1. Find \(\frac{dy}{dx} \) using implicit differentiation

 (a) \(\sin(xy) = x + y \)

 (b) \(\cos(y^2) + x = e^y \)

 (c) \(y = \frac{x+1}{y-1} \)

2. Find the slope at the given point.

 (a) \(\sqrt[3]{x} + \sqrt[4]{y^4} = 2; (1,1) \)

 (b) \((x+y)^{2/3} = y; (4,4) \)

3. Find the equations of each tangent line for \(x = 1 \) for the following curve

 \(x + y^3 - y = 1 \)

4. (a) At what point does \(x + y^3 - y = 1 \) have a vertical tangent line? (b) Does it have any horizontal tangent lines?

5. If you slice a sphere the small piece is a spherical cap. Its volume is given by

 \[V = \frac{1}{3} \pi h^2 (3r - h) \]

 where \(r \) is the radius of the sphere and \(h \) is the cap thickness.

 (a) Find \(\frac{dr}{dh} \) for a spherical cap of volume \(\frac{5\pi}{3} \).

 (b) Evaluate the derivative \(\frac{dr}{dh} \) when \(r = 2 \) and \(h = 1 \).