse of notation,

we write

γ(t) = γ(u(·, t)). (70)

Hence, for all t in R, u(·, t) ∈ Bβ(φµ(·+θ(t))), so that (65) implies |γ(t)−θ(t)| < η.
It is then concluded from (68) and (69) that

‖u(·, t) − φµ(· + γ(t))‖H2

≤ ‖u(·, t) − φµ(· + θ(t))‖H2 + ‖φµ(· + γ(t)) − φµ(· + θ(t))‖H2 < ǫ.
(71)

Observe next by reference to Theorem 2.2, (6), and the fact the operator

∂x(1 − ∂2
x − u)−1 ∈ B(L2),

that ut ∈ C0(R;H2(R)). Therefore, u ∈ C1(R;H2(R)) and hence the function
γ(t) defined in (70) is a C1-function. Thus, we can differentiate the relation
G(u(·, t), γ(t)) = 0 with respect to t, thereby adducing the formula

∫

R

∂tu(x, t)φ
′
µ(x+ γ(t))dx + γ′(t)

∫

R

u(x, t)φ′′µ(x + γ(t))dx = 0. (72)

Define h by h(x, t) = u(x, t) − φµ(x+ γ(t)) and use (71) and the definition of ǫ0 to
infer that ∫

R

u(x, t)φ′′µ(x+ γ(t))dx = −

∫

R

φ′µ(x)2dx+R1(t) < 0, (73)

where, for all t,

R1(t) =

∫

R

h(x, t)φ′′µ(x+ γ(t))dx ≤ Cǫ (74)

and C is a positive constant depending only on c̃. On the other hand, (6) yields
that ∫

R

∂tu(x, t)φ
′
µ(x+ γ(t))dx

= −

∫

R

∂x(1 − ∂2
x − u(x, t))−1u(x, t)φ′µ(x+ γ(t))dx

= −

∫

R

∂x(1 − ∂2
x − φµ(x))−1φµ(x)φ′µ(x)dx +R2(t),

(75)

where, after integrating by parts,

R2(t) =

∫

R

(1 − ∂2
x − u(x, t))−1h(x, t)φ′′µ(x+ γ(t))dx

+

∫

R

{(
[1 − ∂2

x − u(x, t)]−1 − [1 − ∂2
x − φµ(x+ γ(t))]−1

)

× φµ(x+ γ(t))φ′′µ(x+ γ(t))
}
dx.

(76)

Since (1 − ∂2
x − φµ)−1φµ = c̃φµ, it follows that

−

∫

R

∂x(1 − ∂2
x − φµ(x))−1φµ(x)φ′µ(x)dx = −c̃

∫

R

φ′µ(x)2dx. (77)
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The bounds (66) and (67), and the fact that ‖h(·, t)‖H2 < ǫ give control of the
terms on the right-hand side of (75). It is then concluded that there is a positive
constant C such that, for all t ∈ R,

R2(t) ≤ Cǫ. (78)

Substituting formulas (73), (76) and (77) into (72) leads to the formula

γ′(t) = −c̃+
R2(t) − c̃R1(t)∫

R
φ′µ(x)2dx−R1(t)

, (79)

which, when combined with (74) and (78), implies the existence of a positive con-
stant A such that, for all t ∈ R,

|γ′(t) + c̃| < Aǫ.

6. Conclusion. We have considered the Hirota-Satsuma equation, which was de-
rived as a model for surface water waves in the same small-amplitude, long-
wavelength regime as was the Korteweg-de Vries and the BBM equations. The
solitary-wave solutions of this equation have been shown to be orbitally stable in
H2(R) to perturbations of this regularity. Moreover, it was demonstrated that the
solution emanating from a perturbed solitary wave travels at nearly the same speed
as the unperturbed solitary wave itself.

