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2.3 Matrix Operations

There are three operations we must define for working with matrices: Addition, Scalar Multiplication
and Matrix Multiplication.

Matrix Addition
Given two Matrices A and B, both of which are of dimensions nxm, we have A+B=C, where C is also
of dimensions nxm, and each entry of matrix C is ci=a;;j+b;.
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Scalar Multiplication
Given a matrix A and a real number ¢, cA=B where each entry of B is b;j=c*a;; In other words, we
multiply each entry of matrix A by the number c.
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Matrix Multiplication
Given a matrix A with dimensions nxm and B which is mxp, AB=C, where matrix C has dimensions
nxp, and each entry of matrix C is ¢;j=ai bjtaizbsj + ... + aimbm;
In other words, for the entry in row i and column j of the product matrix, we take row i of matrix A and
column j of matrix B, and take the sum of the products of each corresponding entry.
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First of all, because we are multiplying a [2x3] and [3x2] matrix, this is allowed. The columns of the
first must be the same as the rows of the second. The product will be a 2x2 matrix (the rows of the first

and columns of the second).
Entry 1,1 of the product comes from row 1 of the first matrix and column 1 of the second matrix
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The remaining entries are calculated accordingly
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; i] is not defined because the matrices are 3x3 and 2x3.



