Math 180: Calculus I

October 21

TA: Brian Powers

At this point you should have the following derivatives memorized.

f(x)	$\frac{d}{dx}f(x)$	comments
g(x) + h(x)	g'(x) + h'(x)	Sum Rule
g(x) - h(x)	g'(x) - h'(x)	Difference Rule
g(x)h(x)	g'(x)h(x) + g(x)h'(x)	Product Rule
g(x)/h(x)	$(g'(x)h(x) - g(x)h'(x))/h(x)^2$	Quotient Rule
g(h(x))	g'(h(x))h'(x)	Chain Rule
с	0	for any constant c
x^n	nx^{n-1}	Power Rule
e^x	e^x	
b^x	$b^x \ln b$	
$\ln x$	$\frac{1}{r}$	
$\log_b x$	$\frac{x}{x \ln b}$	
$\sin x$	$\cos x$	Trig Functions
$\cos x$	$-\sin x$	
$\tan x$	$\sec^2 x$	
$\sec x$	$\sec x \tan x$	
$\cot x$	$-\csc^2 x$	
$\csc x$	$\csc x \cot x$	
$\sin^{-1}x$	$\frac{1}{\sqrt{1-r^2}}$	Inverse Trig Functions
$\cos^{-1}x$	$\frac{\sqrt{1-1}}{\sqrt{1-2}}$	
$\tan^{-1} x$	$\begin{array}{c} \sqrt{1-x^2} \\ \frac{1}{2+x^2} \end{array}$	
$\cot^{-1}x$	$\begin{vmatrix} x^2+1\\ -1\\ -1 \end{vmatrix}$	
	$x^{2}+1$	

Important techniques and terms:

Implicit Differentiation: take the derivative of both sides of the equation, treat y as a function of x, and then solve for y'

Logarithmic Differentiation: First take a ln or log of both sides of the equation, then solve for y' using implicit differentiation.

Critical Points: values of x in the domain where f'(x) = 0 or f'(x) is undefined.

Local Extrema: cannot be points of discontinuity - locally a maximum or a minimum.

Global Extrema: The absolute maximum and minimum values the function takes on the domain or an interval - could be at an endpoint.

Concavity: The curvature of a graph - concave up means f''(x) > 0, concave down when f''(x) < 0. **Inflection Point**: An x value that separates an interval of upward concavity from an interval of downward concavity. Inflection point implies f''(x) = 0.

2nd Derivative Test: If a is a critical point, $f''(a) > 0 \Rightarrow a$ is a local min, $f''(x) < 0 \Rightarrow a$ is a local min.

Fall 2014

Practice Problems

- 1. Find the derivatives of the following functions
 - (a) $f(x) = (\log_{10} x)/10^x$
 - (b) $f(x) = \cos^{-1}(5x)$
 - (c) $f(x) = \cos(x^{\cos x})$
 - (d) $f(x) = 3x \cdot \tan^{-1}(x^3)$
 - (e) $f(x) = (\sin x)^x$
- 2. Two real numbers x and y have a product of 15. What is the minimum of 3x + 5y? Is there a maximum value of 3x + 5y?
- 3. The following is the graph of f'(x).

- (a) Determine the critical points of f(x).
- (b) Determine the intervals on which f(x) is increasing or decreasing.
- (c) Classify each critical point as a local min, local max or neither.
- (d) Determine (approximately) the intervals on which f(x) is concave up, concave down and any points of inflection.
- 4. Consider $g(x) = 9x^{1/3} 4$.
 - (a) Find the second derivative, g''(x).
 - (b) Find the intervals on which g(x) is concave up.
 - (c) Locate any inflection points of g(x).
- 5. Consider the function $g(x) = x\sqrt{x+1}$.
 - (a) State the domain of g.
 - (b) State the intervals on which g is increasing and those on which it is decreasing.
 - (c) Find all local extrema of g, or state that none exist.
 - (d) Sketch g(x) using your analysis.
- 6. Let $f(x) = xe^{4x}$ on the interval [-3, 0]. Find the absolute maximum and minimum values of the function on this interval.
- 7. A rectangular farm needs to fence in a 20,000 ft² rectangle of grass. On one side there is a river. If fencing has a fixed cost per foot, what dimensions will minimize cost?
- 8. A box has a square base with side lengths x and a constant surface area of $12m^2$.
 - (a) Express its volume V as a function of x.

- (b) Find the maximum volume of such a box.
- 9. Consider the curve given by the equation $x \ln x + y \ln y = 1$. Find the equation of the line tangent to point (e, 1).
- 10. Find the point on the curve $y = x^2/6 + 4$ that is nearest to the point (0, 13).
- 11. The continuous function f(x) has critical points at x = 2, 5, 6, has a local minimum at x = 2, a local maximum at x = 5 and f'(6) is undefined. The graph is concave up on the intervals $(-\infty, 5), (5, 6), (6, \infty)$. Sketch a possible graph of f(x).