Questions that remain open, and which appear to be of some interest include the
following. First, are these waves stable to rougher perturbations? It has been shown
for the Korteweg-de Vries equation, for example, that solitary waves are stable even
in L2(R) (see [20]) and the methods that come to the fore in this analysis might
be applied to the present context. It is also interesting to know if they are stable
in smaller spaces, such as Hs(R) for s > 2. The solitary waves of the Korteweg-
de Vries equation are known to be stable in Hk(R) for k = 2, 3, · · · (see [8]) and
the question of the stability of the Hirota-Satsuma solitary waves seems equally
interesting.

While there are no solitary waves outside of the set Ω1 that appears in our
analysis, the question of what transpires when initial data is posited outside this
set is obviously interesting. Our Appendix 2 below casts a little light on this issue,
but there is clearly more to be understood.

Finally, it would be helpful to have accurate numerical simulations of solutions
of the Hirota-Satsuma equation. These could help point the way toward a more
detailed understanding of the long-time asymptotics of solutions.

7. Appendix 1: Proof of Theorem 4.6. As in the proof of Theorem 2.1 in [17],
the proof of Theorem 4.6 is split into several lemmas.

Lemma 7.1. Let {φn} be a bounded sequence in H2(R) and suppose that {φn} is
not precompact in W 1,p(R) for some p with 2 < p ≤ ∞. Then there exists a real
sequence {cn} such that some subsequence {φnk

(·+cnk
)} of the sequence of translates

{φn(·+cn)} converges weakly in H2(R) to a non-zero function φ. Moreover, it must
be the case that |cnk

| → ∞, as k → ∞.

Proof. Lemma 7.1 follows directly by applying Lemma 2.4 in [17] to the sequences
{φn} and {φ′n}.
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Again, let λ be fixed in the interval (0, e⋆). Throughout the rest of this appendix,
we will say that a function φ ∈ H2(R) is admissible if φ ∈ Iλ, that is,

E(φ) = λ, and ‖φ‖H1 < ‖ϕ⋆‖H1 .

A C2-curve φ : (−δ0, δ0) → H2(R) is admissible when

E(φ(t)) = λ, and ‖φ(t)‖H1 < ‖ϕ⋆‖H1 , for all t ∈ (−δ0, δ0). (80)

A sequence {φn} will be admissible when φn is admissible for every n ∈ N. More-

over, we say that a pair of functions (h, h̃) is adapted to an admissible function φ
if

E′(φ)h = 0 and E′′(φ)(h, h) + E′(φ)h̃ = 0. (81)

For example, differentiating the first identity in (80) twice with respect to t, it is

seen that if φ(t) is an admissible curve, then the pair (φ̇(0), φ̈(0)) is adapted to
φ(0) (here the dots adorning φ connote derivatives with respect to t). This simple
observation has a kind of converse, as the next lemma shows.

Lemma 7.2. Let {φn} be an admissible sequence converging weakly in H2(R) to

some function φ 6= 0, and let {(hn, h̃n)} be a bounded sequence of pairs adapted to

the sequence {φn}, which is to say that, the sequences {hn}, {h̃n} are bounded in

H2(R) and (hn, h̃n) is adapted to φn, for all n ∈ N. Then there exist a δ0 > 0 and
a sequence of bounded C2-curves gn : (−δ0, δ0) → H2(R) such that

(i) gn(0) = 0, ġn(0) = hn and g̈n(0) = h̃n,
(ii) the mapping t ∈ (−δ0, δ0) 7→ φn + gn(t) is an admissible curve, for each n,

and
(iii) the sequences {gn(t)}, {ġn(t)}, and {g̈n(t)} are equicontinuous.

Proof. Arguing as in Corollary 4.4, we deduce that the weak limit φ of the admissible
sequence {φn} satisfies ‖φ‖H1 < ‖ϕ⋆‖. Moreover, since the only non-zero critical
points of the functional E are 2ϕ⋆ and its spatial translates, and since these do
not respect the last inequality, it is clear that E′(φ) 6= 0. Thus, there exists a
real-valued function ψ ∈ C∞

c (R) with compact support such that E′(φ)ψ 6= 0.
For all n ∈ N, consider the function

Hn(σ, t) = E
(
φn + σψ + thn +

t2

2
h̃n

)
.

