Example 4.1 Is the following function continuous at a?

1. $f(x) = \frac{2x^2+3x+1}{x^2+5x}; a = 5$
2. $f(x) = \begin{cases} \frac{x^2-1}{x-1} & \text{if } x \neq 1 \\ \frac{3}{x-1} & \text{if } x = 1 \end{cases}; a = 1$

1. This is a rational function, and rational functions are continuous at all points in the domain. The thing to check is whether 5 is in the domain or not. Does 5 kill us in the denominator? No, it doesn’t cause us to divide by zero, so it’s in the domain - the answer is yes.

2. Check the definition for continuity:
 a) is the function defined at a? Yes, $f(a) = 3$.
 b) does the limit L exist at a? Yes,

 $$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x-1)(x+1)}{x-1} = 2$$

 c) does the $f(a) = L$? No! The function is not continuous at a.

Example 4.2 On what intervals are the following functions continuous?

1. $f(x) = \frac{x^3+6x+17}{x^2-9}$
2. $f(x) = \frac{1}{x^2-3}$

1. Again, since f is rational, we just have to give all intervals of the domain. The denominator factors into $(x - 3)(x + 3)$ so the domain is all real numbers except 3 and -3. Therefore, the intervals where f is continuous are

 $$(-\infty, -3), (-3, 3), (3, \infty).$$

2. Similarly, the denominator factors into $(x - 2)(x + 2)$ so the intervals where f is continuous are

 $$(-\infty, -2), (-2, 2), (2, \infty).$$

Example 4.3 Show that $f(x)$ is not continuous at 1.

$$f(x) = \begin{cases} 2x & \text{if } x < 1 \\ x^2 + 3x & \text{if } x \geq 1 \end{cases}$$

Is f left continuous or right continuous at 1?
We check the definition of continuity and see where it breaks down.
a) Is \(f(1) \) defined? Yes, \(f(1) = 4 \).
b) Does the limit \(L \) exist as \(x \to 1 \)? No!

\[
\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} 2x = 2
\]

but

\[
\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} x^2 + 3x = 4.
\]

So the limit does not exist. But because \(\lim_{x \to 1^+} f(x) = f(1) \), We can say that \(f \) is right continuous at 1. (It is not left-continuous though).

Example 4.4 Does \(f(x) = x \sin(\frac{1}{x}) \) have a removable discontinuity at \(x = 0 \)? Does \(g(x) = \sin(\frac{1}{x}) \)?

\(f(0) \) is not defined, so it is not continuous at 0. To determine if the discontinuity is removable, we check the limit. We’ve already shown (using the squeeze theorem) that

\[
\lim_{x \to 0} x \sin \left(\frac{1}{x} \right) = 0,
\]

So we may remove the discontinuity by extending the function like so

\[
f^*(x) = \begin{cases}
x \sin \left(\frac{1}{x} \right) & \text{if } x \neq 0 \\
0 & \text{if } x = 0
\end{cases}
\]

\(g(x) \) however, does not behave so nicely. It does indeed have a discontinuity at \(x = 0 \), but \(\lim_{x \to 0} \sin(\frac{1}{x}) \) does not exist - the function oscillates infinitely between -1 and 1 near 0, so the discontinuity is not removable.

Example 4.5 For a function \(f \), if \(|f| \) is continuous at \(a \) does it mean necessarily that \(f \) is continuous at \(a \)?

This is not true. Though this is true for many many examples, one counterexample is all we need to show it is false. Consider

\[
f(x) = \begin{cases}
1 & \text{if } x < 0 \\
-1 & \text{if } x \geq 0
\end{cases}
\]

Then \(|f(x)| = 1 \), which is continuous at 0, where the original function is not continuous at 0.