1. Evaluate the following definite integrals
 (a) \(\int_0^2 4x^3 \, dx \)
 (b) \(\int_0^{\pi/4} 2 \cos x \, dx \)
 (c) \(\int_{-2}^{2} (x^2 - 4) \, dx \)
 (d) \(\int_0^{1/2} \frac{dx}{\sqrt{1-x^2}} \)
 (e) \(\int_0^1 10e^{2x} \, dx \)
 (f) \(\int_1^3 \frac{3}{t} \, dt \)

2. Find the area of the region bounded by the \(x \)-axis, and \(y = 4 - x^2 \).

3. Simplify the following expressions using the FTC.
 (a) \(\frac{d}{dx} \int_3^x (t^2 + t + 1) \, dt \)
 (b) \(\frac{d}{dx} \int_2^{10} \frac{dz}{z^2 + 1} \)
 (c) \(\frac{d}{dt} \int_0^e e^{2x} \ln t^2 \, dx \)

4. Evaluate the following definite integrals
 (a) \(\frac{1}{2} \int_0^{\ln 2} e^x \, dx \)
 (b) \(\int_{\sqrt{2}}^2 \frac{dx}{x \sqrt{x^2 - 1}} \)

5. What value of \(b > -1 \) maximizes the integral
 \[\int_{-1}^b x^2 (3 - x) \, dx \]

6. Suppose \(f \) is a continuous function of \(t \) on \([0, \infty)\) and \(A(x) \) is the net area of the region bounded by the graph of \(f \) and the \(t \)-axis on \([0, x]\). Show that the local maxima and minima of \(A \) occur at the zeroes of \(f \). Verify this with \(f(t) = t^2 - 10t \).