Then, up to passage to a subsequence, it must be the case that

Hn(0, 0) = λ and ∂σHn(0, 0) = E′(φn)ψ 6= 0,

for n large enough, since E′(φn)ψ → E′(φ)ψ as n → ∞. The latter convergence is
assured as follows. There is an R > 0 such that suppψ ⊂ (−R,R). As H1(−R,R)
is compactly embedded in L∞(−R,R)), a subsequence {φnk

} of {φn} converges uni-
formly to φ on [−R,R]. In consequence, E′(φnk

)ψ → E′(φ)ψ, whence E′(φnk
)ψ 6= 0

for k large.
It follows by an application of the implicit-function theorem that there exists a

sequence {σn} of functions for which

σn(0) = 0 and Hn(σn(t), t) = λ. (82)

Then it is deduced, upon differentiating (82), that

∂σHn(0, 0)σ̇(0) + E′(φn)hn = 0
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and

∂σHn(0, 0)σ̈(0) + ∂2
σHn(0, 0)(σ̇(0), σ̇(0)) +E′(φn)h̃n + E′′(φn)(hn, hn) = 0,

which imply that σ̇(0) = σ̈(0) = 0, since (hn, h̃n) is adapted to φn. Clearly, the

sequence gn(t) = σn(t)ψ + thn + t2

2 h̃n satisfies the conditions (i), (ii) and (iii).
Use has been made of the fact that E′ is uniformly continuous on bounded sets of
H1(R) to ensure the existence of δ0 > 0 independent of n such that σn is defined
on (−δ0, δ0) for all n and to prove the equicontinuity assertion in (iii).

The next lemma follows from standard calculus arguments.

Lemma 7.3. Let {φn} ⊂ H2(R) be a minimizing sequence for the problem (Vλ),
converging weakly in H2(R) to some φ 6= 0. Then,

(i)

|||F ′(φn)||| := sup

{
|F ′(φn)h|

‖h‖H2

| h 6= 0 and E′(φn)h = 0

}
−→

n→∞
0 (83)

and
(ii) if for some δ0 > 0, {gn : (−δ0, δ0) → H2(R)} is a sequence of C2-curves such

that gn(0) = 0, φn + gn(t) is admissible, the sequences {ġn(0)} and {g̈n(0)}
are bounded and the sequences of curves {gn(t)}, {ġn(t)}, and {g̈n(t)} are
equicontinuous, then

lim inf
d2

dt2
F (φn + gn(t))|t=0

≥ 0. (84)

The next lemma gives an expression for |||F ′(φn)||| when φ is an admissible
function.

Lemma 7.4. Let φ be an admissible function. Then there exists a unique h̄ ∈
H2(R) such that

|||F ′(φ)||| = F ′(φ)h̄, E′(φ)h̄ = 0, and ‖h̄‖H2 = 1, (85)

and there exists two real constants α and ν satisfying

F ′(φ)h+ αE′(φ)h+ ν(h, h̄)H2 = 0, for all h ∈ H2(R). (86)

Moreover, if h : (−δ0, δ0) → H2(R) is a C2-curve such that h(0) = 0 and the
mapping t 7→ φ+ h(t) is an admissible curve, then

d2

dt2
F (φ + h(t))|t=0

= Λ′′(φ)(ḣ(0), ḣ(0)) − ν(ḧ(0), h̄)H2 , (87)

where Λ = F + αE.

Proof. From (83), it is clear that

|||F ′(φ)||| = sup {F ′(φ)h | ‖h‖H2 = 1 and E′(φ)h = 0} . (88)

Because {h ∈ H2(R) | E′(φ)h = 0} is a Hilbert space in its own right, (85) fol-
lows directly from the Riesz representation theorem and (86) is the Euler-Lagrange
equation associated to (88).

Now, suppose that h is a C2-curve as described in the second part of Lemma 7.4
and use (86) to compute

d2

dt2
F (φ+ h(t))|t=0

= F ′′(φ)(ḣ(0), ḣ(0)) + F ′(φ)ḧ(0)

= F ′′(φ)(ḣ(0), ḣ(0)) − αE′(φ)ḧ(0) − ν(ḧ(0), h̄)H2 ,
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which implies (87) since (ḣ(0), ḧ(0)) is adapted to φ (see the second identity in
(81)).

In the following, let {φn} be a minimizing sequence for the variational problem
(Vλ), converging weakly to some non-zero function φ in H2(R). It is deduced from
Lemma 7.4 that there exists two real sequences {αn}, {νn}, and a sequence {h̄n}
in H2(R) with ‖h̄n‖H2 = 1, E′(φn)h̄n = 0, and F ′(φn)h̄n = |||F ′(φn)||| such that

F ′(φn)h+ αnE
′(φn)h+ νn(h, h̄n)H2 = 0, for all h ∈ H2(R) and n ∈ N. (89)

Lemma 7.5. The sequence {νn} converges to 0 as n → ∞ and the sequence {αn}
is bounded.

Proof. Applying (89) with h = h̄n and using (83), it is ascertained that

νn = −F ′(φn)h̄n = −|||F ′(φn)||| −→
n→+∞

0.

On the other hand, if some subsequence, still denoted {αn}, of the sequence {αn}
is unbounded, then upon dividing (89) by αn and letting n tend to +∞, it would
transpire that

E′(φ)h = 0, for all h ∈ H2(R),

which is a contradiction since E′(φ) 6= 0, as was already seen in the proof of Lemma
7.2.

From now on, it is presumed without loss of generality that {αn} converges.

Lemma 7.6. Let {φn}, {h̄n}, {αn} and {νn} be as above. If {hn} is a bounded
sequence in H2(R) satisfying E′(φn)hn = 0, then

lim inf
{
F ′′(φn)(hn, hn) + αnE

′′(φn)(hn, hn)
}
≥ 0. (90)

Proof. Once again, we use the fact that the non-zero weak limit φ of our minimizing
sequence satisfies E′(φ) 6= 0. Therefore, there exists ψ ∈ H2(R) with compact
support such that E′(φ)ψ 6= 0 and so there is a bounded real sequence {dn} such
that at least for large n, E′′(φn)(hn, hn) + dnE

′(φn)ψ = 0, which is to say that the
pair (hn, dnψ) is adapted to φn. From this is deduced, via Lemma 7.2, the existence
of a sequence of curves gn : (−δ0, δ0) → H2(R) satisfying (i), (ii), and (iii), and it
then follows from (84) and (87) that

0 ≤ lim inf
d2

dt2
F (φn + gn(t))|t=0

= lim inf
{
Λ′′

n(φn)(hn, hn) − dnνn(ψ, h̄n)H2

}
,

where Λn = F + αnE, which implies (90) since νn → 0 ( see Lemma 7.5).

Finally, here is a proof of Theorem 4.6.

Proof of Theorem 4.6. Let {φn} a minimizing sequence for (Vλ) converging weakly
in H2(R) to a non-zero function φ. We will argue by contradiction and suppose
that {φn} is not precompact in W 1,p(R) for some p with 2 < p ≤ ∞. Then, it
follows from Lemma 7.1 that, extracting a subsequence if necessary, there exist a
real sequence {cn} and a non-zero function ψ ∈ H2(R) satisfying

|cn| −→
n→∞

∞, and ψn := φn(· + cn) ⇀
n→∞

ψ, in H2(R).
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Let h ∈ C∞
c (R) with supph ⊂ [−R,R], say. Taking advantage of the compact

embedding of H2(−R,R) in H1(−R,R), and taking an appropriate subsequence of
{φn} and {ψn}, it is seen from (89) that

F ′(φ)h + αE′(φ)h = 0 and F ′(ψ)h+ αE′(ψ)h = 0.

As C∞
c (R) is dense in H2(R), the latter two formulas thus hold for all h ∈ H2(R).

Then, the hypothesis (H) ensures the existence of two functions h and k in H2(R)
such that

(V ′′(φ) + αE′′(φ)) (h, h) < 0 and (V ′′(ψ) + αE′′(ψ)) (k, k) < 0. (91)

Next, choose two real sequences {an} and {bn} such that hn = anh + bnkn

satisfies E′(φn)hn = 0 and a2
n + b2n = 1, where kn = k(· − cn). A straightforward

computation shows that

(F ′′(φn) + αnE
′′(φn))(hn, hn) = a2

n(F ′′(φn) + αnE
′′(φn))(h, h)

+ 2anbn(F ′′(φn) + αnE
′′(φn))(h, kn) + b2n(F ′′(ψn) + αnE

′′(ψn))(k, k).

Extracting subsequences if necessary to ensure that {an}, {bn}, and {αn} converge
to a, b, and α, respectively, it is concluded upon passing to the limit in the last
equation that

lim inf
{
(F ′′(φn) + αnE

′′(φn))(hn, hn)
}

= a2
(
F ′′(φ) + αE′′(φ)

)
(h, h) + b2

(
F ′′(ψ) + αE′′(ψ)

)
(k, k) < 0,

since |cn| → +∞, which contradicts (90) in Lemma 7.6.

8. Appendix 2: An ill-posedness result for the Hirota-Satsuma equation.

It was proved in [15] that the Hirota-Satsuma equation is locally well-posed for
initial data u0 in the open subset

Ω1 = {φ ∈ H1(R) | − 1 /∈ σ(−∂2
x − φ)},

of H1(R). The main idea was to rewrite the equation in the quasi-linear form

ut = −∂x(1 − ∂2
x − u)−1u,

and apply a fixed-point argument. This argument leaves open what might transpire
for initial data in the closed set

F1 = H1(R) \ Ω1.

In the following, we exhibit a function in F1 around which the flow map (the map
that associates to initial data the solution that emanates therefrom) associated to
(2) cannot be extended continuously.

Consider ϕ⋆, the unique, up to translation, solution to the elliptic differential
equation (9). It is clear that ϕ⋆ belongs to F1; indeed, ϕ⋆ ∈ ∂Ω1. On the other
hand, it was also proved in [15] that the solutions corresponding to initial data in
the subset

Ω0
1 = {φ ∈ H1(R) | ‖φ‖H1 < ‖ϕ⋆‖H1 and E(φ) < E(ϕ⋆)}

of Ω1 extend globally in time. Note also that ϕ⋆ ∈ ∂Ω0
1.

Proposition 8.1. If there exists T > 0 and a solution u⋆ of (2) in C([0, T ];H1(R))
satisfying u⋆(·, 0) = ϕ⋆, then the flow map

S : Ω0
1 → C([0, T ];H1(R)),

does not extend continuously to ϕ⋆.
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Proof. The argument is made by contradiction. Suppose that S extends continu-
ously to ϕ⋆. The solitary-wave solutions of (2) are

uc(x, t) = φµ(x− (1 + c)t), with µ =
c

1 + c
and φµ(z) = µϕ⋆(µ

1

2 z) ∈ Ω0
1. (92)

It is straightforward to check that

φµ −→
c→+∞

ϕ⋆ in H1(R).

As S is assumed to be continuous, Sφµ → Sϕ⋆ = u⋆ in C([0, T ];H1(R)). Thus, it
follows by the Sobolev embedding H1(R) →֒ L∞(R), that

uc = Sφµ −→
c→+∞

u⋆ in L∞(R × [0, T ]). (93)

On the other hand, it is deduced from (92) that for any R > 0 and for any δ > 0,

uc −→
c→+∞

0 in L∞((−R,R) × [δ, T ]). (94)

Therefore u⋆(·, t) = 0 if t ∈ (0, T ], and u⋆(·, 0) = ϕ⋆. This contradicts the presump-
tion that u⋆ belongs to C([0, T ];H1(R)).

Contrary to what occurs for the KdV- and BBM-equations, the size of the
solitary-wave solutions of (2) remains uniformly bounded even when the velocity
becomes unboundedly large. The ill-posedness result subsists on this simple fact.
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